
 Department of Electrical and

Computer Engineering, Virginia Tech2

CAMP: A Technique to Estimate Per-Structure Power at Run-time using a Few

Simple Parameters

To appear in the 15th International Symposium on High-Performance Computer Architecture (HPCA 2009)

Michael D. Powell, Arijit Biswas, Joel S. Emer, Shubhendu S. Mukherjee, Basit R. Sheikh1, Shrirang Yardi2

Intel Massachusetts Computer Systems Laboratory,

Cornell University1

Abstract

Microprocessor power has become a first-order constraint at

run-time. Designers must employ aggressive power-management

techniques at run-time to keep a processor’s ballooning power

requirements under control. Effective power management benefits

from knowledge of run-time microprocessor power consumption in

both the core and individual microarchitectural structures, such as

caches, queues, and execution units. Increasingly feasible per-

structure power-control techniques, such as fine-grain clock gat-

ing, power gating, and dynamic voltage/frequency scaling (DVFS),

become more effective from run-time estimates of per-structure

power. However, run-time computation of per-structure power esti-

mates based on utilization requires daunting numbers of input sta-

tistics, which makes per-structure monitoring of run-time power a

challenging problem.

To address the challenges of estimating per-structure power in

hardware, we propose a new technique, called Common Activity-

based Model for Power (CAMP), to estimate activity factors and

power for microarchitectural structures. Despite using a relatively

few input parameters—specifically nine—based on general micro-

processor utilization statistics (e.g., IPC and load rate), our linear-

regression-based model estimates activity and dynamic power for

over 100 structures in an out-of-order x86 pipeline and core power

with an average error of 8%. Because the computations utilize few

inputs, CAMP is simple enough to implement in hardware, provid-

ing run-time structure and core power estimates for dynamic power

management. Because the input statistics are generic in nature and

the model remains accurate across incremental microarchitectural

refinements, CAMP provides simple intuitive equations relating

global microarchitectural statistics to structure activity and power.

These equations provide a simple technique that can equate

changes in one structure’s activity to power variations in other

structures across the pipeline.

1 Introduction

Microprocessor power has become a first-order constraint at

run-time. Transistor densities have increased exponentially over

successive process technologies, but supply voltage has not

decreased proportionately. Consequently, transistor count has

increased faster than per-transistor power has decreased. Designers

must employ aggressive power-management techniques at run-

time to keep a processor’s ballooning power requirements under

control. A challenge to effective run-time power management is

knowing the run-time power consumption of the microprocessor.

Microprocessor power estimates may be computed at several

levels, including system, die, core, and per-structure power. System

and die power estimates can be used to monitor and control sys-

tem-level attributes like disks, fans, and case temperature. Core-

level power estimates are a popular topic of recent research

because these estimates may be used to address power and power-

density concerns on a multi-core die. Beyond the core level, run-

time power estimates for individual microarchitectural structures,

such as caches, ALUs, and queues, would be useful for fine-grain

management of package temperature and core power requirements.

We refer to estimates at this level as “per-structure” power esti-

mates. Per-structure power estimates will be useful for controlling

selective enabling and disabling of microarchitectural resources.

As power-management becomes increasingly important in micro-

processors, coarse-granularity core-level power estimates are likely

to become inadequate to manage and to reallocate continuously

power budgets for individual microarchitectural structures.

Increasingly feasible per-structure power-control techniques, such

as fine-grain clock gating, power gating, and dynamic voltage/fre-

quency scaling (DVFS), will also benefit from run-time estimates

of per-structure power.

System-level power estimates can be computed by directly

sensing current because of the fairly long response time constants

(many milliseconds or a few seconds) of the system-level

attributes. However direct monitoring of core power in a multi-core

die, let alone structure power, faces several challenges. On-die cur-

rent sensors have been proposed for quiescent current (IDDQ) test-

ing but have rarely been used in production for even that purpose

due to problems such as area and performance overhead and cali-

bration drift due to process variations [27]. Other proposed current

sensors for IDDQ attempt to address these problems [27,5], but

these sensors are still experimental, and no proposal suggests using

the sensors for run-time dynamic power monitoring in a deployed

microprocessor. In addition, it would be difficult to use such sen-

sors to estimate per-structure power because each structure would

need a separate power domain, increasing design and layout com-

plexity.

It might seem possible to estimate structure or core power at

run-time by borrowing methodology from design-time power mod-

els like Intel’s ALPS [8]. These techniques count utilization of

structures (e.g., register reads) and compute power estimates based

on a per-event power model. However, such direct computation of

core and structure power at run-time based on utilization would be

complex due to the hundreds of utilization statistics required for

the core and tens of statistics required for each structure. For exam-

ple, in a Intel® Core™-like processor, ALPS would calculate reor-

der-buffer (ROB) power for a single cycle using structure-specific

input statistics, such as ROB reads, register-file reads, double-

width register-file reads, number of operations retired, number of

operations written back, occurrence of nuke operations this cycle,

and occurrence of integer, floating-point, and branch operation

activity this cycle. Tracking such a myriad of cryptic statistics for

each structure in hardware would lead to tremendous wire and

logic complexity and is thus impractical.

To address the challenges of estimating per-structure power in

hardware, we propose a new analytical model, called Common

Activity-based Model for Power (CAMP), to estimate activity fac-

tors and power for microarchitectural structures. This model does

not rely on current monitoring or simulating dozens or hundreds of

utilization statistics. Instead CAMP is based on a few input statis-

tics—specifically 9—that are general microarchitectural statistics

(e.g., IPC, fetch rate, number of loads). In spite of this limited input

data, CAMP’s linear-regression-based methodology can estimate

activity for tens or hundreds of microprocessor structures. It can

also estimate the overall core power to within 8%. The reason only

a few input statistics are sufficient to estimate the dynamic power

of a microprocessor is because the myriad per-structure events are

related to a small set of global parameters, such IPC and load rate.

We use this key observation to drive the development of CAMP.

CAMP is simple enough to implement in hardware because the

computations are based on a few input statistics which can be

obtained easily from performance counters. Without CAMP, a

hardware power estimator based on structure activity and perfor-

mance counters (similar to ALPS), would require many tens or

hundreds of structure-specific inputs encompassing most pipeline

structures, leading to wiring and power overhead from routing and

counting the many statistics. With CAMP, we avoid the use of

cryptic statistics by using data from a few general performance

counters to estimate structure-level and core-level power at

extremely fine time intervals (on the order of 100 microseconds).

To the best of our knowledge, no previous published work has pro-

posed such fine-grained per-structure power models using global

statistics.

An additional benefit of CAMP is that it provides simple intui-

tive equations relating global microarchitectural statistics to struc-

ture activity and power. These equations provide a simple

analytical model that can equate changes in one structure’s activity

to power variations in other structures across the pipeline. For

example, CAMP equations might reveal the impact of increasing

branch prediction accuracy on decreasing power and activity in the

pipeline back-end due to reduced mis-speculation. This type of

expression is useful in early design stages for evaluating trade-offs,

and the equation-based analysis can be done in spreadsheets prior

to development of a detailed performance simulator.

Our common activity-factor-based model differs from previous

proposals for run-time power models. Previous work on run-time

power monitoring has focused either on embedded designs, micro-

processors with little power management, or on directly monitoring

current externally [10] and not on run-time monitoring in produc-

tion microprocessors in the field. We compare CAMP to previous

analytical power models and discuss related work in more detail in

the next section.

The main contributions of this paper are:

• We propose CAMP, a regression-based model that can estimate

activity and power for over 180 structures with high accuracy,

using only nine input statistics, that estimates power for about

90% of microarchitectural structures to within 5%.

• We explain how the model can be implemented in hardware for

run-time power estimates in the field at either the structure-

level or the core level.

• We explain how the model can be used at design-time to

explore the impact of microarchitectural changes on individual

structure activity and power. CAMP is unique among run-time

power estimation techniques in that the same concepts can be

applied in early design analysis.

The rest of this paper is organized as follows. In Section 2 we

discuss related work. Section 3 covers power-modeling back-

ground, and Section 4 describes our infrastructure and methodol-

ogy. We describe the details of CAMP in Section 5. In Section 6 we

discuss using CAMP in hardware and present results. Section 7

discusses using CAMP for power estimates at design time. We con-

clude in Section 8.

2 Related Work

In this section, we discuss previous proposals for run-time

power monitoring and related analytical design-time models for

performance and power estimation. Figure 1 summarizes the

design space for power estimation, and Table 1 summarizes the

categories of run-time techniques. First we discuss techniques that

either target or are conceptually suitable for run-time power esti-

mation; these categories are shown in ovals on the figure. Then we

discuss techniques that are suitable only for offline power estima-

tion, shown in the table at the left of the figure. Finally, we discuss

related analytical performance models that do not target power esti-

mation.

2.1 Run-time Power Monitoring

Several proposals either aim to monitor run-time power or

might seem suitable for monitoring run-time power. The first run-

time power monitoring category targets power studies using a cur-

rent-sensor as one of the inputs. Isci and Martonosi [10] implement

run-time power monitoring for a single-core Intel® Pentium™ 4

(Willamette) using a combination of performance counters and an

inline external ammeter. Performance-counter results and current

measurements are fed to a separate monitoring machine which

computes power in software on intervals of about 400 millisec-

onds. The model estimates power for 22 microprocessor structures

Table 1: Run-time estimation techniques for high-performance CPUs with aggressive power management

Technique and inputs Structures covered Limitations

Runtime power-monitoring (e.g., [10]) core and few structures need sensors, limited structure power

Wire or structure specific stats (e.g., [4] [2] [3]) many many input statistics

Counter-based techniques (a) (e.g., [12][1]) core no structure power

Counter-based techniques (b) (e.g., [26][20]) few structures ratio of input statistics to structures not scalable

CAMP many (180)

using 24 statistics plus the meter. While this model is quite useful,

the external hardware requirement for model construction makes it

unwieldy for run-time power monitoring in the field, particularly in

a multicore microprocessor where each processor core might

require an on-package current monitor.

Other power estimation proposals rely solely on performance

metrics as input statistics. One category uses a large number of

wire-specific or structure-specific statistics relative to the number

of structures for which power is estimated. Examples include the

Cai-Lim model [4], which uses structure activity and power densi-

ties to compute power for 17 structures and PowerTimer [3], which

relies on many switching factors as input statistics. Another exam-

ple is Wattch [2], which is similar to the Cai-Lim model but derives

energy costs from wire-delay and circuit models instead of power

density. Wattch uses a few dozen input statistics to estimate power

for about a dozen structures. Wu et. al [26] estimate power for 15

P4 structures using up to 22 input statistics, and Peddersen et. al

[20] estimate power for 5 structures in a small embedded-type core.

While these estimation techniques are conceptually suitable for

run-time power estimation, the number of input statistics relative to

the number of structures for which they compute power makes

them impractical for run-time estimation for many structures.

Another category of power estimators rely on a handful of glo-

bal or generic input statistics for core-level estimates, and thus

would be more suitable for run-time power estimation. One exam-

ple is Joseph and Martonosi’s work [12], which uses performance

counters to estimate power in the Intel® Pentium Pro™ over 10

millisecond intervals. The authors note that there is limited clock-

gating in this microprocessor and thus little variation between min-

imum and maximum power (about 25%). Estimating run-time

power on a complex wide-issue processor with aggressive clock

gating is substantially more difficult, as noted by Isci and Mar-

tonosi [10]. Due to limited clock gating, Joseph and Martonosi [12]

were able to assume constant power for many structures and prima-

rily focus on memory and ALU operation power. Another work,

Bellosa [1], estimates core power at run-time in software, using

Intel® Pentium™ 4 performance counters. Sharkey [22] also esti-

mates core-level power.

It is also possible to estimate system-level power (e.g., includ-

ing DIMMS, disks, and other I/O) using global statistics. One

example is Economou et. al [6].

CAMP differs from other techniques that use global input sta-

tistics to estimate core or die power in that CAMP estimates per-

structure power for over 180 structures on an aggressively clock-

gated microprocessor.

2.2 Offline Analytical Power Monitoring

There are a number of analytical power models that target

offline power estimation using inputs that would be unsuitable for

run-time estimation in hardware. These techniques are summarized

in the table at the left of Figure 1. One category uses profiling,

sampling, and statistical or probabilistic analysis to estimate power.

The typical approach is to perform detailed simulations of a few

design points, use data from these to fit inference models that relate

performance/power to architectural statistics and then predict the

performance/power at different design points [16,11,9]. For exam-

ple, Lee and Brooks [16] use trace-driven simulation of 4000 sam-

ples to fit linear regression models that relate several micro-

architectural design parameters to performance and full-CPU

power. Similar analysis can be done at the RTL level, such as Macii

et al. [18], which uses statistical sampling for RTL estimation and

Katkoori et al. [14], which generates behavioral profiles from RTL

simulations.

Offline estimation at the circuit level or RTL can also use wire-

specific or structure specific inputs (e.g., temperature estimates or

transistor count) for even finer granularity. For instance, Srini-

vasan, et al. [23] present an empirical approach to determine the

optimal pipeline depth considering both power and performance

constraints. Zyuban and Strenski [28] present a mathematical

approach based on hardware intensity, which relates delay and

average energy consumption. Lee et al. [17] analyze low-level

power for embedded DSP software. Landman et al. [15] surveys

power-estimation techniques ranging from counting gate equiva-

lents to circuit-level estimation. PowerTimer [3] and Wattch [2]

can also be considered in this space when specific values of input

bits (e.g., the addends in an addition operation) are considered as

one of the inputs.

2.3 Analytical Estimation at Design

Analytical performance models are related to offline power-

estimation techniques. These models might be used in conjunction

with CAMP to provide estimates for the input parameters to the

power model before an architectural simulator is available. Many

analytical performance models determine overall performance for

an ideal processor (no misses, infinite hardware resources) and

then derive performance limits imposed by adding constraints,

such as dependencies and hardware limitations. The models are

typically parameterized with data obtained from trace-driven simu-

lations. Noonburg and Shen [19] develop such a model based on

probability matrices, while Karkhanis and Smith [13] present a

more concise model that calculates performance using two compo-

nents - a constant, ideal component and a performance loss compo-

nent.

3 Power Modeling Background

CAMP extends an existing design-time power-modeling meth-

odology for simulation to generate activity and power metrics at

run-time. In this section, we provide background on design-time

FIGURE 1: Taxonomy of power-estimation
techniques: related work and CAMP

POWER

Many structure-specific

Perf. metric
based

Few global/generic
statistics

Current-

based

statistics

structure-level

Die/core-level

system-level

wire or structure
specific stats

[12][1][22]
[4] [2] [3][26][20]

CAMP

Targeted for only offline estimates

Profile-based, sampling, or probabilistic

Die/core-level[11] [9][16]

RTL [18] [14]

Wire or structure-specific stats

Circuit-level[3][28] [15]

RTL [17][23] [15][18]

[10]
sensor

[6]

power modeling techniques used in CAMP to estimate run-time

metrics.

3.1 Components of Microprocessor Power

Microprocessor power can be broken into three major compo-

nents: static, dynamic-idle, and dynamic-active. Static power, also

called leakage power, is dissipated whenever the microprocessor is

connected to a power-supply. Static power is not a function of

microprocessor utilization but is a function of manufacturing pro-

cess technology, circuit topology, temperature, and the power-gat-

ing status of the core. The methodology to estimate static power in

a microprocessor is now somewhat well-understood. Process tech-

nology and circuit topology are constants at runtime, making run-

time leakage computation a single equation with two variables: 1)

temperature and 2) power-gating status. Temperature can be

obtained from on-die sensors [8]. Power gating, not to be confused

with clock gating, refers to leakage-reduction techniques such as

gated-Vdd [21]. Power-gating status can be obtained from a core’s

power-control unit. Because estimating leakage at run-time is less

complex than estimating dynamic power, we do not discuss it fur-

ther.

Dynamic-idle power is dynamic power that is not conditionally

clock-gated, and thus is not a function of utilization. This power

dissipates whenever the microprocessor core is clocked. Thus, as

long as global clock-gating conditions are known (i.e., is the entire

core gated?), we can also estimate dynamic-idle power in a micro-

processor.

The final, largest, and hardest-to-estimate single component,

dynamic-active power, is dissipated according to microprocessor

utilization. This component represents power for structures that are

either not clocked or are conditionally clock-gated when idle.

Dynamic-active power is often the largest component of power and

often represents over 50% of total power. Estimation of dynamic-

active power is the focus of this work; from this point forward,

“power” refers to dynamic-active power unless stated otherwise.

3.2 Circuit and Architectural Power Modeling

Microprocessor power estimates for architectural design are

typically calculated by extending the energy-modeling methodol-

ogy for circuits to the architectural level. For a circuit, power (P)

for a single-switching event is calculated as the capacitance of the

circuit (C) times the square of the voltage (V) times the clock fre-

quency. Average power can be calculated by multiplying energy by

the activity factor (a), or fraction of cycles the circuit is switching.

This calculation leads to the familiar equation:

At the architectural level, we know the activities of structures

and blocks, such as register files, arithmetic-logic units (ALUs),

and caches, but we do not know the activity of individual signals or

circuits. However, architectural simulation can abstract the individ-

ual signals up to the structure and block level.

Power modeling techniques, such as Intel’s Architecture Level

Power Simulator (ALPS) [8], Wattch [2], or PowerTimer [3],

abstract the power equation from the circuit level to the architec-

tural level. Each method obtains power estimates differently and at

different structural granularity, but with the same overall goal. Here

we focus on ALPS. ALPS uses power estimates from previous

designs and/or circuit simulations on micro benchmarks to estimate

power for architectural events (e.g., register reads, ALU opera-

tions) down to the functional-unit-block (FUB) level. The power-

per-event numbers can then be multiplied by activity to compute

power. This computation is equivalent to modifying the circuit-

power equation above to use effective capacitance (Ceffective) as the

equivalent capacitance of architectural events and architectural

activity (A) as the fraction of cycles a specific event occurs:

Note that in ALPS an individual structure (e.g., a cache) can

have multiple FUBs (e.g., data bank, tag bank, decoder) and each

FUB can have multiple events (e.g., read, write), each with their

own effective capacitance. ALPS estimates dynamic-active power

for individual FUBs and an entire core by summing all of the event

powers for each FUB and summing all of the FUB powers.

As described, this power-modeling methodology is useful in

detailed software-based execution-driven simulators. Wattch [2]

uses a similar technique to map power for a few tens of structures

to a few tens of events, while Intel has used ALPS to maps power

for hundreds of FUBs to hundreds of events in complex products

like the Pentium 4 [8].

3.3 Limitations of Existing Power Methodologies

The key limitation that prevents methodologies, such as ALPS

(or Wattch or PowerTimer), from being used to estimate power in

hardware or from being used in design before a detailed simulator

is available is the sheer number of input statistics required. Track-

ing many tens or hundreds of statistics in hardware is overly com-

plex. It is equally daunting for an early design-time power model

(before a detailed simulator is created) to generate those statistics,

as they tend to be highly specific (e.g., read of d-cache bank 0 or

access to instruction-decoder 2). A technique both to reduce the

number of statistics and to generalize them to be less structure-spe-

cific would enable hardware power monitoring and early design-

time power estimates.

4 Methodology and Infrastructure

In this section, we describe the infrastructure that we use to

model activity factors and power and the system that we model.

We use a detailed execution-driven simulation in the Asim [7]

simulation environment to simulate an Intel® Core™-like micro-

processor core. The parameters of our core are shown in Table 2

For this core, we have a detailed ALPS-like [8] power model that

P aCV
2
f=

P ACeffectiveV
2
f=

Table 2: System parameters

Instruction issue 4, out-of-order

I-cache 64KB 4-way

D-cache 64KB 8-way, 2 cycles

Branch Predictor (size) Bimodal (512)+ Gshare (1024)

Branch Target Buffer 4K entries; 16-way

Fetch / Decode queues 14/24 entries

Reservation Stations 32

Reorder Buffer Entries 96

Load/Store Buffers 50/24 entries

L2 cache 1MB, inclusive, 8-way, 10-cycles

L2 miss latency 200 cycles

covers over 200 architectural structures comprising over 300

FUBs. ALPS is Intel’s premier micro-architectural power simulator

and has been validated against silicon for several products. It is

generally believed to be accurate to within 5% to 10%. This power

model is integrated into our simulator, which tracks architectural

activities for each of those FUBs.

To make our power results process (voltage and frequency) and

logic-style independent, we normalize all power results with

respect to voltage and frequency, and the Ceffective of the macro-

instruction-queue (IQ) write event. We call these units pseudo-

Watts. Recalling the equation from Section 3.2, pseudoWatts are

expressed as:

To show energy, we use the equivalent in similar pseudoJoules.

For our implementation of CAMP, we focus on events in 60

architectural structures—comprising 180 FUBs—that cover 95%

of the core’s dynamic-active power. Due to space limitations, we

limit our discussion to the 22 structures shown in Table 3. How-

ever, the overall non-structure-specific results do include all 60

structures. Each of these structures corresponds to one or more

power macros. Power macros are our smallest unit of power com-

putation and correspond to well-defined structures such as register-

files or execution units. Each macro has one or more events that are

used to compute its power (e.g., the uop buffer may be read or writ-

ten).

To train our CAMP model, we run a suite of 73 benchmarks

including SPEC CPU 2K [24], SPEC CPU 06 [25], multimedia,

server, and TPC-C workloads. To test our model, we run a suite of

83 different traces from among the same workload classes. For

training and testing, detailed simulations are run for 10 million

macro-instructions chosen as representative traces. Memory struc-

tures are warmed up prior to the detailed runs.

5 CAMP: Activity Factor Estimation

In this section, we describe our methodology for exploring sev-

eral micro-architectural statistics and selecting the best subset that

needs to be directly observed in order to estimate microprocessor

power. A reduced number of statistics can be monitored simply in

hardware or can facilitate quick power-performance trade-offs at

design-time. We focus on general statistics that report performance

and which correlate well with the activity factors (a.f.s) of most

pipeline structures. We then use these statistics as predictors (Ter-

minology note: in this section we mean predictors in the linear

regression sense, not in the architectural speculation sense) to con-

struct linear regression models that can be used to estimate activity

factors for each structure. Note that for our studies, we use simple

linear regression models. Other models are possible, including

multi-variable regressions and iterative analysis, such as in [26].

Analysis of these alternative models is beyond the scope of this

work; the goal of CAMP is to show that it is possible to estimate

core and fine-grain structure power using few input statistics, not to

pick the optimum regression model.

Our studies show that nine general micro-architectural statistics

are adequate to measure 95% of dynamic-active power with an

average of 90% accuracy for a typical out-of-order pipeline. By

using the same set of statistics that are used to summarize perfor-

mance to also estimate activity factors (and hence, power), we

demonstrate that hardware utilization is the key commonality

between performance and power.

5.1 Selection of Predictors

The activity factors of most structures in a microprocessor pipe-

line correlate well to key system utilization statistics. This behavior

is not unexpected - activity factor is fundamentally a function of

utilization. For example, activity factor in the instruction decoders

is expected to correlate well to the number of instructions fetched

and activity factor of the retire logic is expected to correlate well to

the number of instructions retired. However, some correlations

may not be particularly obvious as in these examples. For instance,

do writes to the data operands stored in the ROB correlate to

instructions fetched, instructions retired, load hits, or some combi-

nation of these and other statistics? Further, a key question for

design-time decisions is whether such correlations hold over

micro-architectural perturbations.

To answer these questions, we performed correlation analysis

between activity factors and architectural statistics including

macro-instructions-per-cycle (IPC), instructions-fetched-per-cycle

(speculative-IPC, or SIPC, since the metric includes mis-specu-

lated instructions), number of loads, number of stores, number of

branch instructions, and number of 128-bit (SIMD) floating-point

instructions. Figure 2 plots the correlation coefficients for the mac-

ros (as defined in Section 4) for a subset of these parameters, aver-

aged over the 73 training benchmarks described in Section 4. The

x-axis lists the structures in pipeline order, starting with the

FETCH_CONTROL_LOGIC to the ROB_RETIRE_LOGIC, and

the y-axis plots the correlation coefficients. (Recall that correlation

coefficients range from -1 to 1, with values near zero correspond-

ing to no correlation and values near 1 corresponding to strong

negative or positive correlation.)

Many activity factors correlate highly (correlation coefficient

over 0.9) to either or both of instructions-per-cycle (IPC) and

instructions-fetched-per-cycle (SIPC). However we found that

64% of all macros do not correlate well to either of these basic sta-

tistics, so others are needed for a complete model. It is interesting

to observe that some macros correlate well with only a few statis-

tics - for example, the floating-point ALUs correlate well with only

the SIMD instruction rate but with none of the other statistics, and

the branch rate is the only statistic to correlate highly to the EXE1

execution unit (which is used to compute branch outcome). It is

PseudoWatts A
Ceffective

CeffectiveIQWrite

--
V

2
f

V2f
-------- A

Ceffective

CeffectiveIQWrite

--= =

Table 3: Microprocessor structures considered

Front End i-cache tag

fetch control logic macro-inst (macro-op) decoder

i-cache data micro-inst (uop) decoder

macro-inst queue (IQ) micro-instruction (uop) buffer

Back End

allocate resources (ALLOC) rename

ROB allocate (ROB_ALLOC) ROB operand (high & low)

reservation station (RS) cam RS scheduler

RS source regfile (RS_SRCRF) Execution units (EXE)

committed PC logic ROB retire logic

Memory Subsystem DTLB

data-cache (DCU) tag data-cache (DCU) data

store buffer (STB) load buffer (LDB)

also interesting that the instruction decoders and decode queue cor-

relate fairly well with the number of loads. We also assess the

robustness of these correlations across microarchitectural perturba-

tions (e.g., structure size changes); those results are presented in

detail in Section 7.

Based on the analysis of which statistics correlate highly to

structure activity factors, we narrowed the number of statistics to 9

to use as predictors for the linear regression models described next.

5.2 Model Construction

We fit linear regression models for each structure of interest

using the predictors described in the previous section. To simplify

CAMP, we aim to keep the number of predictors to about 10, so we

performed four fits using a combination of the 11 predictors shown

in Table 4. In what follows, we term a specific combination of pre-

dictors as a fit and the resulting linear equations as models. Seven

statistics are common to all fits. The fit DistLoads uses load hits

and load misses as additional predictors. The fit uSIPC uses the

micro-SIPC, and the fit Branches uses the branch rate. Finally, the

fit BEST uses micro-SIPC as well as branch instructions (but not

load hits and misses). Each fit uses at most nine predictors.

The accuracy of these models also depends on the workloads

used to generate samples for the fit. We expect the workloads that

exercise all macros in the pipeline to be good samples. To assess

the sensitivity of the a.f. models to different workloads, we use two

different sets to generate samples. The first set, termed as MIX uses

the 73 training benchmarks described in Section 4. The fitted mod-

els are then used to predict the activity factors over 83 different

traces derived from the same mix. The second set of samples is

derived using traces from only the SPEC CPU 2K suite (SPEC2K).

The resulting models are then used to predict a.f.s over the same 83

traces as before.

This analysis produces an activity factor model for each struc-

ture (i.e., power macro) and the resulting a.f. numbers can be used

in the power equation from Section 3.2 to compute power esti-

mates. For example, the activity model for the reservation-station

first-source operand register read (RS_SRCRF_1_Read) macro

using the Branches fit is shown in Figure 4. Note that the largest

contributing statistic to this activity factor (i.e., largest coefficient)

is the branch rate.

As discussed in Section 1, CAMP equations like that in

Figure 4 expose the dependence of structure power on global statis-

tics, allowing design-time reasoning about trade-offs regarding

specific architecture choices or workload characteristics. For

example, the equation indicates that an increase in the rate of float-

ing-point loads and stores will tend to decrease activity of the

RS_SRCRF_1 structure, but an increase in 64-bit floating-point

instructions will increase activity. This sort of reasoning is more

difficult with per-structure activity models that rely entirely on

structure-specific statistics (e.g., number of reads to the structure)

that are not related to global characteristics.

5.3 Model Evaluation

In this section, we evaluate the quality of the fits used to predict

activity factors. We expect high-quality fits because the predictors

for the fits were chosen to ensure that statistics that correlate highly

to each structure’s activity were included. We expect fits that

include micro-SIPC and branch rate to perform the best overall,

because micro-SIPC correlates highly to activity for many struc-

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

F
E

T
C

H
_
C

T
R

L
_
L
O

G
IC

IC
A

C
H

E
_
T

A
G

_
R

e
a
d

IC
A

C
H

E
_
D

A
T

A
_
R

e
a
d

M
A

C
R

O
O

P
_
D

E
C

O
D

E
IQ

_
R

E
G

_
F

IL
E

_
W

ri
te

IQ
_
R

E
G

_
F

IL
E

_
R

e
a
d

U
O

P
_
D

E
C

O
D

E
0

U
O

P
_
D

E
C

O
D

E
1

U
O

P
_
D

E
C

O
D

E
2

U
O

P
_
D

E
C

O
D

E
3

U
O

P
_

B
U

F
F

E
R

_
W

R
IT

E
U

O
P

_
B

U
F

F
E

R
_
R

E
A

D
A

L
L
O

C
R

E
N

A
M

E
_
L
O

G
IC

R
O

B
_
A

L
L
O

C
_
W

ri
te

R
O

B
_
O

P
N

D
1
_
R

E
A

D
R

O
B

_
O

P
N

D
2
_
R

E
A

D
R

S
_

C
A

M
_

W
ri
te

R
S

_
S

R
C

R
F

_
1
_
W

ri
te

R
S

_
S

R
C

R
F

_
2
_
W

ri
te

R
S

_
C

A
M

_
R

e
a
d

R
S

_
S

C
H

E
D

_
R

e
a
d

R
S

_
S

R
C

R
F

_
1
_
R

e
a
d

R
S

_
S

R
C

R
F

_
2
_
R

e
a
d

E
X

E
1

E
X

E
2

E
X

E
3

D
C

U
_
D

A
T

A
_
R

e
a
d

D
C

U
_
T

A
G

_
R

e
a
d

S
T

B
D

T
L
B

_
R

e
a
d

L
D

B
_
W

R
IT

E
D

C
U

_
D

A
T

A
_
W

ri
te

P
C

_
L
O

G
IC

R
O

B
_
O

P
N

D
1
_
W

R
IT

E
R

O
B

_
O

P
N

D
2
_
W

R
IT

E
R

O
B

_
A

L
L
O

C
_
R

e
a
d

R
O

B
_
R

E
T

IR
E

_
L
O

G
IC

C
o

rr
e

la
ti

o
n

 C
o

e
ff

ic
e
n

ts

IPC SIPC MicroSIPC

Loads SIMD Branches

FIGURE 2: Per-structure a.f. correlation with selected micro-architectural statistics

Table 4: Statistics (Predictors) used for each fit

Statistic Fit

IPC

Used in all fits

SIPC

Load rate

Store rate

FP Ld/St rate

SIMD inst rate

64-bit FP inst rate

Micro-SIPC rate uSIPC, Best

Branch rate Branches, Best

Load hit rate (per cycle) DistLoads

Load miss rate (per cycle) DistLoads

0%

20%

40%

60%

80%

100%

120%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Absolute Error of AF estimates

C
u

m
u

la
ti

v
e

 F
re

q
u

e
n

c
y

 (
%

 o
f

to
ta

l
m

a
c

ro
s
)

MIX_DistLoads MIX_uSIPC

MIX_Branches MIX_BEST

SPEC2K_DistLoads SPEC2K_uSIPC

SPEC2K_Branches SPEC2K_BEST

FIGURE 3: CDF of absolute error for all fits

FIGURE 4: RS_SRCRF_1_Read activity factor equation using Branches fit.

AF 0.026 0.24IPC 0.016SIPC 0.079Loads 0.11Stores 0.20FPLdSt– 0.17FP64 0.32Branches+ + + + + +=

tures, and branch rate is the only highly-correlating statistic for one

structure, as we saw in Figure 2 from the last subsection.

We use the adjusted R-sq values, distribution of residuals, and

the mean absolute error of predictions as metrics to assess the fits.

Figure 3 plots the cumulative distribution (CDF) of the absolute

error in a.f. predictions, and Table 5 summarizes the metrics used

to assess fits. Each CDF curve represents a fit, which is labeled by

the workload used to train the fit (MIX or SPEC2K) and the statis-

tics in the fit (DistLoads, uSIPC, Branches, and BEST).

On an average across all fits, more than 77% of the models

(each structure has its own model, or equation, within each fit) pre-

dict a.f. within 5%, 96% predict within 10% and all predict within

25% of the actual a.f. values. This result shows that a single set of

linear models is adequate to predict power over a wide range of

workloads. The SPEC2K fits show that even if the models are gen-

erated using a previous generation of benchmarks, they are capable

of accurately predicting power for future workload generations

(e.g., SPEC CPU 06) and even other classes of workloads (e.g.,

TPC-C). This behavior is not surprising because the equations are

fundamentally a function of the hardware and its utilization, not the

specific workload run on the hardware. (Of course that is true only

if the workloads in the fit fully exercise the structures.)

We also examine fits by studying the distribution of residuals

using a quantile-quantile plot where standard normal quantiles are

plotted on the x-axis and residual quantiles on the y-axis. A linear

trend indicates a model with good prediction capability. These

plots also provide insight into selection of predictors. Figure 5(a)

and Figure 5(b) indicate good fits because both of these macros

correlate well with the selected parameters. Figure 5(c) is a qq-plot

for the EXE1 macro using the MIX_DistLoads fit. EXE1 correlates

well with the branch instruction rate which is not part of this fit, so

the residuals show significant deviation from normal. Similarly,

DCU_DATA_Write correlates well with only one parameter (store

instruction rate, which is not shown in Figure 2), so all the fits

deviate slightly from the normal. In general, we found that the dis-

tribution of residuals for the “MIX_BEST” and “SPEC2K_BEST”

followed the normal most closely.

The combination of high-quality and simplicity of the CAMP

models allows intuition into the relationship between architectural

statistics and structure power. Simplicity also allows the models to

be used for both run-time and design-time power estimates as

explained in the following sections.

6 CAMP for Run-time Power Estimation

Accurate run-time power estimation is valuable in driving a

variety of run-time power management techniques in both hard-

ware and software. Prediction accuracy, granularity (both temporal

and structural) and the cost (in area and time) are the three main

aspects of a run-time power estimator. We would like the energy

estimates to be accurate to enable correct power management deci-

sions, and we would like choice in the temporal granularity of esti-

mates. Finer structural granularity of estimates can be used to drive

more aggressive, fine-grained power management in hardware,

while coarser-granularity power information can be used at higher

levels in hardware or software. Finally, estimates should be

obtained without a large area or power overhead.

In this section, we explain how CAMP can address these chal-

lenges. We outline a low-overhead hardware mechanism that cou-

ples the CAMP linear equations with a few hardware counters to

construct an accurate, fine-grained, low-overhead run-time energy

estimator. We then show that CAMP can produce accurate core and

structure energy estimates at different temporal granularities.

6.1 CAMP Hardware for Run-time Estimation

CAMP may be implemented using a set of hardware counters

that monitor microprocessor statistics for an interval of time over

which we then compute estimated power. The interval size may

vary from tens of thousands of cycles, to enable fine-grained hard-

ware power management, to millions of cycles, to enable software-

based power management. (If long calculation intervals are

desired, larger hardware counters are needed to prevent overflow.)

CAMP uses the output of the hardware counters and pre-com-

puted per-structure linear regression models to compute the esti-

mated power. The effective capacitance used in the power-

computation equation from Section 3.2 is provided by an architec-

tural power model for the microprocessor. Figure 6 shows the

structure of our run-time power estimator. Because only nine

counters are required and the energy computation is performed at

relatively infrequent intervals over many cycles, power overhead is

negligible.

6.1.1 Hardware Implementation Details

The hardware required to implement the predictors could be

complicated because the predictors we use to construct the regres-

sion models are generally a count divided by the number of cycles

in an interval. To simplify the hardware required, we suggest that

interval lengths be limited to a power-of-two number of cycles.

This limitation allows the division to be implemented with a simple

(a) ROB_RETIRE_LOGIC (b) STB

(c) EXE1

FIGURE 5: MIX_DistLoads fit residuals QQ-plots

(d) DCU_DATA_Write

Standard Normal Quantiles

Q
u

a
n

ti
le

s
 o

f
re

s
id

u
a
ls

 f
o

r
M

IX
_
D

is
tL

o
a
d

s

Table 5: Summary of Fit Evaluation Metrics

Fit Adj. R_sq Mean Rela-

tive Error (%)

Mean Abso-

lute Error

Training

Workload:

MIX SPEC

2K

MIX SPEC

2K

MIX SPEC

2K

DistLoads 0.957 0.974 10.2 21.24 0.035 0.050

uSIPC 0.972 0.972 7.84 19.73 0.026 0.041

Branches 0.959 0.974 9.29 22.90 0.031 0.053

Best 0.976 0.975 7.37 20.00 0.025 0.041

bit shift left by log2 the number of cycles per interval. To limit our

mechanism to integer arithmetic, we define a minimum interval

size (minInterval in Figure 6) of 65536 (i.e., 216) cycles and

express each predictor in terms of events per 216 cycles. Thus, dig-

its beyond the decimal point are not needed to maintain high accu-

racy. This simplification would be implemented by simply shifting

log2(65536) or 16 bits less than would be indicated by the interval

size and adjusting the value of the linear-equation coefficients

accordingly. This simplification allows us to use only integer arith-

metic and has no significant effect on the accuracy of our mecha-

nism. An alternative simplification that would not require defining

a minimum interval would be to simply pad the counter values and

coefficients with zeros (effectively multiplying by 2 to the number-

of-zeros power) and adjust the linear equations accordingly, though

this might increase the width of the arithmetic logic.

If programmable interval lengths are not necessary, a final sim-

plification is to fix the interval size, eliminate the dividers (bit

shifters) altogether, and simply use the raw counts as input to the

linear equations. This simplification requires changing the coeffi-

cients of the linear equations to be the original values times the

number of cycles in the fixed interval length. (Of course, this

change is one-time and static, not a dynamic calculation.)

6.2 Accuracy of Run-time Energy Estimates

In this subsection, we assess the accuracy of energy estimates

provided by CAMP using the BEST and SPEC2K_BEST fits from

Section 5.2. We use the SPEC2K_BEST fit to demonstrate that a

CAMP model built from older workloads is capable of estimating

energy in newer workloads, as discussed in Section 5.3. We expect

the microprocessor energy estimates to be accurate compared to

detailed simulation, because of the high quality of these fits. We

expect accurate estimates regardless of interval length, because as

we saw in Section 5.3 the fits are functions of utilization and not

workload or program phase.

We estimate energy consumption for a 35-trace subset of the 83

traces used for testing in Section 5.3; we do not show results for all

83 traces to avoid clutter on the plots. This subset contains traces

from all of the workload categories from Section 4. Energy is esti-

mated at 64K (65536) cycle intervals, 1M (1048576) cycle inter-

vals, and full-simulation intervals. Energy values are normalized

using the mechanism described in Section 4.

Figure 7 ((a) through (d)) show the per-interval energy esti-

mates for two traces for 1M and 64K interval lengths, respectively,

for both the BEST and SPEC2K_BEST fits. In all cases, the esti-

mates track well with the actual energy consumption (from detailed

simulation), also shown in the figure. On an average across all the

35 traces, the mean relative error for BEST and SPEC2K_BEST is

2.7% and 6.2% respectively with the maximum error being 14%

and 39% respectively.

Figure 8 is a scatter plot of the actual (x-axis) vs. the estimated

(y-axis) total energy for the 35 traces which shows that the esti-

mates are generally accurate regardless of workload. One outlier

for both the BEST and SPEC2K_BEST fit is SPEC06-libquantum,

C o m m itte d
In s t

F e tc h e d
In s t

S IM D
1 2 8 -b it

B it
S h ifte r

B it
S h ifte r

B it
S h ifte r

A rc h ite c tu re -D e p e n d e n t L in e a r E q u a tio n s

A d d e r
D yn a m ic

A c tiv e P o w e r

D y n a m ic Id le

P o w e r

L e a k a g e

P o w e r

T o ta l P o w e r E s tim a te

T o p o w e r m a n a g e r

In te rv a l

C o n fig
R e g is te r

lo g 2 (c u rrIn te rv a l) -

lo g 2 (m in In te rv a l)

P e rfo rm a n c e C o u n te rs

FIGURE 6: CAMP
for run-time

power estimation

0.8

0 .9

1

1.1

1 .2

1 .3

1 .4

1 .5

1 .6

1 .7

1 2 3 4 5 6 7 8 9

Actual

B E S T

B E S T_S P EC 2K

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1

0 .1 2

0 .1 4

1 2 6 5 1 7 6 1 0 1 1 2 6

A c tu a l

B E S T

S P E C 2 K _ B E S T

0 .0 3 5

0 .0 4

0 .0 4 5

0 .0 5

0 .0 5 5

0 .0 6

1 2 6 5 1 7 6 1 0 1 1 2 6 1 5 1 1 7 6 2 0 1 2 2 6

A c tu a l

B E S T

S P E C 2 K _ B E S T

N
o

rm
a

liz
e
d

 E
n
e

rg
y
 (

p
s
e

u
d
o

J
o

u
le

s
)

Intervals (x64K cycles) Intervals (x1M cycles)

FIGURE 7: Accuracy of per-interval energy estimates for two interval sizes

(a) SPEC06 FP - soplex 64K cycles

(c) TPC-C Trade server - 64K cycles

0 .6 8

0 .7

0 .7 2

0 .7 4

0 .7 6

0 .7 8

0 .8

1 3 5 7 9 1 1 1 3

A c tu a l

B E S T

S P E C 2 K _ B E S T

(b) SPEC06 FP - soplex 1M cycles

(d) TPC-C Trade server - 1M cycles

although even for this outlier the relative estimation error is only

12%. This application has a large working set (32MB) which

strains the memory hierarchy differently from any of our other

traces; as a result, the activity estimates for the data cache and L2

cache have substantial errors. Another application, tpcc-sas, is an

outlier for the SPEC2K_BEST fit, but not for the BEST fit, indicat-

ing that there are advantages to training over a broader set of work-

loads.

6.2.1 Accuracy of per-structure energy estimates.

CAMP’s energy estimates are also accurate for individual struc-

tures. Figure 9 shows the 29 macros corresponding to the 22 struc-

tures highlighted earlier in Table 3 (some structures such as the uop

decoder comprise more than one macro) along the x-axis, normal-

ized actual energy and estimated energy (using the BEST fit and

SPEC2K_BEST fit) in the bottom graph, and estimation error for

those structures in the top graph. The bottom graph shows that esti-

mated energy tracks actual energy well. The top graph shows that

for the BEST fit, the error is less than 5% for all but one high-

lighted structure, the store buffer (STB). The generally high accu-

racy of CAMP’s per-structure estimates extends beyond the

highlighted structures to the 60 power-macro structures discussed

in Section 4 that comprise 180 FUBs and 95% of core power.

Although not shown in Figure 9, the additional structures were

included in the distribution shown in Figure 3, which shows that

nearly 90% of structures had estimation errors less than 5%.

The SPEC2K_BEST fit, which uses a much more limited train-

ing set than the BEST fit, still achieves reasonable per-structure

estimates. All but 6 of the 29 estimates are within 20% of the actual

value. In terms of normalized energy (the bottom graph), even the

6 outliers are not extreme. This demonstration of an extreme case

where a fit based on SPEC2K is used to estimate energy for a much

broader suite of workloads (including server and media workloads

not in SPEC2K or SPEC06) shows the versatility of CAMP in esti-

mating per-structure power.

In summary, these results indicate that CAMP is an effective

solution to the accuracy and granularity challenges in run-time

power estimation. These results also show that the predictive mod-

els that make up CAMP capture the inherent relationship between

hardware utilization, performance and power irrespective of the

workload being run. Such run-time power estimation can be used

to facilitate a variety of hardware and/or software-based power-

management techniques such as voltage-frequency scaling, clock

gating and selective disabling of resources. In the following sec-

tion, we describe how the same models can be used during design

time to guide early power-performance trade-off analysis.

7 CAMP for Design-time Power-Perf. Analysis

Power estimation is a key aspect of early-stage micro-architec-

tural design space exploration. In addition to estimates of core

power, it is useful to understand variation in per-structure power to

drive power-aware design. Designers typically rely on detailed,

cycle-accurate simulation coupled with complex power models to

obtain detailed power estimates, creating a bottleneck for exploring

the power impact of design changes. CAMP aims to reduce the bot-

tleneck by providing an intuitive model that accurately estimates

energy using the same parameters that summarize performance.

Our key observation is that the accuracy of CAMP’s activity

estimations is accurate across incremental micro-architectural

structure-size changes. The CAMP model constructed for a base

architecture continues to provide accurate energy estimates for dif-

ferent micro-architectural changes across all the workloads we

consider. This consistency across different designs allows CAMP

to be used as an effective early-stage power-performance analysis

tool. We show that CAMP provides useful insights and facilitates

reasoning about the power-performance behavior across the pipe-

line using only a single set of performance parameters and without

requiring a detailed power model.

In Section 7.1 we provide results to validate CAMP's robust-

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.008 0.01 0.012 0.014 0.016 0.018 0.02

BEST

SPEC2K_BEST

Trend line
spec06-gcc

spec2K-applu
spec06

libquantum

tpcc-sas

FIGURE 8: Estimation accuracy for 35 traces

tpcc

media-raytracer

Actual Energy (pseudoJoules)

E
s
ti

m
a
te

d
 E

n
e
rg

y
 (

p
s

e
u

d
o

J
o

u
le

s
)

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 (

p
s
e
u
d

o
J
o
u

le
s
)

E
n

e
rg

y
 E

s
ti
m

a
ti
o

n
 E

rr
o

r

FIGURE 9: Per-structure energy estimate accuracy

0.80

0.90

1.00

1.10

1.20

1.30

1.40

Estimated-BEST/Actual

Estimated-SPEC2K/Actual

0.80

0.90

1.00

1.10

1.20

1.30

1.40

Estimated-BEST/ActualEstimated-BEST/ActualEstimated-BEST/Actual

Estimated-SPEC2K/ActualEstimated-SPEC2K/ActualEstimated-SPEC2K/Actual

Estimated-BESTEstimated-BEST

ActualActual

Estimated-SPEC2KEstimated-SPEC2K

0

0.05

0.1

0.15

0.2

0.25

0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

P
C

_
L
O

G
IC

R
O

B
_
R

E
T

IR
E

_
L
O

G
IC

F
E

T
C

H
_
C

T
R

L
_
L
O

G
IC

IC
A

C
H

E
_
T

A
G

_
R

e
a
d

IC
A

C
H

E
_
D

A
T

A
_
R

e
a
d

M
A

C
R

O
O

P
_
D

E
C

O
D

E
IQ

_
R

E
G

_
F

IL
E

_
R

e
a
d

U
O

P
_
D

E
C

O
D

E
0

U
O

P
_
D

E
C

O
D

E
1

U
O

P
_
D

E
C

O
D

E
2

U
O

P
_
D

E
C

O
D

E
3

U
O

P
_
B

U
F

F
E

R
_
R

E
A

D
A

L
L
O

C
R

E
N

A
M

E
_
L
O

G
IC

R
O

B
_
A

L
L
O

C
_
W

ri
te

R
O

B
_
O

P
N

D
1
_
R

E
A

D
R

O
B

_
O

P
N

D
2
_
R

E
A

D
R

S
_
C

A
M

_
R

e
a
d

R
S

_
S

C
H

E
D

_
R

e
a
d

R
S

_
S

R
C

R
F

_
1
_
R

e
a
d

R
S

_
S

R
C

R
F

_
2
_
R

e
a
d

E
X

E
1

E
X

E
2

E
X

E
3

D
C

U
_
D

A
T

A
_
R

e
a
d

D
C

U
_
T

A
G

_
R

e
a
d

S
T

B
D

T
L
B

_
R

e
a
d

L
D

B
_
W

R
IT

E
P

C
_
L
O

G
IC

R
O

B
_
R

E
T

IR
E

_
L
O

G
IC

F
E

T
C

H
_
C

T
R

L
_
L
O

G
IC

IC
A

C
H

E
_
T

A
G

_
R

e
a
d

IC
A

C
H

E
_
D

A
T

A
_
R

e
a
d

M
A

C
R

O
O

P
_
D

E
C

O
D

E
IQ

_
R

E
G

_
F

IL
E

_
R

e
a
d

U
O

P
_
D

E
C

O
D

E
0

U
O

P
_
D

E
C

O
D

E
1

U
O

P
_
D

E
C

O
D

E
2

U
O

P
_
D

E
C

O
D

E
3

U
O

P
_
B

U
F

F
E

R
_
R

E
A

D
A

L
L
O

C
R

E
N

A
M

E
_
L
O

G
IC

R
O

B
_
A

L
L
O

C
_
W

ri
te

R
O

B
_
O

P
N

D
1
_
R

E
A

D
R

O
B

_
O

P
N

D
2
_
R

E
A

D
R

S
_
C

A
M

_
R

e
a
d

R
S

_
S

C
H

E
D

_
R

e
a
d

R
S

_
S

R
C

R
F

_
1
_
R

e
a
d

R
S

_
S

R
C

R
F

_
2
_
R

e
a
d

E
X

E
1

E
X

E
2

E
X

E
3

D
C

U
_
D

A
T

A
_
R

e
a
d

D
C

U
_
T

A
G

_
R

e
a
d

S
T

B
D

T
L
B

_
R

e
a
d

L
D

B
_
W

R
IT

E

ness across micro-architectural perturbations. In Section 7.2 we

give an example of how CAMP can be used to compare different

micro-architectural choices at early design stages.

7.1 Robustness of CAMP to structure size changes

In Section 5.2, we demonstrated the close correlation between

activity factors of selected structures with several micro-architec-

tural statistics. We performed a similar analysis for 12 different

micro-architectural configurations obtained by varying the data

cache, L2 cache, IDQ, RS, ROB and BPU sizes. We expect activity

correlations to remain strong under perturbations because the rela-

tionship between structures is not changing, only their sizes.

We found that correlations of these statistics to per-structure a.f.

remain consistent across structure size changes. Across all macros,

all micro-architectural perturbations and all statistics, the standard

deviation of correlation coefficients was 15% with a maximum

deviation of 26% (observed for micro-SIPC). To assess the predic-

tive power of the a.f. models of a single fit across different micro-

architectural configurations, we plotted the CDF of their absolute

prediction error (not shown). Analogous to the correlation analysis,

the regression models also hold fairly consistently across structure

size perturbations - 82% of the models predict a.f. within 5%, 93%

within 10%, and all within 40% of the actual a.f.s.

Given the values of a few micro-architectural statistics for dif-

ferent designs, CAMP can be used to obtain energy estimates

instead of using a detailed power model. Figure 10(b) illustrates a

scatter plot for specific cases where the RS-ROB, L1 d-cache, L2

cache, and BPU sizes were varied. The plot shows the actual vs.

estimated total energy using the BEST fit for a set of 58 traces from

the SPEC06-FP, SPEC06-INT, SPEC2K-FP, SPEC2k-INT, TPC-C

and multimedia suites. As before, each trace is 10M instructions

long. A linear trend line is included to show how the estimated val-

ues track the actual energy consumption. Across the 12 designs, we

observed a mean relative error of 3.3% and maximum error of

14.6% (observed for IDQ size set to 16) over all the traces.

Figure 10(a) plots the average estimated energy and actual

energy (from detailed simulation) for individual macros; each point

is averaged across the 58 traces and across all 12 micro-architec-

tures. The estimated and actual points frequently overlap, and due

to the small prediction error, the error bars when averaged over all

traces were too small to show up on this plot. Instead we add an

additional series for estimated SPEC06-gcc energy, and we plot

error bars for that benchmark to verify that the error is small even

for individual traces.

These results support our intuition behind CAMP that both the

power and performance of a micro-architectural configuration can

be obtained by tracking a common set of utilization parameters

across the micro-architecture. This analysis implies that a CAMP

model for a previous generation microprocessor may be used for

initial estimates in the next-generation processor in the common

case where the new design builds from the previous and most of

the differences are structure-size changes. For example, the Intel®

Pentium™ Pro, Intel® Pentium™ II, Intel® Pentium™ III, Intel®

Pentium™ M, and Intel® Core™ each derived from the previous

generation P6 processor. Of course, a CAMP model from a previ-

ous generation would not be useful for an entirely new microarchi-

tecture (e.g., Intel® Pentium™ 4), but all-new micro-architectures

are not the common case.

Next, we show how this property of CAMP can be used to facil-

itate early-stage power-performance analysis.

7.2 Examples of Early Design Analysis with CAMP

In this subsection, we discuss a case study that uses CAMP to

study the power-performance trade-off of several designs obtained

by varying the RS and ROB sizes. We assume that values for per-

formance statistics used in the CAMP BEST fit (IPC, SIPC, loads,

etc.) are provided to us for a base design using cycle-accurate per-

formance simulation. These values could also be obtained from

analytical performance models as explained in Section 2. We

expect that, given a set of performance statistics for a base design

and a modified design, CAMP can provide accurate total as well as

per-structure power across different designs to compare their

power-performance behavior.

For each design, we show the IPC values obtained from simula-

tion and the per-structure energy and the overall energy-delay2

(ED2) product obtained using CAMP. Processor Energy-delay2

results are based on the approximation that the per-event power of

the structure being perturbed, such as the ROB, did not change

with the perturbation. This approximation is acceptable for early

design experiments and acceptable to the first order because: 1)

Only one or two structures are being perturbed, and no single struc-

ture makes up a majority of the processor power; and 2) Our main

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

F
E

T
C

H
_
C

T
R

L
_
L
O

G
IC

IC
A

C
H

E
_
T

A
G

IC
A

C
H

E
_
D

A
T

A

M
A

C
R

O
O

P
_
D

E
C

O
D

E

U
O

P
_
D

E
C

O
D

E
0

U
O

P
_
D

E
C

O
D

E
1

U
O

P
_
D

E
C

O
D

E
2

U
O

P
_
D

E
C

O
D

E
3

U
O

P
_

B
U

F
F

E
R

_
R

E
A

D

A
L

L
O

C

R
E

N
A

M
E

_
L
O

G
IC

R
O

B
_
A

L
L
O

C

R
O

B
_
O

P
N

D
1
_
R

E
A

D

R
O

B
_
O

P
N

D
2
_
R

E
A

D

R
S

_
C

A
M

R
S

_
S

C
H

E
D

R
S

_
S

R
C

R
F

_
1

R
S

_
S

R
C

R
F

_
2

E
X

E
1

E
X

E
2

E
X

E
3

D
C

U
_
D

A
T

A

D
C

U
_
T

A
G

S
T

B

D
T

L
B

L
D

B
_
W

R
IT

E

P
C

_
L
O

G
IC

R
O

B
_

R
E

T
IR

E
_
L
O

G
IC

Actua l Estim ated SPEC 06-gcc

FIGURE 10: (a) Per-macro accuracy of energy estimates
across all benchmarks and all structure size changes

E
n

e
rg

y
 (

p
s
e
u
d
o

J
o
u
le

s
)

error bars for spec06-gcc

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

ROB_size = 128

L2-Cache = 128K

4x Base BPU

D-Cache = 1M

Trend line

Actual Energy (pseudoJoules)

E
s
ti

m
a
te

d
 E

n
e
rg

y
 (

p
s
e

u
d

o
J

o
u

le
s
)

FIGURE 10: (b) Accuracy of energy estimates
across structure-size changes

interest is in the impact of the architectural change on the power of

other parts of the pipeline, not the structure being perturbed;

obtaining an event-power analysis for an individual structure is a

circuit-power-modeling concern orthogonal to CAMP.

Each point is obtained by averaging across 58 traces from

among the six categories described in Section 4 and normalizing

with the corresponding value from the base micro-architecture.

7.2.1 Varying RS and ROB size.

The ROB is a key structure that determines the total number of

instructions in the pipeline. Though we refer to these variations as

ROB size changes, we vary the RS and ROB sizes together because

of their inter-dependence. Figure 11(a) and Figure 11(b) show the

effect of different ROB sizes on the macro-IPC and the ED2 for the

six benchmark suites. The “1X” point corresponds to the base

architecture. From the figure, it can be seen that there is a slight

performance gain by increasing the ROB sizes. However, the ED2

curves show that, except for SPEC06-INT, the energy-efficiency

remains fairly flat for ROB sizes greater than 1X. To understand

the behavior of SPEC06-INT, we looked at the energy expended by

other structures, specifically the L1 D-cache and the front-end for

different ROB sizes.

Figure 11(c) and Figure 11(d), plotting estimated energy for the

L1 data cache and front-end respectively, show that SPEC06-INT

displays an unusual behavior where both the L1 d-cache and front-

end energy actually decrease as ROB size is increased. This behav-

ior also explains the drop in SPEC06-INT Energy-delay2 in

Figure 11(b). To validate that this result is not an experimental

anomaly, we compared our estimates against actual energy num-

bers from detailed simulation. Figure 11 (c) plots this comparison

for SPEC06-INT (dotted line), and shows that the CAMP estimator

tracks the results from detailed simulation. (In addition,

Figure 11(d) plots both estimated and actual energy for Media,

indicating that increasing trend is not an anomaly either.)

Typically, a detailed power model would be required to uncover

such behavior, but CAMP can provide valuable insight by tracking

the hardware utilization across the entire pipeline due to changes in

a single structure. This case study also reinforces that it is neces-

sary to vary multiple structures in synchrony and consider their

interaction when making micro-architectural design decisions.

8 Conclusion

Effective CPU power management would benefit from knowl-

edge of run-time microprocessor power consumption in both the

core and individual microarchitectural structures, such as caches,

queues, and execution units. Increasingly feasible per-structure

power-control techniques, such as fine-grain clock gating, power

gating, and dynamic voltage/frequency scaling (DVFS) would ben-

efit from run-time estimates of per-structure power. However, run-

time computation of structure power estimates based on utilization

would seem to require daunting numbers of input statistics.

To address the challenges of estimating per-structure power in

0.8

0.84

0.88

0.92

0.96

1

1.04

1.08

0.5X 0.7X 1X 1.25X 1.5X 1.75X 2.25X 3X

Media

SPEC06FP

SPEC06INT

SPEC2kFP

SPEC2kINT

Server

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

0.5X 0.7X 1X 1.25X 1.5X 1.75X 2.25X 3X

Server
SPEC06FP
SPEC2kFP
SPEC2kINT
SPEC06INT
SPEC06INT-Actual
Media

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

0.5X 0.7X 1X 1.25X 1.5X 1.75X 2.25X 3X

Server

Spec06FP

Spec2KFP

Spec2KINT

Spec06INT

Media

Media-Actual

0.82

0.92

1.02

1.12

1.22

1.32

1.42

1.52

1.62

0.5X 0.7X 1X 1.25X 1.5X 1.75X 2.25X 3X

Media

SPEC06FP

SPEC06INT

SPEC2kFP

SPEC2kINT

Server

R
e
la

ti
v
e
 M

a
c
ro

IP
C

R
e

la
ti
v
e

 E
D

2

R
e

la
ti
v
e

 D
-C

a
c
h
e

 E
n

e
rg

y

R
e

la
ti
v
e

 F
ro

n
t-

e
n

d
 E

n
e

rg
y

Relative RS-ROB size Relative RS-ROB size

(a) Relative MacroIPC (from simulator) (b) CAMP-Estimated relative ED2

(c) CAMP-Estimated relative D-Cache Energy (d) CAMP-Estimated relative Front-end Energy

FIGURE 11: Effects of varying RS-ROB size on macroIPC, ED2, L1 D-Cache and front-end energy

hardware, we propose a new technique, called Common Activity-

based Model for Power (CAMP), to estimate activity factors and

power for microarchitectural structures. In spite of using a rela-

tively few nine input parameters based on general microprocessor

utilization statistics (e.g., IPC and load rate), our linear-regression-

based model estimates activity and dynamic power for over 100

structures in an out-of-order x86 pipeline and estimates core power

with an average error of 8%. Because the computations utilize few

inputs, CAMP is simple enough to implement in hardware, provid-

ing run-time structure and core power estimates for dynamic power

management. Because the input statistics are generic in nature and

the model remains accurate across microarchitectural changes,

CAMP provides simple intuitive equations relating global microar-

chitectural statistics to structure activity and power. These equa-

tions provide a simple technique that can equate changes in one

structure’s activity to power variations in other structures across

the pipeline.

Because the input statistics are general and the accuracy of the

model is maintained across incremental microarchitectural

changes, design can use CAMP to estimate the power impact of

design choices. Before a detailed architectural simulator is avail-

able, designers can use intuition and the CAMP equations to esti-

mate how architectural changes will impact per-structure as well as

overall chip power. Our validation suggests that these results are

accurate as compared to detailed, cycle-accurate simulation. For

instance, across 12 different micro-architectural configurations

obtained by varying sizes of multiple structures, CAMP estimates

energy to within 3.3% of the actual energy across traces from six

benchmark suites.

References

[1] F. Bellosa, A. Weissel, M. Waitz, and S. Kellner. Event-driven energy

accounting for dynamic thermal management. In Proceedings of the

Workshop on Compilers and Operating Systems for Low Power

(COLP03), Sept. 2003.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for ar-

chitectural-level power analysis and optimizations. In Proceedings of

the 27th Annual International Symposium on Computer Architecture,

pages 83–94, June 2000.

[3] D. M. Brooks, P. Bose, V. Srinivasan, M. K. Gschwind, P. G. Emma,

and M. G. Rosenfield. New methodology for early-stage microarchi-

tecture-level power-performance analysis of microprocessors. IBM

Journal of Research and Development, 47(5/6):653–670, Sept. 2003.

[4] G. Cai and C. H. Lim. Architectural level power/performance optimi-

zation and dynamic power estimation. In Cool Chips Tutorial colocat-

ed with MICRO32, Nov. 1999.

[5] C.-S. Chen, J.-C. Lo, and T. Xia. An indirect current sensing technique

for iddq and iddt tests. In Great Lakes Symposium on VLSI, pages 235–

240, Apr. 2006.

[6] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan. Full-

system power analysis and modeling for server environments. In 2006

Workshop on Modeling, Benchmarking and Simulation, June 2006.

[7] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne, S. S.

Mukherjee, H. Patel, S. Wallace, N. Binkert, R. Espasa, and T. Juan.

Asim: A performance model framework. In IEEE Computer 0018-

9162:68-76, pages 68–76, Feb. 2002.

[8] S. H. Gunther, F. Binns, D. M. Carmean, and J. C. Hall. Managing the

impact of increasing microprocessor power consumption. Intel Tech-

nolgoy Journal Q1 2001, 5(1), Feb. 2001.

[9] E. Ipek, S. McKee, B. de Supinski, M. Schulz, and R. Caruana. Effi-

ciently exploring architectural design spaces via predictive modeling.

In Proceedings of the Twelfth International Conference on Architec-

tural Support for Programming Languages and Operating Systems

(ASPLOS XII), Oct. 2006.

[10] C. Isci and M. Martonosi. Runtime power monitoring in high-end pro-

cessors: Methodology and emprical data. In 36th International Sympo-

sium on Microarchitecture (MICRO 36), pages 93–104, Dec. 2003.

[11] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. Construction and

use of linear regression models for processor performance analysis. In

Twelfth International Symposium on High Performance Computer Ar-

chitecture (HPCA), pages 99–108, Feb. 2006.

[12] R. Joseph and M. Martonosi. Run-time power estimation in high-per-

formance microprocessors. In International Symposium on Low Power

Electronics and Design, pages 135–140, Aug. 2001.

[13] T. S. Karkhanis and J. E. Smith. A first-order superscalar processor

model. In Proceedings of the 31st International Symposium on Com-

puter Architecture (ISCA 31), pages 338–349, June 2004.

[14] S. Katkoori and R. Vemuri. Architectural power estimation based on

behavior level profiling. Journal on VLSI Design, Special Issue on

Low Power, 1996.

[15] P. Landman. High level power estimation. In Proceedings of the Inter-

national Symposium on Low Power Electronics and Design, pages 29–

35, Aug. 1996.

[16] B. C. Lee and D. M. Brooks. Accurate and efficient regression model-

ing for microarchitectural performance and power prediction. In Pro-

ceedings of the Twelfth International Conference on Architectural

Support for Programming Languages and Operating Systems (ASP-

LOS XII), Oct. 2006.

[17] M. T.-C. Lee, V. Tiwari, S. Malik, and M. Fujita. Power analysis and

minimization techniques for embedded dsp software. IEEE Transac-

tions on VLSI Systems, 5(1):123–135, Mar. 1997.

[18] E. Macii and M. Pedram. High-level power modeling, estimation, and

optimization. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 17(11):1061–1079, Nov. 1998.

[19] D. B. Noonburg and J. P. Shen. Theoretical modeling of superscalar

processor performance. In Proceedings of the 27th International Sym-

posium on Microarchitecture (MICRO 27), pages 52–62, Nov. 1994.

[20] J. Peddersen and S. Parameswaran. CLIPPER: counter-based low im-

pact processor power estimation at run-time. In Asia and South Pacific

Design Automation Conference, Jan. 2007.

[21] M. D. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar.

Gated-Vdd: A circuit technique to reduce leakage in cache memories.

In Proceedings of the 2000 International Symposium on Low Power

Electronics and Design (ISLPED), pages 90–95, July 2000.

[22] J. Sharkey, A. Buyuktosunoglu, and P. Bose. Evaluating design

tradeoffs in on-chip power management for cmps. In Proceedings of

the International Symposium on Low Power Electronics and Design,

pages 44–49, Aug. 2007.

[23] V. Srinivasan, D. Brooks, Michael Gschwind, P. Bose, V. Zyuban,

P. N. Strenski, and P. G. Emma. Optimizing pipelines for power and

performance. In Proceedings of the 35th International Symposium on

Microarchitecture (MICRO 35), pages 333–344, Nov. 2002.

[24] The Standard Performance Evaluation Corporation. Spec CPU2000

suite. http://www.specbench.org/osg/cpu2000/.

[25] The Standard Performance Evaluation Corporation. Spec CPU2006

suite. http://www.specbench.org/osg/cpu2006/.

[26] W. Wu, L. Jin, J. Wang, P. Liu, and S. X.-D. Tan. A systematic meth-

od for functional unit power estimation in microprocessors. In Pro-

ceedings of the 43rd Conference on Design Automation, July 2006.

[27] B. Xue and D. M. H. Walker. Built-in current sensor for iddq test. In

IEEE International Workshop on Defect Based Testing (DBT), pages

3–9, Apr. 2004.

[28] V. Zyuban and P. Strenski. Unified methodology for resolving power-

performance tradeoffs at the microarchitectural and circuit levels. In

Proceedings of the International Symposium on Low Power Electron-

ics and Design, pages 166–171, Aug. 2002.

