Table of Contents

List of Tables	2
List of Figures	5
List of Boxes	6
List of Abbreviations and Acronyms	7
NARMS Working Group	8
What is New in the NARMS Report for 2009	12
Introduction	13
WHO Categorization of Antimicrobial Agents	14
Summary of NARMS 2009 Surveillance Data	15
Antimicrobial Resistance: 1996–2009	18
Surveillance and Laboratory Testing Methods	25
Results	32
1. Non-typhoidal Salmonella	32
A. Salmonella ser. Enteritidis	35
B. Salmonella ser. Typhimurium	37
C. Salmonella ser. Newport	39
D. Salmonella ser. Heidelberg	41
E. Salmonella ser. I 4,[5],12:i:	43
2. Typhoidal Salmonella	48
3. Shigella	54
4. Escherichia coli 0157	61
5. Campylobacter	63
References	68
NARMS Publications in 2009	69
Appendix A	70
Summary of Escherichia coli Resistance Surveillance Pilot Study, 2009	70
Escherichia coli working group	70
Centers for Disease Control and Prevention	70

Suggested Citation: CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Final Report, 2009. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2010.

Information Available Online: Previous reports and additional information about NARMS are posted on the CDC NARMS website: <u>http://www.cdc.gov/narms</u>

Disclaimer: Commercial products are mentioned for identification only and do not represent endorsement List of Tables

Table 1.	WHO categorization of antimicrobials of critical importance to human medicine	. 14
Table 2.	Population size and number of isolates received and tested, NARMS, 2009	. 24
Table 3.	Antimicrobial agents used for susceptibility testing for Salmonella, Shigella, and Escherichia coli O157 isolates, NARMS, 2009	
Table 4.	Antimicrobial agents used for susceptibility testing of <i>Campylobacter</i> isolates, NARMS, 1997–2009	. 28
Table 5.	Minimum inhibitory concentrations (MICs) and resistance of non-typhoidal Salmonella isolates to antimicrobial agents, 2009 (N=2192)	. 32
Table 6.	Percentage and number of non-typhoidal <i>Salmonella</i> isolates resistant to antimicrobial agents, 2000–2009	. 33
Table 7.	Resistance patterns of non-typhoidal Salmonella isolates, 2000–2009	. 33
Table 8.	Twenty most common non-typhoidal Salmonella serotypes in NARMS, 2009	. 34
Table 9.	Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Enteritidis isolates to antimicrobial agents, 2009 (N=410)	. 35
Table 10.	Percentage and number of <i>Salmonella</i> ser. Enteritidis isolates resistant to antimicrobial agents, 2000–2009	. 36
Table 11.	Resistance patterns of Salmonella ser. Enteritidis isolates, 2000–2009	. 37
Table 12.	Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Typhimurium isolates to antimicrobial agents, 2009 (N=371)	. 37
Table 13.	Percentage and number of <i>Salmonella</i> ser. Typhimurium isolates resistant to antimicrobial agents, 2000–2009	. 38
Table 14.	Resistance patterns of Salmonella ser. Typhimurium isolates, 2000–2009	. 39
	•	
Table 15.	Resistance patterns of <i>Salmonella</i> ser. Typhimurium isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Newport	. 39
Table 15. Table 16.	Resistance patterns of <i>Salmonella</i> ser. Typhimurium isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Newport isolates to antimicrobial agents, 2009 (N=236) Percentage and number of <i>Salmonella</i> ser. Newport isolates resistant to antimicrobial	. 39 . 40
Table 15. Table 16. Table 17.	Resistance patterns of <i>Salmonella</i> ser. Typhimurium isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Newport isolates to antimicrobial agents, 2009 (N=236) Percentage and number of <i>Salmonella</i> ser. Newport isolates resistant to antimicrobial agents, 2000–2009	. 39 . 40 . 41
Table 15. Table 16. Table 17. Table 18.	Resistance patterns of <i>Salmonella</i> ser. Typhimurium isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Newport isolates to antimicrobial agents, 2009 (N=236) Percentage and number of <i>Salmonella</i> ser. Newport isolates resistant to antimicrobial agents, 2000–2009 Resistance patterns of <i>Salmonella</i> ser. Newport isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Heidelberg	. 39 . 40 . 41 . 41
Table 15. Table 16. Table 17. Table 18. Table 19.	Resistance patterns of <i>Salmonella</i> ser. Typhimurium isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Newport isolates to antimicrobial agents, 2009 (N=236) Percentage and number of <i>Salmonella</i> ser. Newport isolates resistant to antimicrobial agents, 2000–2009 Resistance patterns of <i>Salmonella</i> ser. Newport isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Heidelberg isolates to antimicrobial agents, 2009 (N=86)	. 39 . 40 . 41 . 41 . 42
Table 15. Table 16. Table 17. Table 18. Table 19. Table 20.	Resistance patterns of <i>Salmonella</i> ser. Typhimurium isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Newport isolates to antimicrobial agents, 2009 (N=236) Percentage and number of <i>Salmonella</i> ser. Newport isolates resistant to antimicrobial agents, 2000–2009 Resistance patterns of <i>Salmonella</i> ser. Newport isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Heidelberg isolates to antimicrobial agents, 2009 (N=86) Percentage and number of <i>Salmonella</i> ser. Heidelberg isolates resistant to antimicrobial agents, 2000–2009	. 39 . 40 . 41 . 41 . 42 . 43
Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21.	Resistance patterns of <i>Salmonella</i> ser. Typhimurium isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Newport isolates to antimicrobial agents, 2009 (N=236) Percentage and number of <i>Salmonella</i> ser. Newport isolates resistant to antimicrobial agents, 2000–2009 Resistance patterns of <i>Salmonella</i> ser. Newport isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Heidelberg isolates to antimicrobial agents, 2009 (N=86) Percentage and number of <i>Salmonella</i> ser. Heidelberg isolates resistant to antimicrobial agents, 2000–2009 Resistance patterns of <i>Salmonella</i> ser. Heidelberg isolates resistant to antimicrobial agents, 2000–2009 Resistance patterns of <i>Salmonella</i> ser. Heidelberg isolates, 2000–2009	. 39 . 40 . 41 . 41 . 42 . 43 . 43
Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21.	Resistance patterns of <i>Salmonella</i> ser. Typhimurium isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Newport isolates to antimicrobial agents, 2009 (N=236) Percentage and number of <i>Salmonella</i> ser. Newport isolates resistant to antimicrobial agents, 2000–2009 Resistance patterns of <i>Salmonella</i> ser. Newport isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Heidelberg isolates to antimicrobial agents, 2009 (N=86) Percentage and number of <i>Salmonella</i> ser. Heidelberg isolates resistant to antimicrobial agents, 2000–2009 Resistance patterns of <i>Salmonella</i> ser. Heidelberg isolates resistant to antimicrobial agents, 2000–2009 Resistance patterns of <i>Salmonella</i> ser. Heidelberg isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. I 4,[5],12:i:- isolates to antimicrobial agents, 2009 (N=72) Percentage and number of <i>Salmonella</i> ser. I 4,[5],12:i:- isolates resistant to antimicrobial	. 39 . 40 . 41 . 41 . 42 . 43 . 43
Table 15. Table 16. Table 17. Table 18. Table 20. Table 21. Table 22.	Resistance patterns of <i>Salmonella</i> ser. Typhimurium isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Newport isolates to antimicrobial agents, 2009 (N=236) Percentage and number of <i>Salmonella</i> ser. Newport isolates resistant to antimicrobial agents, 2000–2009 Resistance patterns of <i>Salmonella</i> ser. Newport isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Heidelberg isolates to antimicrobial agents, 2009 (N=86) Percentage and number of <i>Salmonella</i> ser. Heidelberg isolates resistant to antimicrobial agents, 2000–2009 Resistance patterns of <i>Salmonella</i> ser. Heidelberg isolates resistant to antimicrobial agents, 2000–2009 Percentage and number of <i>Salmonella</i> ser. Heidelberg isolates, 2000–2009 Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. I 4,[5],12:i:- isolates to antimicrobial agents, 2009 (N=72) Percentage and number of <i>Salmonella</i> ser. I 4,[5],12:i:- isolates to antimicrobial agents, 2009 (N=72)	. 39 . 40 . 41 . 41 . 42 . 43 . 43 . 43 . 43

Table 26.	Percentage and number of <i>Salmonella</i> ser. Typhi isolates resistant to antimicrobial agents, 2000–2009	49
Table 27.	Resistance patterns of Salmonella ser. Typhi isolates, 2000–2009	49
Table 28.	Frequency of <i>Salmonella</i> ser. Paratyphi A, Paratyphi B, and Paratyphi C isolated in NARMS, 2009	50
Table 29.	Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Paratyphi A, Paratyphi B, and Paratyphi C isolates to antimicrobial agents, 2009 (N=102)	50
Table 30.	Percentage and number of <i>Salmonella</i> ser. Paratyphi A, Paratyphi B, and Paratyphi C isolates resistant to antimicrobial agents, 2000–2009	51
Table 31.	Resistance patterns of <i>Salmonella</i> ser. Paratyphi A, Paratyphi B, and Paratyphi C isolates, 2000–2009	51
Table 32.	Frequency of Shigella species isolated in NARMS, 2009	54
Table 33.	Minimum inhibitory concentrations (MICs) and resistance of <i>Shigella</i> isolates to antimicrobial agents, 2009 (N=475)	54
Table 34.	Percentage and number of Shigella isolates resistant to antimicrobial agents, 2000–2009	55
Table 35.	Resistance patterns of Shigella isolates, 2000–2009	56
Table 36.	Minimum inhibitory concentrations (MICs) and resistance of <i>Shigella sonnei</i> isolates to antimicrobial agents, 2009 (N=410)	56
Table 37.	Percentage and number of <i>Shigella sonnei</i> isolates resistant to antimicrobial agents, 2000–2009	57
Table 38.	Resistance patterns of Shigella sonnei isolates, 2000–2009	58
Table 39.	Minimum inhibitory concentrations and resistance of <i>Shigella flexneri</i> isolates to antimicrobial agents, 2009 (N=57)	58
Table 40.	Percentage and number of <i>Shigella flexneri</i> isolates resistant to antimicrobial agents, 2000–2009	59
Table 41.	Resistance patterns of Shigella flexneri isolates, 2000–2009	60
Table 42.	Minimum inhibitory concentrations (MICs) and resistance of <i>Escherichia coli</i> O157 isolates to antimicrobial agents, 2009 (N=188)	61
Table 43.	Percentage and number of <i>Escherichia coli</i> O157 isolates resistant to antimicrobial agents, 2000–2009	62
Table 44.	Resistance patterns of Escherichia coli O157 isolates, 2000–2009	62
Table 45.	Frequency of Campylobacter species isolated in NARMS, 2009	63
Table 46.	Minimum inhibition concentrations (MICs) and resistance of <i>Campylobacter</i> isolates to antimicrobial agents, 2009 (N=1502)	63
Table 47.	Percentage and number of <i>Campylobacter</i> isolates resistant to antimicrobial agents, 2000–2009	64
Table 48.	Resistance patterns of Campylobacter isolates, 2000–2009	64
Table 49.	Minimum inhibitory concentrations (MICs) and resistance of <i>Campylobacter jejuni</i> isolates to antimicrobial agents, 2009 (N=1355)	65
Table 50.	Percentage and number of <i>Campylobacter jejuni</i> isolates resistant to antimicrobial agents, 2000–2009	66
Table 51.	Minimum inhibitory concentrations (MICs) and resistance of <i>Campylobacter coli</i> isolates to antimicrobial agents, 2009 (N=143)	66
Table 52.	Percentage and number of <i>Campylobacter coli</i> isolates resistant to antimicrobial agents, 2000–2009	67
Table 53.	Antimicrobial agents used for susceptibility testing of Escherichia coli, 2009	72

Table 54.	Minimum inhibition concentrations (MICs) and resistance of <i>Escherichia coli</i> isolates to antimicrobial agents, 2009 (N=45)	72
Table 55.	Percentage and number of <i>Escherichia coli</i> isolates resistant to antimicrobial agents, 2004–2009	73
Table 56.	Resistance patterns of Escherichia coli isolates, 2004–2009	74

List of Figures

Figure 1.	Percentage of non-typhoidal <i>Salmonella</i> isolates resistant to nalidixic acid, by year, 1996–2009	. 18
Figure 2.	Percentage of non-typhoidal <i>Salmonella</i> isolates resistant to ceftriaxone, by year, 1996–2009	. 19
Figure 3.	Percentage of <i>Salmonella</i> ser. Enteritidis isolates resistant to nalidixic acid, by year, 1996–2000	. 19
Figure 4.	Percentage of <i>Salmonella</i> ser. Heidelberg isolates resistant to ceftriaxone, by year, 1996–2009	. 20
Figure 5.	Percentage of <i>Salmonella</i> ser. Typhimurium isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline (ACSSuT), by year, 1996–2009	. 20
Figure 6.	Percentage of <i>Salmonella</i> ser. Newport isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, and ceftriaxone (ACSSuTAuCx), by year, 1996–2009	. 21
Figure 7.	Percentage of non-typhoidal <i>Salmonella</i> isolates resistant to 1 or more antimicrobial classes, by year, 1996–2009	. 21
Figure 8.	Percentage of non-typhoidal <i>Salmonella</i> isolates resistant to 3 or more antimicrobial classes, by year, 1996–2009	. 22
Figure 9.	Percentage of Salmonella ser. Typhi isolates resistant to nalidixic acid, by year, 2000-2009.	. 22
Figure 10.	Percentage of Campylobacter isolates resistant to ciprofloxacin, by year, 1997-2009	. 23
Figure 11.	How to read a squashtogram	. 30
Figure 12.	Proportional chart, a categorical graph of a squashtogram	. 31
Figure 13.	Antimicrobial resistance pattern for non-typhoidal Salmonella, 2009	. 32
Figure 14.	Antimicrobial resistance pattern for Salmonella ser. Enteritidis, 2009	. 35
Figure 15.	Antimicrobial resistance pattern for Salmonella ser. Typhimurium, 2009	. 38
Figure 16.	Antimicrobial resistance pattern for Salmonella ser. Newport, 2009	. 40
Figure 17.	Antimicrobial resistance pattern for Salmonella ser. Heidelberg, 2009	. 42
Figure 18.	Antimicrobial resistance pattern for Salmonella ser. I 4,[5],12:i:-, 2009	. 44
Figure 19.	Antimicrobial resistance pattern for Salmonella ser. Typhi, 2009	. 48
Figure 20.	Antimicrobial resistance pattern for <i>Salmonella</i> ser. Paratyphi A, Paratyphi B, and Paratyphi C, 2009	. 50
Figure 21.	Antimicrobial resistance pattern for Shigella, 2009	. 55
Figure 22.	Antimicrobial resistance pattern for Shigella sonnei, 2009	. 57
Figure 23.	Antimicrobial resistance pattern for Shigella flexneri, 2009	. 59
Figure 24.	Antimicrobial resistance pattern for Escherichia coli O157, 2009	. 61
Figure 25.	Antimicrobial resistance pattern for Campylobacter, 2009	. 63
Figure 26.	Antimicrobial resistance pattern for Campylobacter jejuni, 2009	. 65
Figure 27.	Antimicrobial resistance pattern for Campylobacter coli, 2009	. 67
Figure 28.	Antibiotic resistance pattern for Escherichia coli, 2009	. 73

List of Boxes

Box 1.	Changes in antimicrobial resistance: 2009 vs. 2003–07 1	7
Box 2.	Four major multidrug-resistant patterns among non-typhoidal Salmonella isolates, 1996–2009 4	7
	Molecular characterization of non-Typhi Salmonella enterica that show decreased susceptibility to extended-spectrum cephalosporins	2
Box 4.	Reduced azithromycin susceptibility in Shigella sonnei, United States	3

List of Abbreviations and Acronyms

ACSSuT	Resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, and tetracycline
ACSSuTAuCx	Resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline, amoxicillin-clavulanic acid, and ceftriaxone
ACT/S	Resistance to at least ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole
ANT/S	Resistance to at least ampicillin, nalidixic acid and trimethoprim-sulfamethoxazole
AT/S	Resistance to at least ampicillin and trimethoprim-sulfamethoxazole
CDC	Centers for Disease Control and Prevention
CI	Confidence interval
CLSI	Clinical and Laboratory Standards Institute
EIP	Emerging Infections Program
ELC	Epidemiology and Laboratory Capacity
FDA-CVM	Food and Drug Administration-Center for Veterinary Medicine
FoodNet	Foodborne Diseases Active Surveillance Network
MIC	Minimum inhibitory concentration
NARMS	National Antimicrobial Resistance Monitoring System for Enteric Bacteria
OR	Odds ratio
PHLIS	Public Health Laboratory Information System
USDA	United States Department of Agriculture
WHO	World Health Organization

NARMS Working Group

Centers for Disease Control and Prevention

Enteric Diseases Epidemiology Branch

Enteric Diseases Laboratory Branch

Division of Foodborne, Waterborne and Environmental Diseases

National Center for Emerging and Zoonotic Infectious Diseases

Olympia Anderson Frederick Angulo Ezra Barzilay Jason Folster Peter Gerner-Smidt Audrey Green Patricia Griffin **Robert Michael Hoekstra** Rebecca Howie Kevin Joyce Maria Karlsson Beth Karp Amy Krueger Kathryn Lupoli Andre McCullough Felicita Medalla Gary Pecic Jared Reynolds Regan Rickert Jacinta Smith Andrew Stuart Robert Tauxe Jean Whichard

U.S. Food and Drug Administration Center for Veterinary Medicine

Heather Green Claudine Kabera Patrick McDermott Emily Tong Niketta Womack

Participating State and Local Health Departments Alabama Department of Public

Health

LaDonna Cranidiotis Sherri Davidson Sharon Massingale Patricia Morrow Joanna Roberson

Alaska Department of Health and Social Services

Shellie Smith Catherine Xavier

Arizona Department of Health Services

Shoana Anderson Aarikha D'Souza Daniel Flood Melissa Hoffman Ken Komatsu William Slanta Victor Waddell

Arkansas Department of Health Rossina Stefanova

California Department of Health Services

Wendy Cheung Claudia Crandall Samar Fontanoz Paul Kimsey Will Probert Sam Shin Duc Vugia

Colorado Department of Public Health and Environment

Alicia Cronquist Laura Gillim-Ross Joyce Knutsen Hugh Maguire

Connecticut Department of Public Health

Diane Barden Sharon Hurd Aristea Kinney Mona Mandour

Delaware Health and Social Services Gaile McLaughlin Bela Patel Debra Rutledge

Florida Department of Health

Ronald Baker Maria Calcaterra Sonia Etheridge Dian Sharma

Georgia Division of Public Health

Jim Benson Elizabeth Franko Tameka Hayes Mary Hodel Susan Lance Bob Manning Mahin Park Lynett Poventud Suzanne Segler Stepy Thomas Melissa Tobin-D'Angelo

Hawaii Department of Health

Rebecca Kanenaka Norman O'Connor

Houston Health and Human Services Department

Raouf Arafat Adebowale Awosika-Olumo Gregory Dufour Vern Juchau Sudha Pottumarthy Joan Rogers

Idaho Department of Health and

Welfare Colleen Greenwalt Vivian Lockary Raemi Nolevanko

Illinois Department of Public

Health Nancy Barstead Bob Cox Mark Dworkin Juan Garcia Rebecca Hambelton Stephen Hendren Steve Hopkins Patrick Miller Mohammad Nasir Kiran Patel Tricia Patterson Guinevere Reserva Bindu Shah Andrea Stadsholt

Indiana State Department of

Health Brent Barrett Amie May John Radosevic

Iowa Department of Public Health, University Hygienic Laboratory Mary DeMartino

Randy Groepper

Kansas Department of Health and Environment

Cheryl Banez-Ocfemia Robert Flahart Gail Hansen Carissa Pursell June Sexton Kathleen Waters

Kentucky Department of Public Health

Robin Cotton Karim George William Grooms Darrin Sevier Jack Wiedo

Los Angeles County

Department of Health Services

Michael Stephens Sheena Chu Sue Sabet Laurene Mascola Roshan Reporter Joan Sturgeon

Louisiana Department of Health and Hospitals

Gary Balsamo Erin Delaune Wayne Dupree Catrin Jones-Nazar Lori Kravet Steven Martin Raoult Ratard Theresa Sokol Susanne Straif-Bourgeois

Maine Department of Human Services

Geoff Beckett Kathleen Gensheimer Jeff Randolph Vicki Rea Lori Webber Donna Wrigley Anthony Yartel

Maryland Department of Health

and Mental Hygiene

David Blythe Kirsten Larson Celere Leonard Amanda Palmer Jafar Razeq Pat Ryan

Massachusetts Department of Public Health

Catherine Brown Alfred DeMaria Robert Goldbaum Emily Harvey Patricia Kludt Joseph Peppe Tracy Stiles

Michigan Department of Community Health

Carrie Anglewicz Frances Downes Teri Lee Dyke James Rudrik William Schneider Patricia Somsel

Minnesota Department of Health

John Besser Billie Juni Fe Leano Stephanie Meyer Kirk Smith Charlott Taylor Theresa Weber

Mississippi Department of Health

Jannifer Anderson Jane Campbell Gloria Kendrick Sheryl Hand Cathie Hoover Daphne Ware

Missouri Department of Health

David Byrd Steve Gladbach Jason Herstein Harvey Marx JoAnn Rudroff

Montana Department of Public Health and Human Services

Bonnie Barnard Anne Weber Susanne Zanto

Nebraska Health and Human Services and the Nebraska Public Heatlh Laboratory

Amy Armbrust Jude Dean Paul Fey Peter Iwen Tom Safranek

Nevada Department of Health and Human Services

Vince Abitria Patricia Armour Stephanie Ernaga Jaime Frank Paul Hug Bradford Lee Susanne Quianzon Lisa Southern Stephanie Van Hooser

New Hampshire Department of Health and Human Services

Christine Adamski Christine Bean Elizabeth Daly Wendy Lamothe Nancy Taylor Daniel Tullo

New Jersey Department of Health Ruth Besco Michelle Malavet Sylvia Matiuck Paul Seitz

New Mexico Department of

Health Lisa Butler Cynthia Nicholson Lisa Onischuk Erica Pierce Paul Torres

New York City Department of Health

Sharon Balter Ludwin Chicaiza Heather Hanson Lillian Lee Jennifer Rakeman Vasudha Reddy

New York State Department of Health

Leeanna Armstrong Nellie Dumas Tammy Quinlan Dale Morse Tim Root Shelley Zansky

North Carolina Department of Health and Human Services

Denise Griffin Debra Springer

North Dakota Department of

Health Lisa Elijah Julie Wagendorf Eric Hieb Nicole Meier Tracy Miller Lisa Well

Ohio Department of Health

Rick Bokanyi Tammy Bannerman Jane Carmean Larry King Mary Kay Parrish Susan Luning Ellen Salehi

Oklahoma State Department of Health

Rebekah Berry Mike Lytle Mike McDermot

Oregon Department of Human Service

Debbie Berquist Cathy Ciaffoni Paul Cieslak Dawn Daly Emilio Debess Julie Hatch Beletsachew Shiferaw Larry Stauffer Janie Tierheimer Robert Vega Veronica Williams

Pennsylvania Department of Human Service

Wayne Chmielecki Lisa Dettinger Nkuchia Mikanatha Stanley Reynolds Carol Sandt James Tait

Rhode Island Department of Health

Tara Cooper Deanna Simmons Cindy Vanner

South Carolina Department of Health and Environmental Control

Dana Giurgiutiu Mamie Turner Jennifer Meredith Arthur Wozniak

South Dakota Department of Health

Christopher Carlson Lon Kightlinger Mike Smith Yvette Thomas

Tennessee Department of Health

Parvin Arjmandi Paula Bailey John Dunn Samir Hanna Henrietta Hardin

Texas Department of State Health Services

Tamara Baldwin Leslie Bullion Elizabeth Delamater Linda Gaul Eldridge Hutcheson Miriam Johnson Susan Neill Pushker Raj Ana Valle

Utah Department of Health

Dan Andrews Kim Christensen Jana Coombs Cindy Fisher David Jackson Barbara Jepson Susan Mottice

Vermont Department of Health

Erica Berl Valerie Cook Eunice H. Froeliger Christine LaBarre

Virginia Division of Consolidated Laboratory Services and Virginia Department of Health

Ellen Basinger Sherry Giese Jody Lowman Mary Mismas Denise Toney

Washington Department of Health

Jennifer Breezee Romesh Gautom Donna Green Brian Hiatt Yolanda Houze Kathryn MacDonald

West Virginia Department of Health and Human Resources

Danae Bixler Christi Clark Maria del Rosario Loretta Haddy Andrea Labik Megan Young

Wisconsin Department of Health and Family Services

John Archer Susann Ahrabi-Fard Charles Brokopp Jeffrey Davis Rick Heffernan Rachel Klos Tim Monson Dave Warshauer

Wyoming Department of Health Richard Harris

Richard Harris John Harrison Clay Van Houten Tracy Murphy Jim Walford

Mutually exclusive criteria heading

In Box 2 (page 47), we describe the 4 most common multidrug-resistant (MDR) patterns among non-typhoidal *Salmonella* isolates based on resistance to 7 of the 15 agents currently tested in NARMS: ampicillin (A), chloramphenicol (C), streptomycin (S), sulfonamide (Su), tetracycline (T), amoxicillin-clavulanic acid (Au), and ceftriaxone (Cx). Resistance to the 7 agents has been used in NARMS to categorize specific MDR patterns. Unlike MDR criteria used for tables in previous reports and other sections of this report, we used mutually exclusive criteria in the new section. Use of mutually exclusive criteria is important in monitoring major and emerging patterns, which may be driven by different resistance mechanisms.

Update of trimethoprim-sulfamethoxazole data for Shigella

Automated fluorescence-based methods have been used since 2001 to determine minimum inhibitory concentrations (MIC) for the drugs tested for *Enterobacteriaceae*. These automated fluorescence-based methods are designed to emulate MICs that would be obtained if the results were read visually. Recent laboratory comparison studies showed that the automated fluorescence-based method was not reproducibly emulating visually-determined results for trimethoprim-sulfamethoxazole with *Shigella* species. The test manufacturer has updated the automated fluorescence-based method to improve concordance with visual results, and these updates have been applied retroactively to the affected data in the database. This has resulted in lower MIC results and lower prevalence of trimethoprim-sulfamethoxazole resistance for *Shigella*.

The National Antimicrobial Resistance Monitoring System (NARMS) for Enteric Bacteria is a collaboration among the Centers for Disease Control and Prevention (CDC), <u>U.S. Food and Drug Administration's Center for</u> <u>Veterinary Medicine</u> (FDA-CVM), and <u>U.S. Department of Agriculture</u> (USDA). The primary purpose of NARMS at CDC is to monitor antimicrobial resistance among enteric bacteria isolated from humans. Other components of the interagency NARMS program include surveillance for resistance in enteric bacteria isolated from foods, conducted by the FDA-CVM

(<u>http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/default.htm</u>), and resistance in enteric bacteria isolated from animals, conducted by the USDA Agricultural Research Service (<u>http://www.ars.usda.gov/main/site_main.htm?modecode=66-12-05-08</u>).

Many NARMS activities are conducted within the framework of CDC's Emerging Infections Program (EIP), Epidemiology and Laboratory Capacity (ELC) Program, and the Foodborne Diseases Active Surveillance Network (FoodNet). In addition to surveillance of resistance in enteric pathogens, the NARMS program at CDC also includes public health research into the mechanisms of resistance, education efforts to promote prudent use of antimicrobial agents, and studies of resistance in commensal organisms.

Before NARMS was established, CDC monitored antimicrobial resistance in *Salmonella, Shigella*, and *Campylobacter* through periodic surveys of isolates from a panel of sentinel counties. NARMS at CDC began in 1996 with prospective monitoring of antimicrobial resistance among clinical non-typhoidal *Salmonella* and *Escherichia coli* O157 isolates in 14 sites. In 1997, testing of clinical *Campylobacter* isolates was initiated in the five sites participating in FoodNet. Testing of clinical *Salmonella enterica* serotype Typhi and *Shigella* isolates was added in 1999. Since 2003, all 50 states have been forwarding a representative sample of non-typhoidal *Salmonella*, *Salmonella* ser. Typhi, *Shigella*, and *E. coli* O157 isolates to NARMS for antimicrobial susceptibility testing, and 10 FoodNet states have been participating in *Campylobacter* surveillance. Since 2008, all 50 states have been forwarding every *Salmonella* Paratyphi A and C to NARMS for antimicrobial susceptibility testing.

This annual report includes CDC's surveillance data for 2009 for non-typhoidal *Salmonella*, typhoidal *Salmonella*, *Shigella*, *Campylobacter* and *E. coli* O157 isolates. Data for earlier years are presented in tables and graphs when appropriate. Antimicrobial classes defined by Clinical and Laboratory Standards Institute (CLSI) are used in data presentation and analysis. CLSI classes constitute major classifications of antimicrobial agents, e.g., aminoglycosides and cephems.

This report also includes the World Health Organization's categorization of antimicrobials of critical importance to human medicine (Table 1). The table includes only antimicrobials that are tested in NARMS.

Additional NARMS data and more information about NARMS activities are available at http://www.cdc.gov/narms

WHO Categorization of Antimicrobial Agents

In 2007, the World Health Organization (WHO) convened for the second time a panel of experts to develop a list of essential antimicrobial agents according to their importance to human medicine (WHO, 2007). The participants categorized antimicrobial agents as either Critically Important, Highly Important, or Important based upon two criteria: (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may be transmitted via non-human sources. Antimicrobial agents tested in NARMS have been included in the WHO categorization table.

- Antimicrobial agents are critically important if both criteria (1) and (2) are true.
- Antimicrobial agents are highly important if either criterion (1) or (2) is true.
- Antimicrobial agents are important if neither criterion is true.

Table 1. WHO categorization of antimicrobials of critical importance to human medicine

WHO Category Level	Importance	CLSI Class	Antimicrobial Agent tested in NARMS					
			Amikacin					
		Aminoglycosides	Gentamicin					
			Streptomycin					
		β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid					
		Cephems	Ceftriaxone					
l I	Critically important	Ketolides	Telithromycin					
		Macrolides	Azithromycin					
		Macionaes	Erythromycin					
		Penicillins	Ampicillin					
		Quinolones	Ciprofloxacin					
		Quintiones	Nalidixic acid					
		Aminoglycosides	Kanamycin					
		Orahama	Cefoxitin					
		Cephems	Cephalothin					
Ш	Highly important		Sulfamethoxazole / Sulfisoxazole					
		Folate pathway inhibitors	Trimethoprim-sulfamethoxazole					
		Phenicols	Chloramphenicol					
		Tetracyclines*	Tetracycline					
ш	Important	Lincosamides	Clindamycin					

*In 2010, WHO recategorized tetracycline from highly important to critically important. The NARMS 2010 annual report will reflect this change.

Population

In 2009, all 50 states participated in NARMS, representing the entire U.S. population of approximately 307 million persons (<u>Table 2</u>). Surveillance was conducted in all states for non-typhoidal *Salmonella*, typhoidal *Salmonella*, *Shigella*, and *Escherichia coli* O157. For *Campylobacter*, surveillance was conducted in 10 states that comprise the Foodborne Diseases Active Surveillance Network (FoodNet), representing approximately 47 million persons (15% of the U.S. population).

Clinically Important Antimicrobial Resistance Patterns

In the United States, fluoroquinolones (e.g., ciprofloxacin) and third-generation cephalosporins (e.g., ceftriaxone) are commonly used to treat severe *Salmonella* infections, including *Salmonella* ser. Typhi, the organism that causes typhoid fever. In *Enterobacteriaceae*, resistance to nalidixic acid, an elementary quinolone, correlates with decreased susceptibility to ciprofloxacin (MIC $\ge 0.12 \ \mu$ g/mL) and possible fluoroquinolone treatment failure. A substantial proportion of *Enterobacteriaceae* isolates tested in 2009 demonstrated resistance to these clinically important antimicrobial agents.

Among non-typhoidal Salmonella isolates:

- 1.8% (39/2192) were resistant to nalidixic acid. The most common serotypes among the nalidixic acidresistant isolates were Enteritidis (15/39, 38%) and Typhimurium (8/39, 21%)
 - o 3.7% (15/410) of Salmonella ser. Enteritidis isolates were nalidixic acid resistant
 - o 2.2% (8/371) of Salmonella ser. Typhimurium isolates were nalidixic acid resistant
- 3.4% (75/2192) were resistant to ceftriaxone. The most common serotypes among the ceftriaxone resistant isolates were Typhimurium (24/75, 32%) and Heidelberg (18/75, 24%)
 - o 21% (18/86) of Salmonella ser. Heidelberg isolates were ceftriaxone resistant
 - o 6.5% (24/371) of Salmonella ser. Typhimurium isolates were ceftriaxone resistant

Among Salmonella ser. Typhi isolates:

• 60% (217/361) were resistant to nalidixic acid and 3.3% (12/361) to ciprofloxacin

Among *Shigella* isolates:

• 2.1% (10/475) were resistant to nalidixic acid and 0.6% (3/475) to ciprofloxacin

In *Campylobacter*, fluoroquinolones and macrolides (e.g., erythromycin) are important agents in the treatment of severe infections. Among *Campylobacter* isolates:

- 23% (344/1502) were ciprofloxacin resistant, including
 - o 23% (312/1355) of Campylobacter jejuni isolates
 - o 22% (31/143) of Campylobacter coli isolates
- 1.7% (25/1502) were erythromycin resistant, including
 - o 1.5% (21/1355) Campylobacter jejuni isolates
 - 2.8% (4/143) of Campylobacter coli isolates

Multidrug Resistance

Multidrug resistance is described in NARMS as resistance to three or more CLSI antimicrobial classes. Antimicrobial classes of agents defined by the Clinical and Laboratory Standards Institute (CLSI) are used in this report (<u>Table 3</u>, <u>Table 4</u>). For non-typhoidal *Salmonella*, an important multidrug-resistant phenotype includes resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide (sulfamethoxazole or sulfisoxazole), and tetracycline (ACSSuT). The ACSSuT phenotype includes resistance to at least five CLSI classes. Another important phenotype includes resistance to at least ampicillin-clavulanic acid, and ceftriaxone (ACSSuTAuCx). The ACSSuTAuCx phenotype includes resistance to at least 7 CLSI classes. Among non-typhoidal Salmonella isolates:

- 13% (284/2192) were resistant to two or more CLSI classes of agents, 9.5% (209/2192) to three or more CLSI classes. Of the 209 isolates resistant to three or more CLSI classes, 50% were ser.Typhimurium. The serotypes with the highest proportion of isolates resistant to three or more CLSI classes were

 Typhimurium (28%, 104/371), Heidelberg (26%, 22/86), and Newport (7.6%, 18/236)
 - Typhimurium (28%, 104/371), Heidelberg (26%, 22/86), and Newport (7.6%, 18/236)
 5.1% (112/2192) were at least ACSSuT resistant. The serotypes with the highest proportion of isolates
- 5.1% (112/2192) were at least ACSSuT resistant. The serotypes with the highest proportion of isola
 resistant to this phenotype were
 - o Typhimurium (19%, 72/371) and Newport (6.4%, 15/236)
- 1.4% (30/2192) were at least ACSSuTAuCx resistant. The serotypes with the highest proportion of isolates resistant to this phenotype were
 - o Newport (6.4%, 15/236) and Typhimurium (1.6%, 6/371)

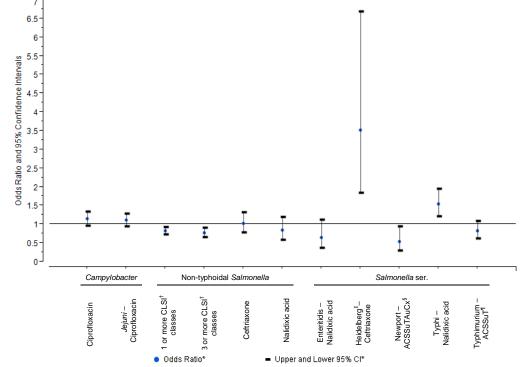
Additional isolates resistant to three or more CLSI classes include

- 13% (46/361) of Salmonella ser. Typhi isolates
- 36% (173/475) of Shigella isolates
- 5.9% (11/188) of *E. coli* O157 isolates

Box 1. Changes in antimicrobial resistance: 2009 vs. 2003–07

To understand changes in prevalence of antimicrobial resistance over time, we used logistic regression to compare the prevalence of specific antimicrobial resistance patterns among Salmonella and Campylobacter isolates tested in 2009 with the reference, which was the average prevalence of resistance in 2003–07. Since 2003, all 50 states have participated in Salmonella surveillance and all 10 FoodNet sites in Campylobacter surveillance. A description of the methods is included in this report (refer to Surveillance and Laboratory Testing Methods).

The differences between the prevalence of resistance in 2009 and the average prevalence of resistance in 2003–07 (Figure 1) were statistically significant for the following:


- Resistance to one or more CLSI classes in non-typhoidal Salmonella (NTS), lower in 2009 (17%) than in 2003–07 (20%) (OR=0.8, 95% CI [0.7-0.9])
- Resistance to three or more CLSI classes in NTS, lower in 2009 (9.5%) than in 2003-07 (12%) (OR=0.8, 95% CI [0.7-0.9])
- ACSSuTAuCx resistance in Salmonella enterica ser. Newport, lower in 2009 (6.4%) than in 2003-07 (13%) (OR=0.5, 95% CI [0.3-1.0]) .
- Nalidixic acid resistance in Salmonella enterica ser. Typhi, higher in 2009 (60%) than in 2003-07 (49%) (OR=1.6, 95% CI [1.2-2.0])

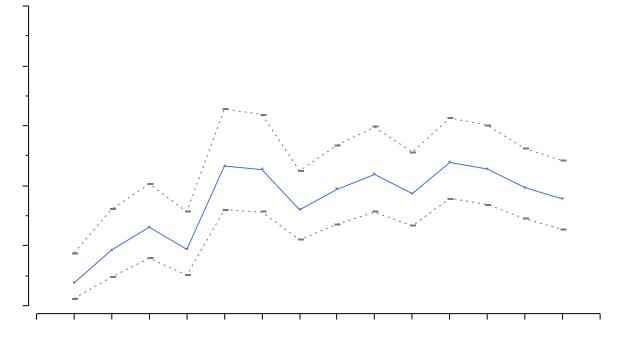
Ceftriaxone resistance in Salmonella ser. Heidelberg was higher in 2009 (21%) than the average prevalence of resistance in 2003–07 (7.9%) (OR=3.5, 95% CI [1.8, 6.7]) (Figure 1). The data indicate that increased resistance was mainly driven by California and Washington. Trend analysis excluding California and Washington shows no significant change (OR=1.4, 95% CI [0.6, 3.6]). Thus, the reported OR represents a summary of unequal trends among sites.

The differences between the prevalence of resistance in 2009 and the average prevalence of resistance in 2003-07 (Figure 1) were not statistically significant for the following:

- Nalidixic acid resistance in NTS (OR=0.9, 95% CI [0.6-1.2])
- Ceftriaxone resistance in NTS (OR=1.0, 95% CI [0.8-1.3]) .
- Nalidixic acid resistance in Salmonella enterica ser. Enteritidis (OR=0.7, 95% CI [0.4-1.1]) •
- ACSSuT resistance in Salmonella enterica ser. Typhimurium (OR=0.8, 95% CI [0.6-1.1]) •
- Ciprofloxacin resistance in Campylobacter (OR=1.1, 95% CI [1.0-1.3]) .
- Ciprofloxacin resistance in Campylobacter jejuni (OR=1.1, 95% CI [1.0-1.4])

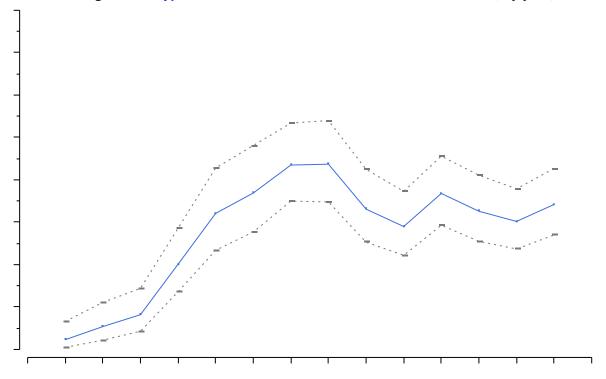
Figure 1. Summary of trend analysis of the prevalence of specific resistance patterns among Salmonella and Campylobacter isolates, 2009 compared with 2003-2007*

*The reference is the average prevalence of resistance in 2003–07. Logistic regression models adjusted for site. The odds ratios (ORs) and 95% confidence intervals (CIs) for 2009 compared with the reference were calculated using unconditional maximum likelihood estimation. ORs that do not include 1.0 in the 95% CIs are reported as statistically significant. [†]Antimicrobial classes of agents defined by the Clinical and Laboratory Standards Institute (CLSI) are used. [‡]Descriptive analysis suggests that increased resistance in 2009 was mainly driven by California and Washington. Thus, the reported OR represents a summary of unequal trends across


sites. [§]ACSSuTAuCx: resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, and ceftriaxone.

ACSSuT: resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline.

Antimicrobial Resistance: 1996–2009


The following figures display resistance from 1996–2009 for non-typhoidal *Salmonella*, 2000–2009 for *Salmonella* ser. Typhi, and 1997–2009 for *Campylobacter*.

- = --- Upper and lower limits of the individual 95% confidence intervals for annual percent resistant
- —Annual percent resistant

Figure 2. Percentage of non-typhoidal Salmonella isolates resistant to ceftriaxone, by year, 1996–2009

= --- Upper and lower limits of the individual 95% confidence intervals for annual percent resistant

— Annual percent resistant

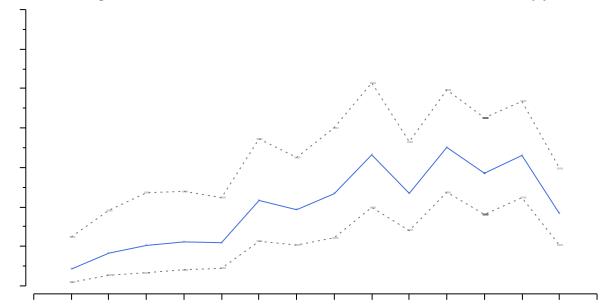
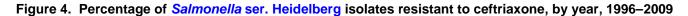
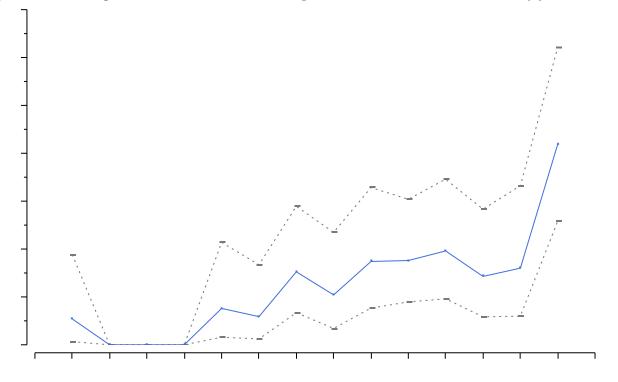
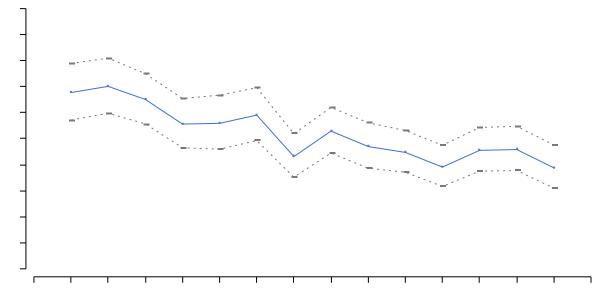
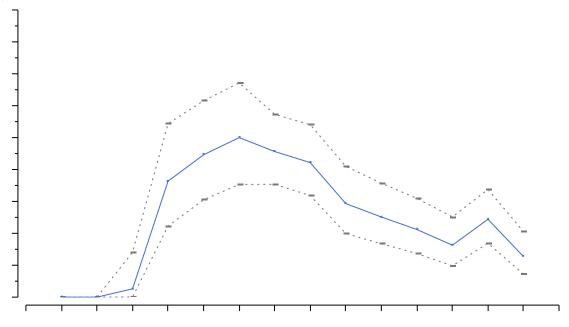



Figure 3. Percentage of Salmonella ser. Enteritidis isolates resistant to nalidixic acid, by year, 1996–2009

— Annual percent resistant

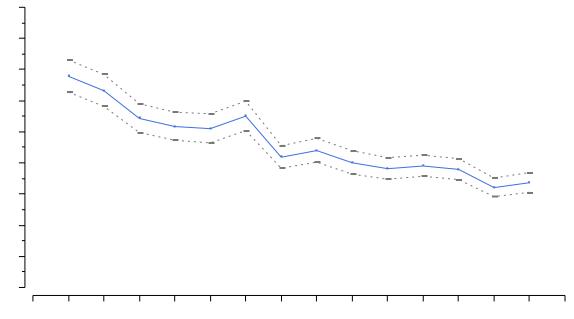
^{= ---} Upper and lower limits of the individual 95% confidence intervals for annual percent resistant


Figure 5. Percentage of *Salmonella* ser. Typhimurium isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline (ACSSuT), by year, 1996–2009

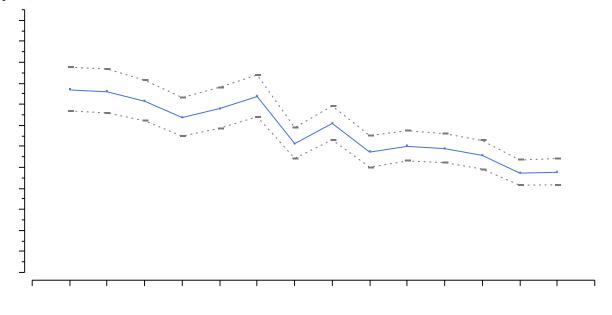
= --- Upper and lower limits of the individual 95% confidence intervals for annual percent resistant

— Annual percent resistant


Figure 6. Percentage of *Salmonella* ser. Newport isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, and ceftriaxone (ACSSuTAuCx), by year, 1996–2009

= --- Upper and lower limits of the individual 95% confidence intervals for annual percent resistant

— Annual percent resistant



= --- Upper and lower limits of the individual 95% confidence intervals for annual percent resistant

— Annual percent resistant

Figure 8. Percentage of non-typhoidal *Salmonella* isolates resistant to 3 or more antimicrobial classes, by year, 1996–2009

= --- Upper and lower limits of the individual 95% confidence intervals for annual percent resistant

— Annual percent resistant

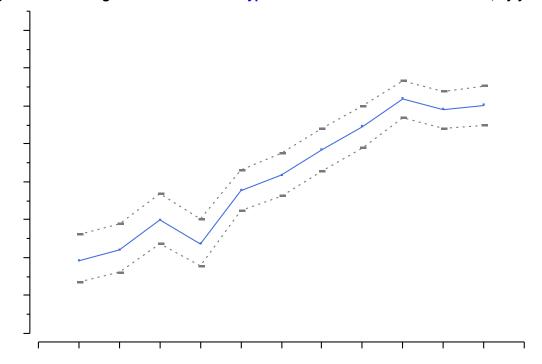


Figure 9. Percentage of Salmonella ser. Typhi isolates resistant to nalidixic acid, by year, 2000–2009

= --- Upper and lower limits of the individual 95% confidence intervals for annual percent resistant

— Annual percent resistant

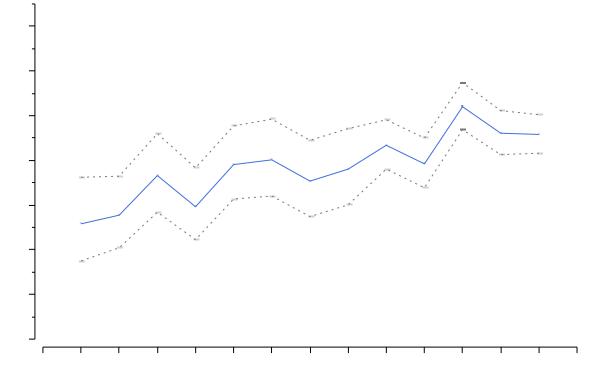


Figure 10. Percentage of *Campylobacter* isolates resistant to ciprofloxacin, by year, 1997–2009

- = --- Upper and lower limits of the individual 95% confidence intervals for annual percent resistant
- —Annual percent resistant

01-11-1011-		Non-t	yphoidal	Тур	hoidal		igella		oli 0157	Campylobacter [‡]		
State/Site	Population Size		nonella		monella		- (9()		(0/)			
Alahama	4 700 700	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	
Alabama	4,708,708	65	(3.0%)			9	(1.9%)	2	(1.1%)			
Alaska	,		(0.2%)	4	(0.0%)	1	(0.2%)	0	(0.0%)			
Arizona Arkansas	6,595,778 2,889,450	56 (2.6%) 23 (1.0%)		4	(0.9%)	27 9	(5.7%) (1.9%)	2	(1.1%)			
California [§]	27,113,653	184	(8.4%)	57	(12.3%)	2	(0.4%)	5	(2.7%)	76	(5.1%)	
		34	, ,	12	, ,	6	, ,	5	(3.7%)		. ,	
Colorado	5,024,748	34 25	(1.6%)	5	(2.6%)	6 1	(1.3%)	4	(3.7%)	57 123	(3.8%)	
Connecticut Delaw are	3,518,288 885,122	8	(1.1%) (0.4%)	0	(1.1%)	7	(0.2%)	4	(0.0%)	123	(8.2%)	
District of Columbia	599,657	0 37	(0.4%)	3	(0.0%)	0	(0.0%)	0	(0.0%)			
Florida	18,537,969	17	(0.8%)	28	(6.0%)	0	(0.0%)	0	(0.0%)			
Georgia	9,829,211	133	(6.1%)	12	(0.0%)	29	(6.1%)	14	(0.0%)	473	(31.5%)	
Haw aii	1,295,178	16	(0.7%)	6	(1.3%)	3	(0.6%)	14	(0.5%)	473	(31.576)	
Houston, Texas ¹		34		8	(1.3%)	8		0	· · · · ·			
Idaho	2,257,926 1,545,801	34 8	(1.6%)	2	(0.4%)	0 1	(1.7%) (0.2%)	2	(0.0%)			
			, ,		, <i>,</i>		· ,		(1.1%)			
Illinois	12,910,409	78	(3.6%)	15 4	(3.2%)	30	(6.3%)	17	(9.0%)			
Indiana	6,423,113	31	(1.4%)		(0.9%)	1	(0.2%)	2	(1.1%)			
low a	3,007,856	17	(0.8%)	0	(0.0%)		(0.8%)		(2.1%)			
Kansas	2,818,747	14 21	(0.6%)	0	(0.0%)	9 4	(1.9%)	1	(0.5%)			
Kentucky	4,314,113		(1.0%)		(0.0%)		(0.8%)	0	(0.0%)			
Los Angeles	9,848,011	63	(2.9%)	6	(1.3%)	2	(0.4%)	0	(0.0%)			
Louisiana	4,492,076	30	(1.4%)	0	(0.0%)	0	(0.0%)	0	(0.0%)			
Maine	1,318,301	1	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)	100	(40,40())	
Maryland	5,699,478	60	(2.7%)	18	(3.9%)	17	(3.6%)	24	(12.8%)	186	(12.4%)	
Massachusetts	6,593,587	58	(2.6%)	16	(3.5%)	11	(2.3%)	4	(2.1%)			
Michigan	9,969,727	42	(1.9%)	15	(3.2%)	8	(1.7%)	2	(1.1%)	100	(11.10())	
Minnesota	5,266,214	28	(1.3%)	5	(1.1%)	4	(0.8%)	8	(4.3%)	166	(11.1%)	
Mississippi	2,951,996	37	(1.7%)	1	(0.2%)	4	(0.8%)	0	(0.0%)			
Missouri	5,987,580	38	(1.7%)	1	(0.2%)	35	(7.4%)	6	(3.2%)			
Montana	974,989	7	(0.3%)	1	(0.2%)	1	(0.2%)	2	(1.1%)			
Nebraska	1,796,619	10	(0.5%)	0	(0.0%)	8	(1.7%)	3	(1.6%)			
Nevada	2,643,085	12	(0.5%)	3	(0.6%)	3	(0.6%)	1	(0.5%)			
New Hampshire	1,324,575	10	(0.5%)	0	(0.0%)	2	(0.4%)	2	(1.1%)			
New Jersey	8,707,739	57	(2.6%)	44	(9.5%)	15	(3.2%)	7	(3.7%)		(= == ()	
New Mexico	2,009,671	10	(0.5%)	1	(0.2%)	4	(0.8%)	2	(1.1%)	142	(9.5%)	
New York ^{††}	11,149,572	76	(3.5%)	19	(4.1%)	7	(1.5%)	6	(3.2%)	125	(8.3%)	
New York City ^{‡‡}	8,391,881	74	(3.4%)	55	(11.9%)	18	(3.8%)	2	(1.1%)			
North Carolina	9,380,884	85	(3.9%)	11	(2.4%)	5	(1.1%)	2	(1.1%)			
North Dakota	646,844	6	(0.3%)	0	(0.0%)	2	(0.4%)	1	(0.5%)			
Ohio	11,542,645	81	(3.7%)	13	(2.8%)	20	(4.2%)	5	(2.7%)			
Oklahoma	3,687,050	34	(1.6%)	2	(0.4%)	12	(2.5%)	1	(0.5%)		(
Oregon	3,825,657	26	(1.2%)	2	(0.4%)	3	(0.6%)	4	(2.1%)	113	(7.5%)	
Pennsylvania	12,604,767	82	(3.7%)	22	(4.8%)	59	(12.4%)	1	(0.5%)			
Rhode Island	1,053,209	8	(0.4%)	1	(0.2%)	2	(0.4%)	1	(0.5%)			
South Carolina	4,561,242	58	(2.6%)	1	(0.2%)	4	(0.8%)	1	(0.5%)			
South Dakota	812,383	10	(0.5%)	2	(0.4%)	1	(0.2%)	3	(1.6%)		(
Tennessee	6,296,254	41	(1.9%)	4	(0.9%)	16	(3.4%)	7	(3.7%)	41	(2.7%)	
Texas ^{§§}	22,524,376	137	(6.3%)	16	(3.5%)	12	(2.5%)	2	(1.1%)		ļ	
Utah	2,784,572	23	(1.0%)	0	(0.0%)	1	(0.2%)	4	(2.1%)			
Vermont	621,760	1	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)			
Virginia	7,882,590	60	(2.7%)	30	(6.5%)	7	(1.5%)	3	(1.6%)			
Washington	6,664,195	44	(2.0%)	5	(1.1%)	7	(1.5%)	7	(3.7%)			
West Virginia	1,819,777	35	(1.6%)	0	(0.0%)	10	(2.1%)	4	(2.1%)			
Wisconsin	5,654,774	34	(1.6%)	11	(2.4%)	22	(4.6%)	6	(3.2%)			
Wyoming	544,270	9	(0.4%)	0	(0.0%)	2	(0.4%)	4	(2.1%)			
Total	307,006,550	2192	(100.0%)	463	(100.0%)	475	(100.0%)	188	(100.0%)	1502	(100.0%)	

Table 2. Population size and number of isolates received and tested, NARMS, 2009

US Census Bureau, 2009

 † Typhoidal Salmonella includes Typhi, Paratyphi A, Paratyphi B, and Paratyphi C

[†] Campylobacter isolates are submitted only from FoodNet sites representing a total population 46,859,541. All Campylobacter isolates are received from Georgia, Maryland,

New Mexico, Oregon, and Tennessee and every other isolate from California, Colorado, Connecticut, and New York; and every fifth isolate from Minnesota.

§ Excluding Los Angeles County

¹ Houston City

" Los Angeles County

^{††} Excluding New York City

¹¹ Five burroughs of New York City (Bronx, Brooklyn, Manhattan, Queens, Staten Island)

§§ Excluding Houston, Texas

Surveillance Sites and Isolate Submissions

In 2009, NARMS conducted nationwide surveillance among approximately 307 million persons (2009 U.S. Census Bureau estimates). Public health laboratories systematically selected every 20th non-typhoidal *Salmonella*, *Shigella*, and *Escherichia coli* O157 isolate as well as every *Salmonella* ser. Typhi, *Salmonella* ser. Paratyphi A and *Salmonella* ser. Paratyphi C isolate received at their laboratories and forwarded these isolates to CDC for antimicrobial susceptibility testing. *Salmonella* ser. Paratyphi B was included in the every 20th sampling for non-typhoidal *Salmonella* because available laboratory methods do not always allow for consistent distinction between serotype Paratyphi B (which typically causes typhoidal illness) and serotype Paratyphi B var. L(+)tartrate+ (which does not typically cause typhoidal illness).

Since 2005, public health laboratories of the 10 state health departments that participated in CDC's Foodborne Diseases Active Surveillance Network (FoodNet) have forwarded a representative sample of *Campylobacter* isolates to CDC for susceptibility testing. The FoodNet sites, representing approximately 47 million persons (2009 U.S. Census Bureau estimates), include California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York, Oregon, and Tennessee. Depending on the burden of *Campylobacter* in each FoodNet site, one of the following three methods was used to obtain a representative sample of *Campylobacter* isolates: all isolates received by Georgia, Maryland, New Mexico, Oregon, and Tennessee; every other isolate from California, Colorado, Connecticut, and New York; and every fifth isolate from Minnesota. From 1997 to 2004, one *Campylobacter* isolate was submitted each week from participating FoodNet sites.

Testing of Salmonella, Shigella, and Escherichia coli O157

Antimicrobial Susceptibility Testing

Salmonella, Shigella, and E. coli O157 isolates were tested using broth microdilution (Sensitire[®], Trek Diagnostics, Cleveland, OH) according to manufacturer's instructions to determine the minimum inhibitory concentration (MIC) for each of 15 antimicrobial agents: amikacin, ampicillin, amoxicillin-clavulanic acid, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfisoxazole, tetracycline, and trimethoprim-sulfamethoxazole (<u>Table 3</u>). Before 2004, sulfamethoxazole was used instead of sulfisoxazole to represent the sulfonamides. Interpretive criteria defined by CLSI were used when available. The resistance breakpoint for amikacin, according to CLSI guidelines, is \geq 64 µg/mL. In 2002 and 2003, a truncated broth microdilution series was used for amikacin testing (0.5-4 µg/mL). For isolates that grew in all amikacin dilutions on the Sensititre panel (MIC>4 µg/mL), ETest[®] (AB BIODISK, Solna, Sweden) was performed to determine amikacin MIC. The amikacin ETest[®] strip range of dilutions was 0.016-256 µg/mL. Since 2004, amikacin had a full range of dilutions (0.5-64 µg/mL) on the Sensititre panel (CMV1AGNF).

In January 2010, CLSI published revised interpretive criteria for ceftriaxone and *Enterobacteriaceae;* the revised resistance breakpoint for ceftriaxone is MIC \geq 4 µg/mL. In this report, NARMS has applied the revised CLSI breakpoint for ceftriaxone resistance to data from all years.

CLSI class	Antimicrobial Agent	Antimicrobial Agent Concentration	MIC Interpretive Standard (µg/mL)						
CLSI class	Antimicrobial Agent	Range (µg/mL)	Susceptible	Intermediate	Resistant				
	Amikacin	0.5–64	≤16	32	≥64				
Aminorikansidan	Gentamicin	0.25–16	≤4	8	≥16				
Aminoglycosides	Kanamycin	8–64	≤16	32	≥64				
	Streptomycin*	32–64	≤32		≥64				
β–lactam / β–lactamase inhibitor combinations	Amoxicillin-clavulanic acid	1/0.5–32/16	≤8/4	16/8	≥32/16				
	Cefoxitin	0.5–32	≤8	16	≥32				
Quelance	Ceftiofur	0.12–8	≤2	4	≥8				
Cephems	Ceftriaxone [†]	0.25–64	≤1	2	≥4				
	Cephalothin [‡]	2–32	≤8	16	≥32				
	Sulfamethoxazole§	16–512	≤256		≥512				
Folate pathway inhibitors	Sulfisoxazole	16–256	≤256		≥512				
	Trimethoprim- sulfamethoxazole	0.12/2.38–4/76	≤2/38		≥4/76				
Penicillins	Ampicillin	1–32	≤8	16	≥32				
Phenicols	Chloramphenicol	2–32	≤8	16	≥32				
Quincloses	Ciprofloxacin	0.015–4	≤1	2	≥4				
Quinolones	Nalidixic acid	0.5–32	≤16		≥32				
Tetracyclines	Tetracycline	4–32	≤4	8	≥16				

Table 3. Antimicrobial agents used for susceptibility testing for Salmonella, Shigella, and Escherichia coli O157 isolates, NARMS, 2009

 * No CLSI breakpoints; resistance breakpoint used in NARMS is ≥64 µg/mL.
 * CLSI updated the ceftriaxone interpretive standards in January, 2010. Previous standards that were used for NARMS Human Isolate reports from 1996-2008 were susceptible ≤8 µg/mL, intermediate 16-32 µg/mL, and resistant ≥64 µg/mL.

[‡] Cephalothin was tested from 1996 to 2003 for *Salmonella*, *Shigella*, and *E. coli* O157.

[§] Sulfamethoxazole, which was tested during 1996–2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Additional Testing of Salmonella Strains

Cephalosporin Retesting of Isolates from 1996-1998

Review of *Salmonella* isolates tested in NARMS during 1996 to 1998 gave conflicting cephalosporin susceptibility results. In particular, some isolates previously reported in NARMS as ceftiofur-resistant exhibited a low ceftriaxone MIC and, in some cases, did not exhibit an elevated MIC to other β -lactams. Because these findings suggested that some previously reported results were inaccurate, we retested, using the 2003 NARMS Sensititre[®] plate, isolates of *Salmonella* tested in NARMS during 1996 to 1998 that exhibited an MIC $\geq 2 \mu g/mL$ to ceftiofur or ceftriaxone. The retest results have been included in the NARMS annual reports since 2003.

Serotype Confirmation/Categorization

Salmonella serotype reported by the submitting laboratory was used for reporting with few exceptions. Serotype was confirmed by CDC for isolates that underwent subsequent molecular analysis for publication. Because of challenges associated with interpretation of tartrate fermentation assays, ability to ferment tartrate was confirmed for isolates reported as *Salmonella* ser. Paratyphi B by the submitting laboratory (serotype Paratyphi B is by definition unable to ferment L(+) tartrate). To distinguish *Salmonella* serotypes Paratyphi B and Paratyphi B var L(+) tartrate+ (formerly serotype Java), CDC performed Jordan's tartrate test and/or Kauffmann's tartrate test on all *Salmonella* ser. Paratyphi B isolates from 1996 to 2009 for which the tartrate result was not reported or was reported to be negative. Isolates negative for tartrate fermentation by both assays were categorized as serotype Paratyphi B. Isolates that were positive for tartrate fermentation by either assay were categorized as serotype Paratyphi B var L(+) tartrate+. Confirmation of other biochemical reactions or somatic and flagellar antigens was not performed at CDC.

Because of increased submissions of *Salmonella* ser. I 4,[5],12:i:- noted in previous years, and recognition of the possibility that this serotype may have been underreported in previous years, isolates reported as serogroup B and tested in NARMS during 1996 to 2009 were reviewed for additional information; isolates that could be clearly identified as serogroup B, first-phase flagellar antigen "i", second phase flagellar antigen absent were categorized in this report as *Salmonella* ser. I 4,[5],12:i:-.

Testing of Campylobacter

Changes in Testing Methods in 2005

Starting in 2005, there were four changes in the methodology used for *Campylobacter*. First, a surveillance scheme for selecting a representative sample of *Campylobacter* isolates for submission by FoodNet sites was implemented. State public health laboratories within FoodNet sites receive *Campylobacter* isolates from reference and clinical laboratories within their state. In 2005, FoodNet sites changed from submitting the first isolate received each week to submitting every isolate (Georgia, Maryland, New Mexico, Oregon, and Tennessee), every other isolate (California, Colorado, Connecticut, and New York), or every fifth isolate received (Minnesota). The number of laboratories submitting isolates ranged from two to all. Second, the method of species identification was updated to parallel what is used by the CDC National *Campylobacter* Laboratory. Third, the susceptibility testing method changed from Etest[®] (AB bioMerieux , Solna, Sweden) to broth microdilution. Fourth, there were changes in the antimicrobial agents tested. Florfenicol replaced chloramphenicol as the phenicol class representative drug, and telithromycin was added to the NARMS panel of agents tested. These methods began in 2005 and continue through the current year's report.

Identification/Speciation and Antimicrobial Susceptibility Testing

From 2005 through 2009, isolates were confirmed as *Campylobacter* by determination of typical morphology and motility using dark-field microscopy and a positive oxidase test reaction. Identification of *C. jejuni* was performed using the hippurate hydrolysis test. Hippurate-positive isolates were identified as *C. jejuni*. Hippurate-negative isolates were further characterized with polymerase chain reaction (PCR) assays with specific targets for *C. jejuni* (*mapA* or *hipO* gene), *C. coli*-specific *ceuE* gene (Linton *et al.* 1997, Gonzales et al. 1997, Pruckler *et al.* 2006), or other species specific primers. From 2003 to 2004, putative *Campylobacter* isolates were identified as *C. jejuni* or *C. coli* using BAX® System PCR Assay according to the manufacturer's instructions (DuPont Qualicon, Wilmington, DE). Isolates not identified as *C. jejuni* or *C. coli* were further characterized by other PCR assays

(Linton *et al.* 1996) or were characterized by the CDC National *Campylobacter* Reference Laboratory. From 1997 to 2002, methodology similar to that used from 2005 to 2009 was used.

The methods for susceptibility testing *Campylobacter* and criteria for interpreting the results have changed during the course of NARMS surveillance. Beginning in 2005, broth microdilution using the Sensititre® system (Trek Diagnostics, Cleveland, OH) was performed according to manufacturer's instructions to determine the MICs for nine antimicrobial agents: azithromycin, ciprofloxacin, clindamycin, erythromycin, florfenicol, gentamicin, nalidixic acid, telithromycin, and tetracycline (Table 4). CLSI recommendations for quality control were followed. From 1997 to 2004, Etest® (AB bioMerieux, Solna, Sweden) was used for susceptibility testing of *Campylobacter* isolates. *Campylobacter*-specific CLSI interpretive criteria were used for erythromycin, ciprofloxacin, and tetracycline beginning with the 2004 NARMS annual report. NARMS breakpoints were used when CLSI breakpoints were not available. Beginning in 2004, NARMS breakpoints were established based on the MIC distributions of NARMS isolates and the presence of known resistance genes or mutations. In pre-2004 annual reports, NARMS breakpoints used were based on those available for other organisms. Establishment of breakpoints based on MIC distributions resulted in higher MIC definitions for azithromycin and erythromycin resistance compared withthose reported in pre-2004 annual reports. The breakpoints listed in Table 4 have been applied to MIC data collected for all years so that resistance prevalence is comparable over time.

CLSI class	Antimiorchial Acart	Antimicrobial Agent	MIC Interpretive Standard (µg/mL)						
CLSI class	Antimicrobial Agent	Concentration Range (µg/mL)	Susceptible	Intermediate	Resistant				
Aminoglycosides	Gentamicin	0.12–32 0.016–256	≤2	4	≥8				
Ketolides	Telithromycin [†]	0.015–8	≤4	8	≥16				
Lincosamides	Clindamycin	0.03–16 0.016–256	≤2	4	≥8				
Macrolides	Azithromycin	0.015–64 0.016–256	≤2	4	≥8				
Macronues	Erythromycin	0.03–64 0.016–256 [*]	≤8	16	≥32				
Phenicols	Chloramphenicol [‡]	0.016–256 [*]	≤8	16	≥32				
FIIefficois	Florfenicol [§]	0.03–64	≤4	N/A	N/A				
Quinelenee	Ciprofloxacin	0.015–64 0.002–32	≤1	2	≥4				
Quinolones	Nalidixic acid	4–64 0.016–256	≤16	32	≥64				
Tetracyclines	Tetracycline	0.06–64 0.016–256	≤4	8	≥16				

Table 4. Antimicrobial agents used for susceptibility testing of *Campylobacter* isolates, NARMS, 1997–2009

* Etest dilution range used from 1997–2004.

[†] Telithromycin added to NARMS panel in 2005.

[‡] Chloramphenicol, tested from 1997–2004, was replaced by florfenicol in 2005.

[§] Currently only a susceptible breakpoint (≤4 µg/mL) has been established. In this report isolates with a MIC ≥8 µg/mL are categorized as resistant.

Retesting

Known mechanisms of quinolone resistance in *Campylobacter* are expected to confer equivalent susceptibilities to nalidixic acid and ciprofloxacin. Similarly, known mechanisms of macrolide resistance are expected to confer equivalent susceptibilities to erythromycin and azithromycin. Confirmatory testing of isolates with conflicting results was performed by broth microdilution methods (Sensititre[®], Trek Diagnostics, Cleveland, OH). Totals reported here reflect the retest results.

Data Analysis

For all pathogens, MICs were categorized as resistant, intermediate (if applicable), or susceptible. Analysis was restricted to the first isolate received (per genus under surveillance) per patient in the calendar year. If two or more isolates were received for the same patient for *Salmonella* ser. Typhi, the first blood isolate collected would be included in analysis. If no blood isolates were submitted, the first isolate collected would be included in analysis. Where established, CLSI interpretive criteria were used; streptomycin resistance was defined as MIC \geq 64 µg/mL (<u>Table 3</u>). The 95% confidence intervals (CIs) for the percentage of resistant isolates are included in the MIC distribution tables. The 95% CIs were calculated using the Paulson-Camp-Pratt approximation method.

When describing results for several years, multidrug resistance for *Salmonella, Shigella*, and *E. coli* O157 isolates was limited to the eight CLSI classes (<u>Table 3</u>) tested in all years from 1996 through 2009 represented by 15 agents: amikacin, amoxicillin-clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline, and trimethoprim-sulfamethoxazole. When describing multidrug resistance for several years for *Campylobacter* isolates, multidrug resistance was limited to the five CLSI classes tested in all years from 1997 through 2009, represented by ciprofloxacin, chloramphenicol/florfenicol, clindamycin, erythromycin, nalidixic acid, and tetracycline.

Logistic regression was used to compare the prevalence of antimicrobial resistance among *Salmonella* and *Campylobacter* isolates tested in 2009 with the reference, which was the average prevalence of resistance in the first five years that NARMS surveillance was nationwide (2003–07). The analysis included the following:

- 1. Non-typhoidal *Salmonella*: resistance to nalidixic acid, resistance to ceftriaxone, resistance to one or more CLSI classes, resistance to three more CLSI classes
- 2. Salmonella ser. Enteritidis: resistance to nalidixic acid
- 3. *Salmonella* ser. Typhimurium: resistance to at least ACSSuT (ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline)
- 4. Salmonella ser. Newport: resistance to at least ACSSuTAuCx (ACSSuT, amoxicillin-clavulanic acid, and ceftriaxone)
- 5. Salmonella ser. Typhi: resistance to nalidixic acid
- 6. Campylobacter species: resistance to ciprofloxacin
- 7. Campylobacter jejuni: resistance to ciprofloxacin

To account for site-to-site variation in the prevalence of antimicrobial resistance, we included main effects adjustments for site in the analysis. The final regression models for *Salmonella* adjusted for the submitting site using the nine geographic regions described in the Public Health Laboratory Information System (PHLIS): East North Central, East South Central, Mid-Atlantic, Mountain, New England, Pacific, South Atlantic, West North Central, and West South Central. For *Campylobacter*, the final regression models adjusted for the submitting FoodNet site. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using unconditional maximum likelihood estimation. The adequacy of model fit was assessed in several ways. The significance of the main effect of year was assessed using the likelihood ratio test. The likelihood ratio test was also used to test for significance of interaction between site and year, although the power of the test to detect a single site-specific interaction was low. The Hosmer and Lemeshow goodness-of-fit test was also used. Finally, residual analysis was performed to examine the influence of individual observations. Having assessed that the main effect of year was significant, we reported ORs with 95% CIs (for 2009 compared with reference) that did not include 1.00 as statistically significant.

MIC Distribution Tables and Proportional Figures

An explanation on "how to read a squashtogram" has been provided to assist the reader with the different parts of each table (Figure 11). A squashtogram shows the distribution of MICs for antimicrobial agents tested. Proportional figures visually display data from squashtograms for an immediate comparative summary of resistance in specific pathogens and serotypes. These figures are a categorical visual aid for the interpretation of MIC values. For most antimicrobial agents tested, three categories (susceptible, intermediate, and resistant) are used to interpret MICs. The proportion representing each category is shown in a horizontal proportional bar chart (Figure 12).

			Percent with Intermediate result		ercent esistant		onfidenc centres		al								Ν	1IC valu	е				
		schiel Agent	9	% of ise	olates						Perce	nt of al	lisolate	swith	MIC (µg	ı/m L)	Ţ						
Nalik	ank [°] CLSI [†] Antimicrobial Class		Antimicrobial Agent		%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512	
	Aminoglycosides	Ami Cri ant	tically important timicrobial agents	0.0	0.0	[0.0-0.2]						7.4	70.1	20.8	1.6	0.1							
		Gen	J. J	0.1	2.1	[1.5–2.8]			ofperce sceptib		53.5	41.4	2.8	0.1		0.1	0.9	1.2					
		Streptomy	ycin	N/A	10.4	[9.1–11.7]												of perc termed		6.0			
	β-lactam / β-lactamase inhibitor combinations	Amoxicilli	n-clavulanic acid	4.2	3.3	[2.6–4.1]							84.8	4.9	0.4	2.5	4.2	0.6	2.7				
1	Cephems	Ceftiofur		0.0	3.2	[2.6–4.1]				0.3	0.8	27.5	66.7	1.4		0.1	3.1		ofperce	ents =			
		Ceftriaxo	ne	2.3	0.4	[0.2–0.8]					96.7				0.1	0.5	1.4	% 16	esistant				
	Penicillins	Ampicillin		0.0	10.1	[8.9–11.5]							81.2	8.3	0.3	0.1		0.1	10.0				
	Quinolones	Ciprofloxa	acin	0.0	0.1	[0.0-0.3]	92.9	4.4	0.2	1.3	0.8	0.3				0.1							
		Nalidixic a	acid	N/A	2.2	[1.7–3.0]						0.1	0.2	34.4	61.9	0.9	0.2		2.2				
	Aminoglycosides		ly important nicrobial agents	< 0.1	2.8	[2.2–3.6]										96.8	0.2	< 0.1	0.2	2.6			
	Cephems	Cerem	_	0.7	3.0	[2.3–3.7]						0.2	8.8	70.2	15.8	1.3	0.7	0.9	2.1				
	Folate pathway inhibitors	Sulfisoxa	zole	N/A	12.3	[11.0–13.8]					1	Single	line is u	nerlimit	of		19.0	52.1 Doub	15.0			12.3	
Ш		Trimethoprim-sulfamethoxazole		N/A	1.6	[1.1–2.2]				79.7	18.3	suscep	tibility/İ	line is upperlimit o tibility/lowerlimit ediate result		1.5		interr		ne is upper limit of ate result / lower limit			
	Phenicols	Chloramp	henicol	0.7	7.3	[6.2-8.5]							0.8 41.7			49.5	0.7	0.4	0.5				
	Tetracyclines	Tetracycl	ine	0.1	14.5	[13.0–16.0]									85.4	0.1	0.9	4.2	9.4				

Figure 11. How to read a squashtogram

Figure 12.	Proportional	chart, a	categorical	graph of	a squashtogram

.				% of is	plates						Percen	t of all i	solates	with M	IC (µg/n	n L)"					
Rank	CLSI [†] Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 0.2]						7.8	74.6	15.9	1.6	< 0.1						
		Gentamicin	0.2	1.3	[0.9 - 1.8]					64.2	32.8	1.3	0.1		0.2	0.7	0.6	-			
		Streptomycin	N/A	8.9	[7.8 - 10.2]											_	91.1	4.2	4.8		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	3.6	3.4	[2.7 - 4.3]							87.5	2.5	0.4	2.6	3.6	0.8	2.6			
Т	Cephems	Ceftiofur	< 0.1	3.4	[2.7 - 4.3]				0.1	0.8	21.1	73.2	1.3	< 0.1	0.2	3.2	-				
		Ceftriaxone	0.0	3.4	[2.7 - 4.3]					96.5	< 0.1			0.2	0.7	1.4	0.6	0.4	0.2		
	Penicillins	Ampicillin	< 0.1	9.9	[8.6 - 11.2]						\leq	83.7	5.9	0.3	0.2	< 0.1		9.9			
	Quinolones	Ciprofloxacin	0.1	< 0.1	[0.0 - 0.3]	92.9	4.6	0.2	0.7	1.0	0.4	0.1	0.1		< 0.		-				
		Nalidixic acid	N/A	1.8	[1.3 - 2.4]							1.3	39.6	57.0	0.9	0.4	0.1	1.6			
	Aminoglycosides	Kanamycin	< 0.1	2.5	[1.9 - 3.2]							/			97.3	0.2	< 0.1	< 0.1	2.4		
	Cephems	Cefoxitin	0.3	3.2	[2.5 - 4.1]						0.1	36.1	47.4	11.8	.0	0.3	1.4	1.9			\sim
	Folate pathway inhibitors	Sulfisoxazole	N/A	9.9	[8.7 - 11.2]									_		5.0	35.2	47.0	2.8	0.1	9.9
		Trimethoprim-sulfamethoxazole	N/A	1.7	[1.2 - 2.4]				95.8	2.2	0.2	< 0.1			1.7		_				T
	Phenicols	Chloramphenicol	1.0	5.7	[4.8 - 6.8]					1	/		0.7	49.0	43.6	1.0	< 0.1	5.6			/
	Tetracyclines	Tetracycline	0.2	11.9	[10.6 - 13.3]									87.9	0.2	0.2	2.9	8.8		1	

 Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Criticallymportant; Rank 2, Highly Important CLSt: Clinical and Laboratory Standards Institute Percent of isolates with intermediate susceptibility, NA if no MC range of intermediate susceptibility exists S Percent of isolates that were resistant The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper Pearson exact method. The 95% Clispon The 95% confidence (MV) ented to summarize uncertainly in th

 The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoin areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensitire plate. Numbers listed for the low est tested concentration. CLSI breakpoints were used when available. for susceptibility, while double vertical ars indicate breakpoints for resistance. mbers in the shaded the low est tested concentrations represent the precentages of isolates with MC s equal to or less than

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Amikacin	
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Kanamycin	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

Results

1. Non-typhoidal Salmonella

Table 5. Minimum inhibitory concentrations (MICs) and resistance of non-typhoidal Salmonella isolates to antimicrobial agents, 2009 (N=2192)

Damb.'	CLSI [†] Antimicrobial Class			% of is	olates						Percen	t of all i	solates	with M	IC (µg/n	n L)"					
капк	CLSI' Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 0.2]						7.8	74.6	15.9	1.6	< 0.1						
		Gentamicin	0.2	1.3	[0.9 - 1.8]					64.2	32.8	1.3	0.1		0.2	0.7	0.6				
		Streptomycin	N/A	8.9	[7.8 - 10.2]												91.1	4.2	4.8		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	3.6	3.4	[2.7 - 4.3]							87.5	2.5	0.4	2.6	3.6	0.8	2.6			
Т	Cephems	Ceftiofur	< 0.1	3.4	[2.7 - 4.3]				0.1	0.8	21.1	73.2	1.3	< 0.1	0.2	3.2	-				
		Ceftriaxone	0.0	3.4	[2.7 - 4.3]					96.5	< 0.1			0.2	0.7	1.4	0.6	0.4	0.2		
	Penicillins	Ampicillin	< 0.1	9.9	[8.6 - 11.2]							83.7	5.9	0.3	0.2	< 0.1		9.9			
	Quinolones	Ciprofloxacin	0.1	< 0.1	[0.0 - 0.3]	92.9	4.6	0.2	0.7	1.0	0.4	0.1	0.1		< 0.1						
		Nalidixic acid	N/A	1.8	[1.3 - 2.4]							0.3	39.6	57.0	0.9	0.4	0.1	1.6			
	Aminoglycosides	Kanamycin	< 0.1	2.5	[1.9 - 3.2]										97.3	0.2	< 0.1	< 0.1	2.4		
	Cephems	Cefoxitin	0.3	3.2	[2.5 - 4.1]						0.1	36.1	47.4	11.8	1.0	0.3	1.4	1.9			
	Folate pathway inhibitors	Sulfisoxazole	N/A	9.9	[8.7 - 11.2]									_		5.0	35.2	47.0	2.8	0.1	9.9
		Trimethoprim-sulfamethoxazole	N/A	1.7	[1.2 - 2.4]				95.8	2.2	0.2	< 0.1			1.7		_			-	
	Phenicols	Chloramphenicol	1.0	5.7	[4.8 - 6.8]								0.7	49.0	43.6	1.0	< 0.1	5.6			
	Tetracyclines	Tetracycline	0.2	11.9	[10.6 - 13.3]									87.9	0.2	0.2	2.9	8.8			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important † CLSI: Clinical and Laboratory Standards Institute

‡ Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists § Percent of isolates that were resistant

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).

resistance (K%). * The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MICs equal to or less than the how est tested concentrations. CLSI breakpoints were used when available.

Figure 13. Antimicrobial resistance pattern for non-typhoidal Salmonella, 2009

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Amikacin	
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Kanamycin	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

2000	-2009											
Year			2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total I	solates		1372	1410	1998	1855	1782	2034	2173	2144	2380	2192
Rank	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	1	0	0	0	0
		Gentamicin	2.7%	1.9%	1.4%	1.4%	1.3%	2.2%	2.0%	2.1%	1.5%	1.3%
		(MIC ≥ 16)	37	27	27	26	24	44	44	45	35	28
		Streptomycin	16.3%	17.1%	13.2%	15.0%	12.0%	11.1%	10.7%	10.4%	10.0%	8.9%
		(MIC ≥ 64)	223	241	264	279	213	225	233	222	239	196
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	3.9%	4.7%	5.3%	4.6%	3.7%	3.2%	3.7%	3.3%	3.1%	3.4%
	combinations	(MIC ≥ 32/16)	54	66	106	86	66	65	81	70	73	75
	Cephems	Ceftiofur	3.2%	4.1%	4.4%	4.5%	3.4%	2.9%	3.6%	3.3%	3.0%	3.4%
		(MIC ≥ 8)	44	58	87	83	60	60	79	70	72	75
		Ceftriaxone	3.2%	3.7%	4.4%	4.4%	3.3%	2.9%	3.7%	3.3%	3.0%	3.4%
		(MIC ≥ 64)	44	52	87	81	59	59	80	70	72	75
	Penicillins	Ampicillin	15.9%	17.5%	13.0%	13.6%	12.1%	11.4%	11.0%	10.1%	9.7%	9.9%
		(MIC ≥ 32)	218	247	259	253	216	232	238	217	231	216
	Quinolones	Ciprofloxacin	0.4%	0.2%	0.1%	0.2%	0.2%	0.0%	0.1%	0.1%	0.1%	0.0%
		(MIC ≥ 4)	5	3	1	3	4	1	2	2	2	1
		Nalidixic acid	2.3%	2.3%	1.6%	1.9%	2.2%	1.9%	2.4%	2.3%	2.0%	1.8%
		(MIC ≥ 32)	32	32	32	36	39	38	52	49	47	39
	Aminoglycosides	Kanamycin	5.6%	4.8%	3.8%	3.5%	2.8%	3.4%	2.9%	2.8%	2.1%	2.5%
		(MIC ≥ 64)	77	68	76	64	50	70	63	61	50	54
	Cephems	Cefoxitin	3.2%	3.4%	4.3%	4.3%	3.4%	3.0%	3.5%	2.9%	3.0%	3.2%
		(MIC ≥ 32)	44	48	86	79	61	62	77	63	72	71
		Cephalothin	4.0%	4.0%	5.1%	5.3%	Not	Not	Not	Not	Not	Not
		(MIC ≥ 32)	55	57	101	99	Tested	Tested	Tested	Tested	Tested	Tested
Ш	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	17.1%	17.8%	12.9%	15.1%	13.3%	12.6%	12.1%	12.3%	10.1%	9.9%
		(MIC ≥ 512)	234	251	258	280	237	256	263	264	241	217
		Trimethoprim-sulfamethoxazole	2.0%	2.0%	1.4%	1.9%	1.7%	1.7%	1.7%	1.5%	1.6%	1.7%
		(MIC ≥ 4/76)	28	28	28	36	31	34	36	33	37	38
	Phenicols	Chloramphenicol	10.1%	11.6%	8.6%	10.1%	7.6%	7.8%	6.4%	7.3%	6.2%	5.7%
		(MIC ≥ 32)	138	164	172	187	136	159	139	156	147	125
	Tetracyclines	Tetracycline	18.7%	19.9%	14.9%	16.3%	13.6%	13.9%	13.5%	14.5%	11.6%	11.9%
		(MIC ≥ 16)	256	280	298	303	242	282	293	310	275	261

Table 6. Percentage and number of non-typhoidal Salmonella isolates resistant to antimicrobial agents, 2000–2009

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important † CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 7. Resistance patterns of non-typhoidal Salmonella isolates, 2000–2009

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total Isolates	1372	1410	1998	1855	1782	2034	2173	2144	2380	2192
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	74.5%	72.5%	79.1%	78.0%	80.0%	80.9%	80.5%	81.1%	84.0%	83.2%
	1022	1022	1580	1447	1425	1646	1749	1738	1999	1823
Resistance ≥ 1 CLSI class*	25.5%	27.5%	20.9%	22.0%	20.0%	19.1%	19.5%	18.9%	16.0%	16.8%
	350	388	418	408	357	388	424	406	381	369
Resistance ≥ 2 CLSI classes*	20.0%	22.1%	15.8%	17.5%	15.0%	14.8%	14.7%	14.2%	12.4%	13.0%
	275	311	315	325	267	302	319	305	295	284
Resistance ≥ 3 CLSI classes*	15.6%	16.7%	12.3%	14.2%	11.4%	12.0%	11.8%	11.1%	9.4%	9.5%
	214	236	245	263	204	244	256	239	224	209
Resistance ≥ 4 CLSI classes*	12.7%	13.5%	9.8%	11.4%	9.3%	9.1%	8.1%	8.2%	7.4%	7.3%
	174	191	195	211	165	185	177	176	177	159
Resistance \geq 5 CLSI classes*	9.5%	10.3%	8.2%	9.8%	8.0%	7.2%	6.3%	6.9%	6.6%	6.3%
	131	145	164	182	142	146	137	149	157	137
At least ACSSuT [†]	8.9%	10.1%	7.8%	9.3%	7.2%	6.9%	5.6%	6.3%	5.8%	5.1%
	122	142	156	173	129	141	121	136	138	112
At least ACT/S [‡]	0.9%	0.5%	1.1%	1.2%	0.6%	0.9%	0.7%	0.7%	0.5%	0.7%
	13	7	21	23	10	18	15	16	11	15
At least ACSSuTAuCx§	2.6%	2.6%	3.4%	3.2%	2.4%	2.0%	2.0%	2.1%	1.8%	1.4%
	35	36	67	60	42	41	43	46	44	30
At least ceftriaxone and nalidixic acid	0.1%	0.1%	0.2%	0.1%	0.1%	0.1%	0.1%	0.2%	0.0%	0.2%
resistant	1	2	4	2	2	2	3	5	0	4

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

Table 8. Twenty most common non-typhoidal Salmonellaserotypes in NARMS, 2009

	NARMS		
		lso	olates
Rank	Serotype	n	(%)
1	Enteritidis	410	(18.7%)
2	Typhimurium	371	(16.9%)
3	Newport	236	(10.8%)
4	Javiana	105	(4.8%)
5	Heidelberg	86	(3.9%)
6	l 4,[5],12:i:-	72	(3.3%)
7	Oranienburg	64	(2.9%)
8	Saintpaul	57	(2.6%)
9	Montevideo	56	(2.6%)
10	Braenderup	46	(2.1%)
11	Infantis	44	(2.0%)
12	Muenchen	42	(1.9%)
13	Mississippi	28	(1.3%)
14	Thompson	27	(1.2%)
15	Agona	21	(1.0%)
16	Bareilly	20	(0.9%)
17	Litchfield	20	(0.9%)
18	Paratyphi B var. L(+) tartrate+	20	(0.9%)
19	Hadar	19	(0.9%)
20	Poona	16	(0.7%)
	Subtotal	1760	(80.3%)
	All other serotypes	373	(17.0%)
	Unknown serotype	19	(0.9%)
	Partiallyserotyped	20	(0.9%)
	Rough/Nonmotile isolates	20	(0.9%)
	Subtotal	432	(19.7%)
	Grand Total	2192	(100.0%)

A. Salmonella ser. Enteritidis

Table 9. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Enteritidis isolates to antimicrobial agents, 2009 (N=410)

Damb.	CLSI [†] Antimicrobial Class			% of iso	olates						Percen	t of all i	solates	with M	IC (µg/n	n L)"					
капк	CLSI [®] Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 0.9]						20.0	70.5	7.6	1.7	0.2						
		Gentamicin	0.0	0.0	[0.0 - 0.9]					82.7	15.9	1.0	0.5					_			
		Streptomycin	N/A	1.2	[0.4 - 2.8]											-	98.8	0.2	1.0		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.2	0.0	[0.0 - 0.9]							93.7	2.4		3.7	0.2					
Т	Cephems	Ceftiofur	0.0	0.0	[0.0 - 0.9]					0.2	7.1	91.7	1.0				-				
		Ceftriaxone	0.0	0.0	[0.0 - 0.9]					100.0					-		_				
	Penicillins	Ampicillin	0.0	3.9	[2.2 - 6.3]							79.5	16.1	0.5				3.9			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 0.9]	82.9	13.4		2.2	1.5							_				
		Nalidixic acid	N/A	3.7	[2.1 - 6.0]								17.6	78.3	0.5			3.7			
	Aminoglycosides	Kanamycin	0.0	0.2	[0.00 - 1.3]										99.8	_			0.2		
	Cephems	Cefoxitin	0.0	0.0	[0.0 - 0.9]							27.3	68.8	2.7	1.2						
	Folate pathway inhibitors	Sulfisoxazole	N/A	1.7	[0.7 - 3.5]											2.2	25.1	68.0	2.9		1.7
		Trimethoprim-sulfamethoxazole	N/A	0.7	[0.1 - 2.1]				98.8	0.5					0.7		_				
	Phenicols	Chloramphenicol	0.2	0.0	[0.0 - 0.9]								0.7	60.5	38.5	0.2					
	Tetracyclines	Tetracycline	0.2	1.2	[0.4 - 2.8]									98.5	0.2		-	1.2			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

 CLSI: Clinical and Laboratory Standards Institute
 Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists § Percent of isolates that were resistant

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).

resistance (<%). ** The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensititre plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MCs greater than the highest concentrations on the Sensititre plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MCs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 14. Antimicrobial resistance pattern for Salmonella ser. Entertitidis, 2009

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Amikacin	
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Kanamycin	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

	-2009		-									
Year			2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total I	solates		319	277	337	257	271	384	413	385	439	410
Rank	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.3%	0.0%	0.3%	0.4%	0.4%	0.8%	0.2%	0.0%	0.2%	0.0%
		(MIC ≥ 16)	1	0	1	1	1	3	1	0	1	0
		Streptomycin	0.0%	1.4%	1.5%	1.2%	2.2%	1.0%	1.2%	0.5%	0.5%	1.2%
		(MIC ≥ 64)	0	4	5	3	6	4	5	2	2	5
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.0%	1.4%	0.6%	0.0%	0.0%	0.8%	0.5%	0.5%	0.0%	0.0%
	combinations	(MIC ≥ 32/16)	0	4	2	0	0	3	2	2	0	0
	Cephems	Ceftiofur	0.0%	2.2%	0.0%	0.0%	0.0%	0.5%	0.5%	0.3%	0.0%	0.0%
1		(MIC ≥ 8)	0	6	0	0	0	2	2	1	0	0
		Ceftriaxone	0.0%	1.4%	0.0%	0.0%	0.0%	0.3%	0.5%	0.3%	0.0%	0.0%
		(MIC ≥ 64)	0	4	0	0	0	1	2	1	0	0
	Penicillins	Ampicillin	7.5%	8.7%	6.8%	2.3%	4.1%	2.9%	4.4%	2.1%	3.6%	3.9%
		(MIC ≥ 32)	24	24	23	6	11	11	18	8	16	16
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0
		Nalidixic acid	2.2%	4.3%	3.9%	4.7%	6.6%	4.7%	7.0%	5.7%	6.6%	3.7%
		(MIC ≥ 32)	7	12	13	12	18	18	29	22	29	15
	Aminoglycosides	Kanamycin	0.3%	0.7%	0.3%	0.0%	0.7%	0.3%	0.2%	0.5%	0.0%	0.2%
		(MIC ≥ 64)	1	2	1	0	2	1	1	2	0	1
	Cephems	Cefoxitin	0.0%	0.4%	0.0%	0.0%	0.0%	1.0%	0.5%	0.3%	0.0%	0.0%
		(MIC ≥ 32)	0	1	0	0	0	4	2	1	0	0
		Cephalothin	0.9%	1.1%	0.6%	1.2%	Not	Not	Not	Not	Not	Not
		(MIC ≥ 32)	3	3	2	3	Tested	Tested	Tested	Tested	Tested	Tested
Ш	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	0.9%	2.2%	1.5%	1.2%	1.8%	1.6%	1.5%	1.6%	1.1%	1.7%
		(MIC ≥ 512)	3	6	5	3	5	6	6	6	5	7
		Trimethoprim-sulfamethoxazole	0.0%	0.7%	0.6%	0.8%	0.0%	0.5%	0.5%	1.0%	0.9%	0.7%
		(MIC ≥ 4/76)	0	2	2	2	0	2	2	4	4	3
	Phenicols	Chloramphenicol	0.0%	0.0%	0.3%	0.4%	0.4%	0.5%	0.0%	0.5%	0.5%	0.0%
		(MIC ≥ 32)	0	0	1	1	1	2	0	2	2	0
	Tetracyclines	Tetracycline	1.9%	1.8%	4.2%	1.6%	3.3%	2.3%	1.7%	3.9%	1.6%	1.2%
		(MIC ≥ 16)	6	5	14	4	9	9	7	15	7	5

Table 10. Percentage and number of *Salmonella ser*. Enteritidis isolates resistant to antimicrobial agents, 2000–2009

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

† CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 11	Resistance	natterns of	Salmonella ser	Enteritidis isolate	s 2000-2009
	Resistance	patterns or	Gannonena ser.		3, 2000 2003

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total Isolates	319	277	337	257	271	384	413	385	439	410
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	89.0%	86.6%	87.5%	91.8%	87.1%	91.4%	88.6%	90.4%	87.9%	92.0%
	284	240	295	236	236	351	366	348	386	377
Resistance ≥ 1 CLSI class*	11.0%	13.4%	12.5%	8.2%	12.9%	8.6%	11.4%	9.6%	12.1%	8.0%
	35	37	42	21	35	33	47	37	53	33
Resistance ≥ 2 CLSI classes*	1.9%	4.7%	3.9%	2.3%	3.0%	3.6%	2.9%	3.4%	1.6%	2.4%
	6	13	13	6	8	14	12	13	7	10
Resistance ≥ 3 CLSI classes*	0.3%	2.9%	2.1%	0.4%	1.1%	1.6%	1.7%	1.0%	0.2%	1.0%
	1	8	7	1	3	6	7	4	1	4
Resistance ≥ 4 CLSI classes*	0.0%	1.1%	0.6%	0.4%	0.7%	1.0%	0.7%	0.3%	0.0%	0.5%
	0	3	2	1	2	4	3	1	0	2
Resistance ≥ 5 CLSI classes*	0.0%	0.4%	0.0%	0.4%	0.7%	0.5%	0.2%	0.3%	0.0%	0.2%
	0	1	0	1	2	2	1	1	0	1
At least ACSSuT [†]	0.0%	0.0%	0.0%	0.4%	0.4%	0.5%	0.0%	0.3%	0.0%	0.0%
	0	0	0	1	1	2	0	1	0	0
At least ACT/S [‡]	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	1	0	0	0	0	0	0
At least ACSSuTAuCx§	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	0.3%	0.0%	0.0%
	0	0	0	0	0	1	0	1	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	0.3%	0.0%	0.0%
resistant	0	0	0	0	0	1	0	1	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

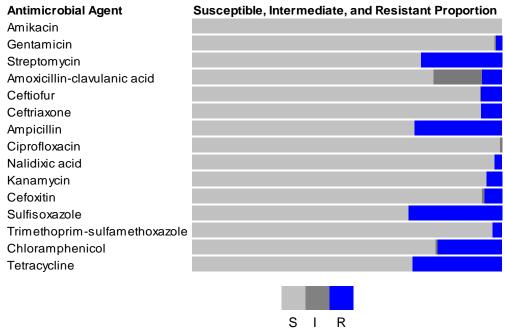
§ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

B. Salmonella ser. Typhimurium

Table 12. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhimurium isolates to antimicrobial agents, 2009 (N=371)

				% of is	olates						Percen	t of all i	solates	with M	IC (µg/n	nL)					
Rank	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R [§]	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 1.0]						4.9	73.6	20.5	1.1							
		Gentamicin	0.3	1.9	[0.8 - 3.8]					51.2	44.5	2.2			0.3	1.1	0.8				
		Streptomycin	N/A	25.9	[21.5 - 30.6]											•	74.1	14.6	11.3		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	15.6	6.2	[4.0 - 9.2]							69.5	2.2	0.3	6.2	15.6	0.8	5.4			
Т	Cephems	Ceftiofur	0.3	6.5	[4.2 - 9.5]					1.6	12.9	77.1	1.6	0.3	1.1	5.4	-				
		Ceftriaxone	0.0	6.5	[4.2 - 9.5]					93.5				1.1	1.3	2.7	0.8	0.3	0.3		
	Penicillins	Ampicillin	0.0	28.0	[23.5 - 32.9]							67.9	3.5	0.5				28.0			
	Quinolones	Ciprofloxacin	0.5	0.0	[0.0 - 1.0]	94.3	3.0	0.3		1.1	0.5	0.3	0.5				•				
		Nalidixic acid	N/A	2.2	[0.9 - 4.2]								46.6	49.6	1.3	0.3	0.5	1.6			
	Aminoglycosides	Kanamycin	0.0	4.9	[2.9 - 7.6]										94.9	0.3			4.9		
	Cephems	Cefoxitin	0.8	5.4	[3.3 - 8.2]						0.5	33.2	53.4	5.9	0.8	0.8	2.7	2.7			
	Folate pathway inhibitors	Sulfisoxazole	N/A	29.9	[25.3 - 34.9]									_		2.2	48.2	19.4	0.3		29.9
		Trimethoprim-sulfamethoxazole	N/A	3.0	[1.5 - 5.2]				91.1	5.7	0.3				3.0	_	_			-	
	Phenicols	Chloramphenicol	0.8	20.5	[16.5 - 25.0]								0.3	41.0	37.5	0.8		20.5			
1	Tetracyclines	Tetracycline	0.0	28.8	[24.3 - 33.7]									71.2		0.8	13.2	14.8			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important


† CLSI: Clinical and Laboratory Standards Institute

‡ Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists § Percent of isolates that were resistant

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).

* The unshaded areas indicate the dilution range of the Sensitive plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded the low est tested concentration. CLSI breakpoints were used when available.

Figure 15. Antimicrobial resistance pattern for Salmonella ser. Typhimurium, 2009

Table 13. Percentage and number of Salmonella ser. Typhimurium isolates resistant to antimicrobial agents, 2000–2009

Year			2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total I	solates		304	325	394	408	383	438	409	404	397	371
Rank [*]	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	2.6%	1.5%	2.3%	2.0%	2.1%	1.8%	2.7%	2.5%	1.5%	1.9%
		(MIC ≥ 16)	8	5	9	8	8	8	11	10	6	7
		Streptomycin	39.5%	40.0%	32.0%	35.5%	31.9%	28.1%	29.3%	32.4%	28.5%	25.9%
		(MIC ≥ 64)	120	130	126	145	122	123	120	131	113	96
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	6.3%	6.2%	7.6%	5.6%	4.7%	3.2%	4.4%	6.7%	3.3%	6.2%
	combinations	(MIC ≥ 32/16)	19	20	30	23	18	14	18	27	13	23
	Cephems	Ceftiofur	3.6%	3.1%	4.3%	4.9%	4.4%	2.5%	4.2%	6.4%	3.3%	6.5%
		(MIC ≥ 8)	11	10	17	20	17	11	17	26	13	24
		Ceftriaxone	3.3%	3.1%	4.3%	4.9%	4.4%	2.5%	4.2%	6.4%	3.3%	6.5%
		(MIC ≥ 64)	10	10	17	20	17	11	17	26	13	24
	Penicillins	Ampicillin	42.1%	42.5%	33.8%	36.3%	32.1%	29.0%	28.1%	31.7%	26.2%	28.0%
		(MIC ≥ 32)	128	138	133	148	123	127	115	128	104	104
	Quinolones	Ciprofloxacin	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	1	0	0	0	0	1	0	0	0
		Nalidixic acid	1.3%	0.6%	1.3%	1.2%	0.5%	0.9%	0.7%	1.5%	1.3%	2.2%
		(MIC ≥ 32)	4	2	5	5	2	4	3	6	5	8
	Aminoglycosides	Kanamycin	13.2%	8.3%	7.6%	7.1%	5.7%	5.7%	5.1%	5.9%	2.3%	4.9%
		(MIC ≥ 64)	40	27	30	29	22	25	21	24	9	18
	Cephems	Cefoxitin	3.6%	3.1%	4.3%	4.4%	4.7%	2.5%	3.9%	5.7%	3.3%	5.4%
		(MIC ≥ 32)	11	10	17	18	18	11	16	23	13	20
		Cephalothin	4.3%	3.1%	5.6%	6.1%	Not	Not	Not	Not	Not	Not
		(MIC ≥ 32)	13	10	22	25	Tested	Tested	Tested	Tested	Tested	Tested
Ш	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	45.4%	43.1%	32.2%	38.7%	36.0%	32.0%	33.3%	37.4%	30.2%	29.9%
		(MIC ≥ 512)	138	140	127	158	138	140	136	151	120	111
		Trimethoprim-sulfamethoxazole	3.6%	2.5%	2.3%	3.4%	2.6%	2.7%	2.2%	2.5%	1.8%	3.0%
		(MIC ≥ 4/76)	11	8	9	14	10	12	9	10	7	11
	Phenicols	Chloramphenicol	30.9%	31.7%	23.4%	28.2%	24.3%	24.4%	22.0%	25.5%	23.2%	20.5%
		(MIC ≥ 32)	94	103	92	115	93	107	90	103	92	76
	Tetracyclines	Tetracycline	43.4%	43.4%	32.0%	38.2%	30.3%	30.4%	31.5%	36.9%	27.5%	28.8%
		(MIC ≥ 16)	132	141	126	156	116	133	129	149	109	107

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

† CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 14.	Resistance	patterns of	Salmonella ser.	Tvp	himurium	isolates.	2000-2009
	1100iotarioo	pattorno or	Gaintonia Goint			10010100,	

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total Isolates	304	325	394	408	383	438	409	404	397	371
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	49.3%	49.2%	59.9%	54.7%	60.6%	65.1%	62.6%	57.4%	68.0%	63.6%
	150	160	236	223	232	285	256	232	270	236
Resistance ≥ 1 CLSI class*	50.7%	50.8%	40.1%	45.3%	39.4%	34.9%	37.4%	42.6%	32.0%	36.4%
	154	165	158	185	151	153	153	172	127	135
Resistance ≥ 2 CLSI classes*	46.4%	47.4%	36.3%	41.4%	37.1%	33.3%	34.0%	39.4%	31.2%	33.2%
	141	154	143	169	142	146	139	159	124	123
Resistance ≥ 3 CLSI classes*	43.4%	41.5%	32.5%	37.3%	31.6%	30.1%	30.3%	34.4%	27.7%	28.0%
	132	135	128	152	121	132	124	139	110	104
Resistance ≥ 4 CLSI classes*	39.8%	37.8%	28.4%	32.4%	27.7%	27.4%	26.9%	30.0%	24.7%	24.0%
	121	123	112	132	106	120	110	121	98	89
Resistance ≥ 5 CLSI classes*	29.6%	29.5%	23.1%	27.7%	24.3%	22.8%	20.8%	25.0%	23.7%	22.1%
	90	96	91	113	93	100	85	101	94	82
At least ACSSuT [†]	28.0%	29.5%	21.6%	26.5%	23.5%	22.4%	19.6%	22.8%	22.9%	19.4%
	85	96	85	108	90	98	80	92	91	72
At least ACT/S [‡]	1.6%	0.9%	2.0%	3.2%	1.6%	2.1%	0.7%	2.0%	0.5%	2.2%
	5	3	8	13	6	9	3	8	2	8
At least ACSSuTAuCx§	1.6%	1.2%	1.8%	2.2%	2.6%	1.8%	2.9%	3.7%	2.0%	1.6%
	5	4	7	9	10	8	12	15	8	6
At least ceftriaxone and nalidixic acid	0.3%	0.3%	0.5%	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.5%
resistant	1	1	2	0	0	0	0	1	0	2

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

C. Salmonella ser. Newport

Table 15. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Newport isolates to antimicrobial agents, 2009 (N=236)

Dave b.	CLSI [†] Antimicrobial Class	Antimicrobial Agent		% of is	olates						Percen	t of all i	solates	with M	IC (µg/n	nL)¨					
капк	CLSI [®] Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 1.6]						3.0	83.5	12.3	0.8	0.4						
		Gentamicin	0.0	0.4	[0.01 - 2.3]					68.6	30.1	0.8				0.4		-			
		Streptomycin	N/A	7.6	[4.6 - 11.8]											-	92.4		7.6		
	β-lactam /β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.0	6.8	[3.9 - 10.8]							89.8	2.5		0.8		2.5	4.2			
I	Cephems	Ceftiofur	0.0	6.4	[3.6 - 10.3]					0.4	16.1	76.7	0.4			6.4	•				
		Ceftriaxone	0.0	6.4	[3.6 - 10.3]					93.6				.	1.3	1.3	1.7	1.7	0.4		
	Penicillins	Ampicillin	0.0	7.6	[4.6 - 11.8]							88.1	4.2					7.6			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 1.6]	98.7	0.8	0.4													
		Nalidixic acid	N/A	0.0	[0.0 - 1.6]								34.3	65.3	0.4						
	Aminoglycosides	Kanamycin	0.0	1.3	[0.3 - 3.7]										98.7				1.3		
	Cephems	Cefoxitin	0.4	5.9	[3.3 - 9.8]							40.7	48.3	3.0	1.7	0.4	0.8	5.1			
	Folate pathway inhibitors	Sulfisoxazole	N/A	8.1	[4.9 - 12.3]											0.8	17.8	71.2	2.1		8.1
"		Trimethoprim-sulfamethoxazole	N/A	0.4	[0.01 - 2.3]				97.0	2.5					0.4						
	Phenicols	Chloramphenicol	0.4	6.8	[3.9 - 10.8]								0.8	71.2	20.8	0.4		6.8			
	Tetracyclines	Tetracycline	0.4	8.1	[4.9 - 12.3]									91.5	0.4		0.4	7.6			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

† CLSI: Clinical and Laboratory Standards Institute

Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists § Percent of isolates that were resistant

The 5% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).

resistance (x%). * The unshaded areas indicate the dilution range of the Sensitiire plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensititre plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MCs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 16. Antimicrobial resistance pattern for Salmonella ser. Newport, 2009

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Amikacin	
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Kanamycin	
Cefoxitin	
Sulfisoxazole	
Trime tho prim-sulfame tho xazole	
Chloramphenicol	
Tetracycline	

SIR

Table 16. Percentage and number of Salmonella ser. Newport isolates resistant to antimicrobial agents, 2000-2009

Year			2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total I	solates		121	124	241	223	191	207	217	221	253	236
Rank	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	2.5%	3.2%	3.3%	3.1%	0.5%	1.0%	0.9%	0.9%	0.4%	0.4%
		(MIC ≥ 16)	3	4	8	7	1	2	2	2	1	1
		Streptomycin	24.0%	31.5%	25.3%	24.2%	15.7%	14.0%	13.8%	10.4%	14.2%	7.6%
		(MIC ≥ 64)	29	39	61	54	30	29	30	23	36	18
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	22.3%	26.6%	22.8%	21.5%	15.2%	12.6%	12.4%	8.1%	13.0%	6.8%
	combinations	(MIC ≥ 32/16)	27	33	55	48	29	26	27	18	33	16
	Cephems	Ceftiofur	22.3%	27.4%	22.8%	22.0%	15.2%	12.6%	12.4%	8.1%	13.0%	6.4%
		(MIC ≥ 8)	27	34	55	49	29	26	27	18	33	15
		Ceftriaxone	22.3%	25.8%	22.8%	21.5%	14.7%	12.6%	12.9%	8.1%	13.0%	6.4%
		(MIC ≥ 64)	27	32	55	48	28	26	28	18	33	15
	Penicillins Am	Ampicillin	23.1%	29.8%	24.9%	22.9%	15.7%	14.0%	15.2%	10.0%	15.0%	7.6%
		(MIC ≥ 32)	28	37	60	51	30	29	33	22	38	18
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0
		Nalidixic acid	0.8%	0.0%	0.8%	0.4%	0.5%	0.0%	0.5%	0.0%	0.4%	0.0%
		(MIC ≥ 32)	1	0	2	1	1	0	1	0	1	0
	Aminoglycosides	Kanamycin	5.0%	7.3%	10.0%	4.5%	2.6%	1.9%	2.3%	0.9%	3.6%	1.3%
		(MIC ≥ 64)	6	9	24	10	5	4	5	2	9	3
	Cephems	Cefoxitin	22.3%	25.8%	22.4%	21.5%	15.2%	12.6%	12.9%	8.1%	13.0%	5.9%
		(MIC ≥ 32)	27	32	54	48	29	26	28	18	33	14
		Cephalothin	22.3%	26.6%	22.8%	22.4%	Not	Not	Not	Not	Not	Not
		(MIC ≥ 32)	27	33	55	50	Tested	Tested	Tested	Tested	Tested	Tested
Ш	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	23.1%	32.3%	25.7%	24.7%	16.8%	15.5%	15.2%	10.4%	13.8%	8.1%
		(MIC ≥ 512)	28	40	62	55	32	32	33	23	35	19
		Trimethoprim-sulfamethoxazole	4.1%	1.6%	4.1%	0.9%	2.1%	1.9%	3.2%	1.8%	3.2%	0.4%
		(MIC ≥ 4/76)	5	2	10	2	4	4	7	4	8	1
	Phenicols	Chloramphenicol	23.1%	28.2%	25.3%	22.4%	15.2%	13.5%	12.4%	9.5%	12.6%	6.8%
		(MIC ≥ 32)	28	35	61	50	29	28	27	21	32	16
	Tetracyclines	Tetracycline	23.1%	30.6%	25.7%	24.2%	16.8%	14.5%	14.3%	10.0%	14.6%	8.1%
		(MIC ≥ 16)	28	38	62	54	32	30	31	22	37	19

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important
 † CLSI: Clinical and Laboratory Standards Institute
 ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 17. Resista	ance nattorns of	Salmonolla sor	lownort isolatos	2000-2000
Table IT. Resiste	ance patterns or	Sallionella Sel. I	vewport isolates,	2000-2009

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total Isolates	121	124	241	223	191	207	217	221	253	236
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	75.2%	65.3%	72.2%	73.5%	82.2%	84.1%	82.9%	89.1%	85.0%	89.8%
	91	81	174	164	157	174	180	197	215	212
Resistance ≥ 1 CLSI class*	24.8%	34.7%	27.8%	26.5%	17.8%	15.9%	17.1%	10.9%	15.0%	10.2%
	30	43	67	59	34	33	37	24	38	24
Resistance ≥ 2 CLSI classes*	23.1%	32.3%	25.3%	25.1%	17.3%	15.0%	16.6%	10.9%	13.8%	8.5%
	28	40	61	56	33	31	36	24	35	20
Resistance ≥ 3 CLSI classes*	23.1%	31.5%	25.3%	23.3%	16.2%	14.5%	15.2%	10.9%	13.8%	7.6%
	28	39	61	52	31	30	33	24	35	18
Resistance ≥ 4 CLSI classes*	23.1%	31.5%	25.3%	22.9%	15.7%	14.0%	13.4%	9.5%	13.8%	6.8%
	28	39	61	51	30	29	29	21	35	16
Resistance ≥ 5 CLSI classes*	23.1%	26.6%	23.7%	22.4%	14.7%	12.6%	12.9%	8.6%	13.0%	6.4%
	28	33	57	50	28	26	28	19	33	15
At least ACSSuT [†]	23.1%	25.8%	23.7%	22.0%	14.7%	12.6%	12.0%	8.6%	11.9%	6.4%
	28	32	57	49	28	26	26	19	30	15
At least ACT/S [‡]	4.1%	0.8%	3.7%	0.9%	1.0%	1.9%	2.3%	0.5%	2.8%	0.4%
	5	1	9	2	2	4	5	1	7	1
At least ACSSuTAuCx§	22.3%	25.0%	22.8%	21.1%	14.7%	12.6%	10.6%	8.1%	11.9%	6.4%
	27	31	55	47	28	26	23	18	30	15
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.4%	0.0%	0.5%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	1	0	1	0	0	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

D. Salmonella ser. Heidelberg

Table 18. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Heidelberg isolates to antimicrobial agents, 2009 (N=86)

		orobiai agonto,		% of is							Percen	t of all i	solates	with M	IC (µg/r	nL) ["]					
Rank	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 4.2]						11.6	79.1	9.3								
		Gentamicin	2.3	2.3	[0.3 - 8.1]					74.4	20.9				2.3	1.2	1.2	-			
		Streptomycin	N/A	23.3	[14.8 - 33.6]											-	76.7	9.3	14.0		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.3	20.9	[12.9 - 31.0]							72.1			4.7	2.3	4.7	16.3			
Т	Cephems	Ceftiofur	0.0	20.9	[12.9 - 31.0]					2.3	24.4	51.2	1.2			20.9					
		Ceftriaxone	0.0	20.9	[12.9 - 31.0]					79.1					5.8	12.8	2.3				
	Penicillins	Ampicillin	0.0	27.9	[18.8 - 38.6]							70.9	1.2	_				27.9			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 4.2]	100.0															
		Nalidixic acid	N/A	0.0	[0.0 - 4.2]							2.3	22.1	75.6							
	Aminoglycosides	Kanamycin	0.0	20.9	[12.9 - 31.0]										79.1				20.9		
	Cephems	Cefoxitin	1.2	19.8	[12.0 - 29.8]							62.8	12.8	3.5		1.2	14.0	5.8			
	Folate pathway inhibitors	Sulfisoxazole	N/A	7.0	[2.6 - 14.6]											16.3	52.3	24.4			7.0
		Trimethoprim-sulfamethoxazole	N/A	3.5	[0.7 - 9.9]				96.5						3.5					-	
	Phenicols	Chloramphenicol	0.0	4.7	[1.3 - 11.5]								1.2	27.9	66.3			4.7			
	Tetracyclines	Tetracycline	0.0	27.9	[18.8 - 38.6]									72.1				27.9			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

† CLSI: Clinical and Laboratory Standards Institute

‡ Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists § Percent of isolates that were resistant

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).

** The unshaded areas indicate the dilution range of the Sensitive plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded the low est tested concentration. CLSI breakpoints were used when available.

Figure 17. Antimicrobial resistance pattern for Salmonella ser. Heidelberg, 2009

Antimicrobial Agent	Susceptible, Intermediate, and Resistant	Proportion
Amikacin		
Gentamicin		
Streptomycin		
Amoxicillin-clavulanic acid		
Ceftiofur		
Ceftriaxone		
Ampicillin		
Ciprofloxacin		
Nalidixic acid		
Kanamycin		
Cefoxitin		
Sulfisoxazole		
Trimethoprim-sulfamethoxazole		
Chloramphenicol		
Tetracycline		

SΙ R

Table 19. Percentage and number of Salmonella ser. Heidelberg isolates resistant to antimicrobial agents, 2000-2009

Year	,		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total I	solates		79	102	105	96	92	125	102	98	75	86
Rank	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	8.9%	7.8%	3.8%	5.2%	4.3%	6.4%	4.9%	16.3%	14.7%	2.3%
		(MIC ≥ 16)	7	8	4	5	4	8	5	16	11	2
		Streptomycin	22.8%	25.5%	17.1%	12.5%	15.2%	13.6%	11.8%	12.2%	30.7%	23.3%
		(MIC ≥ 64)	18	26	18	12	14	17	12	12	23	20
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	3.8%	2.9%	9.5%	5.2%	9.8%	8.8%	9.8%	7.1%	8.0%	20.9%
	combinations	(MIC ≥ 32/16)	3	3	10	5	9	11	10	7	6	18
	Cephems	Ceftiofur	3.8%	2.9%	7.6%	5.2%	8.7%	8.8%	9.8%	7.1%	8.0%	20.9%
		(MIC ≥ 8)	3	3	8	5	8	11	10	7	6	18
		Ceftriaxone	3.8%	2.9%	7.6%	5.2%	8.7%	8.8%	9.8%	7.1%	8.0%	20.9%
		(MIC ≥ 64)	3	3	8	5	8	11	10	7	6	18
	Penicillins	Ampicillin	10.1%	9.8%	12.4%	10.4%	25.0%	20.0%	18.6%	18.4%	28.0%	27.9%
		(MIC ≥ 32)	8	10	13	10	23	25	19	18	21	24
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0
		Nalidixic acid	1.3%	0.0%	0.0%	1.0%	0.0%	0.8%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 32)	1	0	0	1	0	1	0	0	0	0
	Aminoglycosides	Kanamycin	15.2%	19.6%	10.5%	8.3%	8.7%	12.8%	8.8%	11.2%	26.7%	20.9%
		(MIC ≥ 64)	12	20	11	8	8	16	9	11	20	18
	Cephems	Cefoxitin	2.5%	2.9%	8.6%	5.2%	7.6%	8.8%	8.8%	7.1%	8.0%	19.8%
		(MIC ≥ 32)	2	3	9	5	7	11	9	7	6	17
		Cephalothin	5.1%	3.9%	10.5%	7.3%	Not	Not	Not	Not	Not	Not
		(MIC ≥ 32)	4	4	11	7	Tested	Tested	Tested	Tested	Tested	Tested
Ш	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	11.4%	8.8%	6.7%	7.3%	7.6%	8.0%	4.9%	18.4%	12.0%	7.0%
		(MIC ≥ 512)	9	9	7	7	7	10	5	18	9	6
		Trimethoprim-sulfamethoxazole	1.3%	2.0%	1.0%	2.1%	0.0%	0.8%	0.0%	0.0%	2.7%	3.5%
		(MIC ≥ 4/76)	1	2	1	2	0	1	0	0	2	3
	Phenicols	Chloramphenicol	1.3%	1.0%	1.0%	0.0%	1.1%	0.8%	0.0%	3.1%	1.3%	4.7%
		(MIC ≥ 32)	1	1	1	0	1	1	0	3	1	4
	Tetracyclines	Tetracycline	21.5%	24.5%	19.0%	16.7%	19.6%	18.4%	13.7%	22.4%	36.0%	27.9%
		(MIC ≥ 16)	17	25	20	16	18	23	14	22	27	24

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

CLSI: Clinical and Laboratory Standards Institute
 \$ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 20.	Resistance	patterns of	Salmonella ser.	Heidelberg	i isolates.	2000-2009
	1100ioturioc	putterno or	Guillonena Ser.	TICIACIDEI	15010105	2000 2000

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total Isolates	79	102	105	96	92	125	102	98	75	86
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	63.3%	64.7%	67.6%	68.8%	56.5%	62.4%	67.6%	58.2%	57.3%	60.5%
	50	66	71	66	52	78	69	57	43	52
Resistance ≥ 1 CLSI class*	36.7%	35.3%	32.4%	31.3%	43.5%	37.6%	32.4%	41.8%	42.7%	39.5%
	29	36	34	30	40	47	33	41	32	34
Resistance ≥ 2 CLSI classes*	26.6%	28.4%	25.7%	17.7%	22.8%	24.8%	23.5%	28.6%	40.0%	34.9%
	21	29	27	17	21	31	24	28	30	30
Resistance ≥ 3 CLSI classes*	7.6%	7.8%	12.4%	10.4%	13.0%	15.2%	12.7%	17.3%	28.0%	25.6%
	6	8	13	10	12	19	13	17	21	22
Resistance ≥ 4 CLSI classes*	3.8%	2.0%	1.9%	0.0%	4.3%	4.8%	2.0%	5.1%	13.3%	17.4%
	3	2	2	0	4	6	2	5	10	15
Resistance ≥ 5 CLSI classes*	2.5%	1.0%	1.9%	0.0%	3.3%	1.6%	2.0%	4.1%	6.7%	15.1%
	2	1	2	0	3	2	2	4	5	13
At least ACSSuT [†]	1.3%	1.0%	1.0%	0.0%	1.1%	0.0%	0.0%	3.1%	1.3%	3.5%
	1	1	1	0	1	0	0	3	1	3
At least ACT/S [‡]	0.0%	0.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	3.5%
	0	0	1	0	0	0	0	0	0	3
At least ACSSuTAuCx§	1.3%	1.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.2%
	1	1	1	0	0	0	0	0	0	1
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	0	0	0	0	0	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

E. Salmonella ser. I 4,[5],12:i:-

Table 21. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. I 4,[5],12:i:isolates to antimicrobial agents, 2009 (N=72)

Devel.	CLSI [†] Antimicrobial Class	Antimiseshiel Asset		% of iso	plates						Percen	t of all i	solates	with M	IC (µg/n	nL)					
капк	CLSI' Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 5.0]							87.5	11.1	1.4							
		Gentamicin	0.0	2.8	[0.3 - 9.7]					52.8	44.4					1.4	1.4				
		Streptomycin	N/A	12.5	[5.9 - 22.4]												87.5	8.3	4.2		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	4.2	4.2	[0.8 - 11.7]							88.9			2.8	4.2	1.4	2.8			
1	Cephems	Ceftiofur	0.0	2.8	[0.3 - 9.7]						20.8	76.4				2.8	-				
		Ceftriaxone	0.0	2.8	[0.3 - 9.7]					97.2						2.8	_				
	Penicillins	Ampicillin	0.0	11.1	[4.9 - 20.7]							86.1	2.8					11.1			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 5.0]	100.0											_				
		Nalidixic acid	N/A	0.0	[0.0 - 5.0]								68.1	31.9							
	Aminoglycosides	Kanamycin	0.0	0.0	[0.0 - 5.0]										100.0						
	Cephems	Cefoxitin	0.0	2.8	[0.3 - 9.7]							50.0	40.3	5.6	1.4		1.4	1.4			
	Folate pathway inhibitors	Sulfisoxazole	N/A	13.9	[6.9 - 24.1]											1.4	52.8	31.9			13.9
		Trimethoprim-sulfamethoxazole	N/A	1.4	[0.02 - 7.5]				95.8	2.8					1.4		_				
	Phenicols	Chloramphenicol	0.0	8.3	[3.1 - 17.3]									62.5	29.2			8.3			
	Tetracyclines	Tetracycline	0.0	16.7	[8.9 - 27.3]									83.3		1.4	2.8	12.5			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

C.St: Clinical and Laboratory Standards Institute
 Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

§ Percent of isolates that were resistant
§ Percent of isolates that were resistant
¶ The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Prat approximation to the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed

resistance (R%).
** The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensitire plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MCs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 18. Antimicrobial resistance pattern for Salmonella ser. I 4,[5],12:i:-, 2009

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Amikacin	
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Kanamycin	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

Table 22. Percentage and number of Salmonella ser. I 4,[5],12:i:- isolates resistant to antimicrobial agents, 2000-2009

Year	,		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total I	solates		13	14	35	37	36	33	105	73	83	72
Rank	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.0%	7.1%	0.0%	5.4%	5.6%	0.0%	4.8%	1.4%	3.6%	2.8%
		(MIC ≥ 16)	0	1	0	2	2	0	5	1	3	2
		Streptomycin	7.7%	14.3%	2.9%	8.1%	5.6%	3.0%	3.8%	8.2%	10.8%	12.5%
		(MIC ≥ 64)	1	2	1	3	2	1	4	6	9	9
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.0%	0.0%	2.9%	5.4%	2.8%	3.0%	3.8%	1.4%	3.6%	4.2%
	combinations	(MIC ≥ 32/16)	0	0	1	2	1	1	4	1	3	3
	Cephems	Ceftiofur	0.0%	7.1%	2.9%	5.4%	2.8%	3.0%	3.8%	2.7%	3.6%	2.8%
		(MIC ≥ 8)	0	1	1	2	1	1	4	2	3	2
		Ceftriaxone	0.0%	0.0%	2.9%	5.4%	2.8%	3.0%	3.8%	2.7%	3.6%	2.8%
		(MIC ≥ 64)	0	0	1	2	1	1	4	2	3	2
	Penicillins	Ampicillin	7.7%	7.1%	8.6%	8.1%	5.6%	6.1%	6.7%	5.5%	8.4%	11.1%
		(MIC ≥ 32)	1	1	3	3	2	2	7	4	7	8
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0
		Nalidixic acid	0.0%	0.0%	0.0%	2.7%	2.8%	0.0%	1.0%	1.4%	1.2%	0.0%
		(MIC ≥ 32)	0	0	0	1	1	0	1	1	1	0
	Aminoglycosides	Kanamycin	0.0%	7.1%	0.0%	0.0%	0.0%	0.0%	0.0%	1.4%	1.2%	0.0%
		(MIC ≥ 64)	0	1	0	0	0	0	0	1	1	0
	Cephems	Cefoxitin	Not	0.0%	2.9%	5.4%	2.8%	3.0%	3.8%	1.4%	3.6%	2.8%
		(MIC ≥ 32)	Tested	0	1	2	1	1	4	1	3	2
		Cephalothin	0.0%	7.1%	2.9%	5.4%	Not	Not	Not	Not	Not	Not
		(MIC ≥ 32)	0	1	1	2	Tested	Tested	Tested	Tested	Tested	Tested
Ш	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	0.0%	14.3%	2.9%	5.4%	11.1%	0.0%	8.6%	4.1%	13.3%	13.9%
		(MIC ≥ 512)	0	2	1	2	4	0	9	3	11	10
		Trimethoprim-sulfamethoxazole	0.0%	7.1%	2.9%	0.0%	2.8%	0.0%	0.0%	1.4%	4.8%	1.4%
		(MIC ≥ 4/76)	0	1	1	0	1	0	0	1	4	1
	Phenicols	Chloramphenicol	0.0%	7.1%	2.9%	0.0%	2.8%	0.0%	1.9%	1.4%	6.0%	8.3%
		(MIC ≥ 32)	0	1	1	0	1	0	2	1	5	6
	Tetracyclines	Tetracycline	7.7%	7.1%	5.7%	0.0%	11.1%	3.0%	8.6%	9.6%	16.9%	16.7%
		(MIC ≥ 16)	1	1	2	0	4	1	9	7	14	12

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important
 † CLSI: Clinical and Laboratory Standards Institute
 ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 23	Resistance	natterns of	Salmonella ser.	1 4 [5] 12.	·- isolates	2000-2009
Table 23.	Resistance	patterns or	Sannonena ser.	17,[J], 12.1	1301ates	2000-2003

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total Isolates	13	14	35	37	36	33	105	73	83	72
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	92.3%	78.6%	91.4%	78.4%	80.6%	87.9%	85.7%	82.2%	77.1%	76.4%
	12	11	32	29	29	29	90	60	64	55
Resistance ≥ 1 CLSI class*	7.7%	21.4%	8.6%	21.6%	19.4%	12.1%	14.3%	17.8%	22.9%	23.6%
	1	3	3	8	7	4	15	13	19	17
Resistance ≥ 2 CLSI classes*	7.7%	14.3%	8.6%	10.8%	13.9%	3.0%	11.4%	6.8%	16.9%	16.7%
	1	2	3	4	5	1	12	5	14	12
Resistance ≥ 3 CLSI classes*	7.7%	7.1%	5.7%	5.4%	8.3%	3.0%	9.5%	5.5%	9.6%	12.5%
	1	1	2	2	3	1	10	4	8	9
Resistance ≥ 4 CLSI classes*	0.0%	7.1%	2.9%	0.0%	2.8%	0.0%	3.8%	2.7%	7.2%	9.7%
	0	1	1	0	1	0	4	2	6	7
Resistance ≥ 5 CLSI classes*	0.0%	7.1%	2.9%	0.0%	2.8%	0.0%	2.9%	1.4%	4.8%	6.9%
	0	1	1	0	1	0	3	1	4	5
At least ACSSuT [†]	0.0%	7.1%	2.9%	0.0%	2.8%	0.0%	1.9%	1.4%	3.6%	6.9%
	0	1	1	0	1	0	2	1	3	5
At least ACT/S [‡]	0.0%	7.1%	2.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	1	1	0	0	0	0	0	0	0
At least ACSSuTAuCx§	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.4%	0.0%
	0	0	0	0	0	0	0	0	2	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	0	0	0	0	0	0	0	0

* CLSI: Clinical and Laboratory Standards Institute
 † ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline
 ‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole
 § ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

F. Specific Drug Resistance Phenotypes

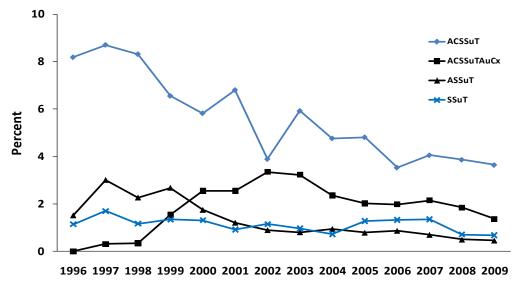
			A	CSSuT*	ACS	SuTAuCx [†]	Nali	dixic Acid	Cef	triaxone
Rank	Serotype	Ν	n	(%)	n	(%)	n	(%)	n	(%)
1	Enteritidis	410	0	(0.0%)	0	(0.0%)	15	(38.5%)	0	(0.0%)
2	Typhimurium	371	72	(64.3%)	6	(20.0%)	8	(20.5%)	24	(32.0%)
3	Newport	236	15	(13.4%)	15	(50.0%)	0	(0.0%)	15	(20.0%)
4	Javiana	105	0	(0.0%)	0	(0.0%)	1	(2.6%)	1	(1.3%)
5	Heidelberg	86	3	(2.7%)	1	(3.3%)	0	(0.0%)	18	(24.0%)
6	I 4,[5],12:i:-	72	5	(4.5%)	0	(0.0%)	0	(0.0%)	2	(2.7%)
7	Oranienburg	64	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
8	Saintpaul	57	1	(0.9%)	0	(0.0%)	1	(2.6%)	0	(0.0%)
9	Montevideo	56	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
10	Braenderup	55	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
11	Infantis	44	2	(1.8%)	2	(6.7%)	1	(2.6%)	5	(6.7%)
12	Muenchen	42	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
13	Mississippi	28	1	(0.9%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
14	Thompson	27	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
15	Agona	21	2	(1.8%)	2	(6.7%)	1	(2.6%)	2	(2.7%)
16	Bareilly	20	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
17	Litchfield	20	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
18	Paratyphi B var. L(+) tartrate+	20	2	(1.8%)	0	(0.0%)	0	(0.0%)	1	(1.3%)
19	Hadar	19	0	(0.0%)	0	(0.0%)	1	(2.6%)	0	(0.0%)
20	Poona	16	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
	Subtotal	1769	103	(92.0%)	26	(86.7%)	28	(71.8%)	68	(90.7%)
	All other serotypes	364	5	(4.5%)	3	(10.0%)	8	(20.5%)	6	(8.0%)
	Unknown serotype	19	1	(0.9%)	1	(3.3%)	2	(5.1%)	1	(1.3%)
	Partiallyserotyped	20	2	(1.8%)	0	(0.0%)	1	(2.6%)	0	(0.0%)
	Rough/Nonmotile isolates	20	1	(0.9%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
	Total	2192	112	(100.0%)	30	(100.0%)	39	(100.0%)	75	(100.0%)

Table 24. Number and percentage of isolates with resistance to at least ACSSuT, ACSSuTAuCx, nalidixic
acid, and ceftriaxone among the 20 most common non-typhoidal Salmonella serotypes isolated in
NARMS, 2009

* ACSSuT: at least resistant to ampicillin, chloramphenicol, streptomycin, sulfisoxazole, tetracycline

[†] ACSSuTAuCx: at least resistant to ACSSuT, amoxicillin-clavulanic acid, and ceftriaxone

Box 2. Four major multidrug-resistant patterns among non-typhoidal Salmonella


During 1996–2009, 3,243 (13.0%) of 24,903 non-typhoidal *Salmonella* isolates tested in NARMS were resistant to \geq 3 classes of antimicrobial agents. Among the 3,243 isolates, we identified the 4 most common multidrug-resistant (MDR) patterns based on resistance to 7 of the 15 agents currently tested in NARMS: ampicillin (A), chloramphenicol (C), streptomycin (S), sulfonamide (Su), tetracycline (T), amoxicillin-clavulanic acid (Au), and ceftriaxone (Cx). Unlike MDR criteria used for tables in the rest of this report, which defined "at least ACSSuT" as resistant to at least A, C, S, Su, and T, we used mutually exclusive criteria in this section: ACSSuT was defined as resistant to A, C, S, Su, and T, not resistant to Au and Cx; ACSSuTAuCx as resistant to all 7 agents; ASSuT as resistant to A, S, Su, and T, not resistant to C, Au, and Cx; and SSuT as resistant to S, Su, and T, not resistant to A, C, Au, and Cx. Use of mutually exclusive criteria is important in monitoring major and emerging patterns, which may be driven by different resistance mechanisms.

ACSSuT, ACSSuTAuCx, ASSuT, and SSuT isolates accounted for 73.1% of the 3,243 isolates resistant to \geq 3 classes: 1,323 (40.8%) were ACSSuT, 476 (14.7%) ACSSuTAuCx, 295 (9.1%) ASSUT, and 275 (8.5%) SSuT. Serotype Typhimurium accounted for 90.0% of ACSSuT and 74.6% of ASSuT isolates. Of the ACSSuTAuCx isolates, 67.0% were serotype Newport and 19.8% were serotype Typhimurium. More than half of SSuT isolates were serotypes Typhimurium (26.6%), Stanley (12.7%), Derby (10.2%), and Heidelberg (9.8%).

Figure 1 below shows the percentage of the 4 MDR patterns by year among all non-typhoidal *Salmonella* isolates tested from 1996 through 2009. ACSSuT declined from 8.2% in 1996 to 3.7% in 2009. ACSSuTAuCx, first detected in 1997, peaked at 3.4% in 2002 before declining to 1.4% in 2009. ASSuT was ≤3.0% and SSuT was ≤1.7% from 1996 through 2009.

Refer to Table 7 in the Results section of this report for the percentage of "at least ACSSuT" by year (2000–09) among non-typhoidal *Salmonella* isolates, which includes ACSSuT and ACSSuTAuCx. Since "at least ACSSuTAuCX" in Table 7 includes resistance to all 7 agents, percentages are the same as in Figure 1.

Year

*Four most common multidrug-resistant MDR) patterns that include resistance to ≥3 antimicrobial classes and any of the following agents: ampicillin (A), chloramphenicol (C), streptomycin (S), sulfonamide (Su), tetracycline (T), amoxicillin-clavulanic acid (Au), and ceftriaxone (Cx).

2. Typhoidal Salmonella

A. Salmonella ser. Typhi

Table 25. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhi isolates to antimicrobial agents, 2009 (N=361)

				% of is	olates						Percen	t of all i	solates	with M	IC (µg/r	nL)¨					
Rank	CLSI [†] Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 1.0]						19.4	63.2	16.6	0.6	0.3						
		Gentamicin	0.0	0.0	[0.0 - 1.0]					80.9	18.6	0.6						_			
		Streptomycin	N/A	10.5	[7.6 - 14.2]										-	-	89.5	0.6	10.0		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	1.9	0.3	[0.00 - 1.5]							87.5	0.6	0.3	9.4	1.9	0.3				
Т	Cephems	Ceftiofur	0.0	0.0	[0.0 - 1.0]				0.8	4.7	54.0	40.4					-				
		Ceftriaxone	0.0	0.0	[0.0 - 1.0]					100.0				1	-						
	Penicillins	Ampicillin	0.0	12.2	[9.0 - 16.0]							85.6	2.2					12.2			
	Quinolones	Ciprofloxacin	0.3	3.3	[1.7 - 5.7]	37.7	0.8	1.4	6.1	35.7	14.4	0.3	0.3	1.1	2.2		-				
		Nalidixic acid	N/A	60.1	[54.9 - 65.2]							2.5	29.9	6.9	0.6		0.6	59.6			
	Aminoglycosides	Kanamycin	0.0	0.0	[0.0 - 1.0]										100.0		Ĩ				
	Cephems	Cefoxitin	1.1	0.0	[0.0 - 1.0]						4.7	26.9	16.1	31.0	20.2	1.1					
	Folate pathway inhibitors	Sulfisoxazole	N/A	13.3	[10.0 - 17.2]											15.5	33.5	26.6	11.1		13.3
"		Trimethoprim-sulfamethoxazole	N/A	12.2	[9.0 - 16.0]				87.0	0.8				0.6	11.6						
	Phenicols	Chloramphenicol	1.4	11.4	[8.3 - 15.1]								5.8	54.6	26.9	1.4		11.4			
	Tetracyclines	Tetracycline	0.0	5.5	[3.4 - 8.4]									94.5			0.3	5.3			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

† CLSI: Clinical and Laboratory Standards Institute

Percent of isolates with intermediate susceptibility, N/A if no MIC range of intermediate susceptibility exists

§ Percent of isolates that were resistant

The 95% confidence intervals (Cl) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method. The 95% Cl is presented to summarize uncertainly in the observed resistance (R%).

resistance (x%). * The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensititre plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MCs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Antimicrobial Agent Susceptible, Intermediate, and Resistant Proportion Amikacin Gentamicin Streptomycin Amoxicillin-clavulanic acid Ceftiofur Ceftriaxone Ampicillin Ciprofloxacin Nalidixic acid Kanamycin Cefoxitin Sulfisoxazole Trimethoprim-sulfamethoxazole Chloramphenicol Tetracycline

Figure 19. Antimicrobial resistance pattern for Salmonella ser. Typhi, 2009

Table 26. Percentage and number of Salmonella ser. Typhi isolates resistant to antimicrobial agents, 2000–2009

Year	2003		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total I	Isolates		177	197	195	332	304	318	322	401	410	361
Rank	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 16)	0	0	0	0	0	0	0	0	0	0
		Streptomycin	9.0%	20.3%	7.2%	14.5%	11.8%	13.2%	18.9%	15.7%	11.5%	10.5%
		(MIC ≥ 64)	16	40	14	48	36	42	61	63	47	38
	β-lactam / β-lactamase inhibitor	Amoxicillin-Clavulanic Acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.2%	0.0%	0.3%
	combinations	(MIC ≥ 32)	0	0	0	0	0	0	1	1	0	1
	Cephems	Ceftiofur	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 8)	0	0	0	0	0	0	0	0	0	0
		Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0
	Penicillins	Ampicillin	9.0%	20.3%	5.6%	16%	11.8%	13.2%	20.5%	17%	13.2%	12.2%
		(MIC ≥ 32)	16	40	11	53	36	42	66	68	54	44
	Quinolones Ciprofloxacin		0.0%	0.0%	0.0%	0.3%	0.0%	0.3%	0.9%	1.0%	0.0%	3.3%
		(MIC ≥ 4)	0	0	0	1	0	1	3	4	0	12
		Nalidixic Acid	22%	29.9%	23.6%	37.7%	41.8%	48.4%	54.7%	61.8%	59.0%	60.1%
		(MIC ≥ 32)	39	59	46	125	127	154	176	248	242	217
	Aminoglycosides	Kanamycin	0.0%	0.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	1	0	0	0	0	0	0	0	0
	Cephems	Cefoxitin	0.6%	0.5%	0.0%	0.0%	0.0%	0.0%	0.3%	0.5%	0.0%	0.0%
		(MIC ≥ 32)	1	1	0	0	0	0	1	2	0	0
		Cephalothin	1.1%	0.5%	1.5%	0.0%	Not	Not	Not	Not	Not	Not
		(MIC ≥ 32)	2	1	3	0	Tested	Tested	Tested	Tested	Tested	Tested
Ш	Folate pathway inhibitors	Sulfisoxazole	11.3%	20.8%	6.2%	16.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 512)	20	41	12	56	0	0	0	0	0	0
		Trimethoprim-Sulfamethoxazole	9.0%	20.8%	6.7%	16.9%	13.2%	14.5%	20.8%	16.2%	12.7%	12.2%
		(MIC ≥ 4)	16	41	13	56	40	46	67	65	52	44
	Phenicols	Chloramphenicol	10.7%	20.8%	6.2%	16.6%	13.2%	13.2%	19.6%	15.7%	12.9%	11.4%
		(MIC ≥ 32)	19	41	12	55	40	42	63	63	53	41
	Tetracyclines	Tetracycline	9.6%	20.8%	6.7%	15.4%	8.9%	10.1%	8.4%	6.2%	4.6%	5.5%
		(MIC ≥ 16)	17	41	13	51	27	32	27	25	19	20

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important † CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

2003 Year 2000 2001 2002 2004 2005 2006 2007 2008 2009 Total Isolates 177 197 195 332 304 318 323 401 410 361 % % % % % % % % % % n n n n n n n n n n No resistance detected 72.3% 58.9% 74.4% 56.6% 56.6% 48.1% 40.2% 35.7% 38.0% 37.7% 128 116 145 188 172 153 130 143 156 136 Resistance ≥ 1 CLSI class* 41.1% 43.4% 27.7% 25.6% 43.4% 51.9% 59.8% 64.3% 62.0% 62.3% 225 49 81 50 144 132 165 193 258 254 Resistance ≥ 2 CLSI classes* 10.7% 22.8% 7.2% 17.5% 13.2% 14.5% 21.7% 18.0% 14.4% 14.1% 45 58 40 46 70 72 59 51 19 14 Resistance ≥ 3 CLSI classes* 6.7% 12.8% 9.6% 21.8% 16.6% 13.8% 20.7% 17.5% 13.4% 12.7% 17 43 55 39 44 67 70 55 46 13 Resistance ≥ 4 CLSI classes* 9.0% 21.3% 6.2% 12.5% 12.9% 19.2% 17.0% 12.2% 16.3% 12.9% 42 38 41 44 16 12 54 62 68 53 Resistance ≥ 5 CLSI classes' 7.9% 16.8% 5.6% 14.2% 11.8% 11.9% 16.7% 14.7% 10.7% 10.0% 33 47 36 38 54 59 44 36 14 11 7.9% 7.9% 5.9% 2.5% At least ACSSuT[†] 16.8% 5.6% 12.7% 9.1% 3.7% 2.4% 14 33 11 42 24 29 19 15 10 9 At least ACT/S[‡] 9.0% 17.8% 5.6% 15.7% 11.8% 12.9% 18.6% 15.2% 12.2% 10.5% 16 35 11 52 36 41 60 61 50 38 At least ACSSuTAuCx§ 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0 0 0 0 0 0 0 0 0 0 At least ceftriaxone and nalidixic acid 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% resistant 0 0 0 0 0 0 0 0 0 0

Table 27. Resistance patterns of Salmonella ser. Typhi isolates, 2000–2009

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

B. Salmonella ser. Paratyphi A, Paratyphi B, and Paratyphi C

Table 28. Frequency of Salmonella ser. Paratyphi A, Paratyphi B, and Paratyphi C isolated in NARMS, 2009

Species	20	09
	n	(%)
Paratyphi A	100	(98.0%)
Paratyphi B	1	(1.0%)
Paratyphi C	1	(1.0%)
Total	102	(100.0%)

Table 29. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Paratyphi A, Paratyphi B, and Paratyphi C isolates to antimicrobial agents, 2009 (N=102)

Bank	CLSI [†] Antimicrobial Class	Antimicrobial Agent		% of is	olates				Percent of all isolates with MIC (μg/mL)"												
капк	CLSI' Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 3.6]						89.2	9.8	1.0								
		Gentamicin	0.0	0.0	[0.0 - 3.6]					98.0	1.0	1.0									
		Streptomycin	N/A	1.0	[0.01 - 5.3]											-	99.0		1.0		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	1.0	0.0	[0.0 - 3.6]							35.3	61.8	2.0		1.0					
I	Cephems	Ceftiofur	0.0	0.0	[0.0 - 3.6]						1.0	98.0	1.0				•				
		Ceftriaxone	0.0	0.0	[0.0 - 3.6]					100.0				1	•						
	Penicillins	Ampicillin	0.0	1.0	[0.01 - 5.3]							4.9	93.1	1.0				1.0			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 3.6]	9.8	2.9		1.0	1.0	85.3										
		Nalidixic acid	N/A	86.3	[78.0 - 92.3]								1.0	11.8		1.0		86.3			
	Aminoglycosides	Kanamycin	0.0	0.0	[0.0 - 3.6]										100.0						
	Cephems	Cefoxitin	1.0	0.0	[0.0 - 3.6]								8.8	81.4	8.8	1.0					
	Folate pathway inhibitors	Sulfisoxazole	N/A	1.0	[0.01 - 5.3]											53.9	35.3	7.8	2.0		1.0
		Trimethoprim-sulfamethoxazole	N/A	1.0	[0.01 - 5.3]				91.2	7.8					1.0						
	Phenicols	Chloramphenicol	5.9	1.0	[0.01 - 5.3]									2.0	91.2	5.9		1.0			
	Tetracyclines	Tetracycline	0.0	1.0	[0.01 - 5.3]									99.0				1.0			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important † CLSt: Clinical and Laboratory Standards Institute

‡ Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists § Percent of isolates that were resistant

1 The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed

resistance (R%).
** The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensitire plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MCs request to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 20. Antimicrobial resistance pattern for Salmonella ser. Paratyphi A, Paratyphi B, and Paratyphi C, 2009

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Amikacin	
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Kanamycin	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

Table 30.	Percentage and number of Salmonella ser. Paratyphi A, Paratyphi B, and Paratyphi C isolates
resistant	to antimicrobial agents, 2000–2009

Year		ii agents, 2000–2005	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total I	Isolates		5	9	10	8	11	18	16	17	92	102
Rank	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0
		Gentamicin (MIC ≥ 16)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0
		Streptomycin (MIC ≥ 64)	20.0% 1	0.0% 0	10.0% 1	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.1% 1	1.0% 1
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.1% 1	0.0% 0
Т	Cephems	Ceftiofur (MIC ≥ 8)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.1% 1	0.0% 0
		Ceftriaxone (MIC ≥ 64)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.1% 1	0.0% 0
	Penicillins	Ampicillin (MIC ≥ 32)	20.0% 1	0.0% 0	0.0% 0	12.5% 1	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.1% 1	1.0% 1
	Quinolones Ciprofloxacin (MIC ≥ 4)		0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0
		Nalidixic acid (MIC ≥ 32)	40.0% 2	55.6% 5	40.0% 4	75.0% 6	72.7% 8	66.7% 12	50.0% 8	94.1% 16	85.9% 79	86.3% 88
	Aminoglycosides	Kanamycin (MIC ≥ 64)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0
	Cephems	Cefoxitin (MIC ≥ 32) Cephalothin	0.0% 0 0.0%	0.0% 0 0.0%	0.0% 0 0.0%	0.0% 0 0.0%	0.0% 0 Not	0.0% 0 Not	0.0% 0 Not	0.0% 0 Not	1.1% 1 Not	0.0% 0 Not
	Folate pathway inhibitors	(MIC ≥ 32) Sulfamethoxazole/Sulfisoxazole [‡]	0 20.0%	0	0	0	Tested 0.0%	Tested 0.0%	Tested 0.0%	Tested 0.0%	Tested	Tested 1.0%
11		(MIC ≥ 512) Trimethoprim-sulfamethoxazole	1 20.0%	0 0.0%	0 0.0%	0 0.0%	0	0 0.0%	0 0.0%	0 0.0%	1	1 1.0%
	Phenicols	$(MIC \ge 4/76)$ Chloramphenicol (MIC \ge 32)	1 20.0% 1	0 0.0% 0	0 0.0% 0	0 0.0% 0	0 0.0% 0	0 0.0% 0	0 0.0% 0	0 0.0% 0	0 1.1% 1	1 1.0% 1
	Tetracyclines	$\frac{\text{(MIC} \ge 62)}{\text{Tetracycline}}$ (MIC ≥ 16)	0.0%	0.0% 0	10.0% 1	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	2.2% 2	1.0% 1

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important † CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 31. Resistance patterns of *Salmonella* ser. Paratyphi A, Paratyphi B, and Paratyphi C isolates, 2000–2009

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total Isolates	5	9	10	8	11	18	16	17	92	102
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	40.0%	44.4%	50.0%	12.5%	27.3%	33.3%	50.0%	5.9%	12.0%	12.7%
	2	4	5	1	3	6	8	1	11	13
Resistance ≥ 1 CLSI class*	60.0%	55.6%	50.0%	87.5%	72.7%	66.7%	50.0%	94.1%	88.0%	87.3%
	3	5	5	7	8	12	8	16	81	89
Resistance ≥ 2 CLSI classes*	20.0%	0.0%	10.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%	1.0%
	1	0	1	0	0	0	0	0	1	1
Resistance ≥ 3 CLSI classes*	20.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%	1.0%
	1	0	0	0	0	0	0	0	1	1
Resistance ≥ 4 CLSI classes*	20.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%	1.0%
	1	0	0	0	0	0	0	0	1	1
Resistance ≥ 5 CLSI classes*	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%	1.0%
	0	0	0	0	0	0	0	0	1	1
At least ACSSuT [†]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%	1.0%
	0	0	0	0	0	0	0	0	1	1
At least ACT/S [‡]	20.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%
	1	0	0	0	0	0	0	0	0	1
At least ACSSuTAuCx§	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%	0.0%
	0	0	0	0	0	0	0	0	1	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	0	0	0	0	0	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

Box 3. Molecular characterization of Non-Typhi Salmonella enterica that show decreased susceptibility to extended-spectrum cephalosporins

Although most *Salmonella* infections are self-limited and treated symptomatically, antimicrobial therapy is necessary for the management of invasive infections. The recommended regimen used to include either amoxicillin or trimethoprim-sulphamethoxazole, but due to increased resistance levels to these drugs, current recommendations suggest using a fluoroquinolone, such as ciprofloxacin, or an extended-spectrum cephalosporin, such as ceftriaxone.

Among 4,236 isolates of non-typhi Salmonella (NTS) submitted to NARMS in 2005 and 2006, 175 (4.1%) displayed decreased susceptibility (MIC \geq 2 mg/L) to the extended-spectrum cephalosporins ceftriaxone or ceftiofur. Among these, thirty different serotypes were represented and the three most prevalent serotypes were Newport (33.1%), Typhimurium (13.7%) and Heidelberg (13.1%).

Among the 175 isolates, 172 were available for molecular analysis. For each isolate, genomic DNA was prepared and the presence of β -lactamase genes investigated by polymerase chain reaction (PCR) amplification targeting six different genes: bla_{TEM} , bla_{OXA} , bla_{SHV} , $bla_{\text{CTX-M}}$, bla_{PSE} and bla_{CMY} .

One or more β -lactamase genes were detected in 139 (80.8%) isolates. The most prevalent resistance mechanisms were AmpC β -lactamase genes (*bla*_{CMY}) which were identified in 133 (95.7%) of the 139 β -lactamase-carrying isolates. The ceftriaxone MIC-values for the *bla*_{CMY}-containing isolates ranged from 4 to 64 mg/L; all *bla*_{CMY}-bearing isolates were thereby classified as ceftriaxone resistant according to current CLSI guidelines.

Other β -lactamase genes detected included eleven $bla_{\text{TEM-1}}$, three $bla_{\text{PSE-1}}$, two $bla_{\text{OXA-1}}$ and one $bla_{\text{CTX-M-15}}$. The latter is an extended-spectrum β -lactamase (ESBL) that exhibits increased activity against cefotaxime and confers cross-resistance to the fourth generation cephalosporin cefepime. The $bla_{\text{CTX-M-15}}$ gene was found in an isolate of serotype Concord and is the second CTX-M-producing *Salmonella* identified in the NARMS human isolate collection (the first case was a CTX-M-5-producing *Salmonella* ser. Typhimurium isolated from a 3-month old child in 2003). The source of the CTX-M-15-producing *Salmonella* remains unknown, but it is likely that the infection was acquired abroad since the patient reported international travel to Ethiopia in conjunction with illness onset.

In conclusion, among NTS isolated from humans in 2005-2006, CMY β-lactamases were the predominant cause of decreased susceptibility and resistance to extended-spectrum cephalosporins. To limit further spread of these genes, prudent use of antimicrobial agents in both human and veterinary medicine will be crucial. Continued surveillance for cephalosporin-resistant bacteria among humans remains critical.

Box 4. Reduced azithromycin susceptibility in Shigella sonnei, United States

Shigella spp. are a major cause of gastroenteritis in the United States, transmitted most commonly by the fecaloral route. It occurs most often in children 5 years old and younger in child care settings. While treatment with antimicrobial agents may shorten the duration of clinical symptoms for this usually self-limiting disease, emergence of antimicrobial resistance has recently made drug selection difficult. Previous drugs of choice for treatment of shigellosis were ampicillin and trimethoprim-sulfamethoxazole, but resistance to these drugs is high, especially in *Shigella sonnei*. Because of resistance to these agents, the macrolide azithromycin has been recommended by the American Academy of Pediatrics for treatment of shigellosis in children. Azithromycin resistance in *Shigella sonnei* is now being reported, but there are currently no CLSI criteria for interpretation of azithromycin susceptibility test results for *Shigella*. To explore azithromycin susceptibility in the United States, we determined MIC distributions for *Shigella sonnei* isolated from humans in the United States.

Azithromycin MICs were determined by broth microdilution for *Shigella sonnei* isolates from 11 recognized outbreaks in 10 states in 2006-2007 (n=56) and for those submitted routinely to NARMS in 2005 (the most recently completed year at the time, n=336) from 44 states. Five isolates collected from 1969-1974 (before approval of azithromycin) were also tested for historical perspective, but were not included in the MIC distribution analysis. Each isolate that demonstrated an azithromycin MIC>64 mg/L was screened for the *mphA* gene by PCR, and the gene was sequenced to confirm positives.

The resulting distribution was log-normal and spanned three doubling dilution steps (4-16 mg/L) with an MIC₅₀ and MIC₉₀ of 8 mg/L. Five isolates collected from 1969-1974 exhibited azithromycin MICs of either 4 mg/L (n=1) or 8 mg/L (n=4). One outbreak isolate and two routine isolates showed MICs at least four-fold higher than the MIC₉₀ for the overall group of isolates; the outbreak isolate displayed an MIC of 256 mg/L and the routine isolates showed MICs of 256 and 128 mg/L. These isolates were PCR-positive for *mphA*, which encodes a macrolide-2'-phosphotransferase. In all three isolates, the gene was on a transferrable plasmid, with plasmid sizes ranging from 15-150kb.

Decreased azithromycin susceptibility for *Shigella sonnei* in the face of high levels of ampicillin and trimethoprimsulfamethoxazole resistance is particularly worrisome for children because the remaining options for treatment are ceftriaxone, which is administered by injection and fluoroquinolones such as ciprofloxacin, which are not approved for use in children. Continued surveillance will be needed to examine antimicrobial use practices for *Shigella* infections and to determine whether azithromycin use leads to decreased susceptibility to the agent. Clinical outcome studies are needed to establish clinical breakpoints for azithromycin in treating *Shigella*.

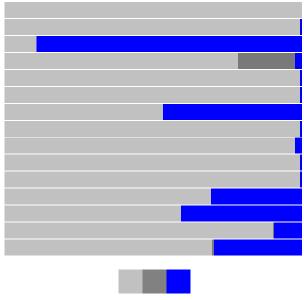
3. Shigella

Table 32. Frequency of Shigella species isolated in NARMS, 2009

Species	2009					
	n	(%)				
Shigella sonnei	410	(86.3%)				
Shigella flexneri	57	(12.0%)				
Shigella boydii	5	(1.1%)				
Other	3	(0.6%)				
Total	475	(100.0%)				

Table 33. Minimum inhibitory concentrations (MICs) and resistance of Shigella isolates to antimicrobial agents, 2009 (N=475)

Devil	CLSI [†] Antimicrobial Class	Antimicrobial Agent		% of is	olates		Percent of all isolates with MIC (µg/mL)" 15 0.03 0.06 0.125 0.25 0.50 1 2 4 8 16 32 64 128 256 512 15 0.03 0.06 0.125 0.25 0.0 1 2 4 8 16 32 64 128 256 512 17 16.0 76.8 4.4 0.4 0.2 0.4 10.9 43.4 45.7 10.1 78.5 8.2 2.5 4.8 45.3 25.9 19.4 1.7 0.4 99.2 0.2 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2														
Ralik	CLSP Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] ¹	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 0.8]						0.4	2.1	33.5	59.6	4.2	0.2					
		Gentamicin	0.0	0.6	[0.1 - 1.8]					1.7	16.0	76.8	4.4	0.4		0.2	0.4				
		Streptomycin	N/A	89.1	[85.9 - 91.7]												10.9	43.4	45.7		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	19.4	2.1	[1.0 - 3.8]							2.5	4.8	45.3	25.9	19.4	1.7	0.4			
Т	Cephems	Ceftiofur	0.0	0.6	[0.1 - 1.8]				10.1	78.5	8.2	2.5			0.4	0.2					
		Ceftriaxone	0.0	0.6	[0.1 - 1.8]					99.2	0.2				0.4		0.2				
	Penicillins	Ampicillin	0.0	46.3	[41.8 - 50.9]							7.2	42.3	3.6	0.6		0.2	46.1			
	Quinolones	Ciprofloxacin	0.0	0.6	[0.1 - 1.8]	97.1	0.4	1.1	0.2	0.6				0.4	0.2						
		Nalidixic acid	N/A	2.1	[1.0 - 3.8]						4.4	81.5	9.9	2.1			0.8	1.3			
	Aminoglycosides	Kanamycin	0.0	0.4	[0.05 - 1.5]										99.4	0.2			0.4		
	Cephems	Cefoxitin	0.0	0.6	[0.1 - 1.8]						0.4	17.1	70.7	10.1	1.1		0.4	0.2			
	Folate pathway inhibitors	Sulfisoxazole	N/A	30.5	[26.4 - 34.9]											60.2	6.3	1.9	1.1		30.5
		Trimethoprim-sulfamethoxazole	N/A	40.4	[36.0 - 45.0]				8.2	1.9	5.3	18.5	25.7	8.8	31.6						
	Phenicols	Chloramphenicol	0.2	9.3	[6.8 - 12.2]								22.1	66.3	2.1	0.2	1.9	7.4			
	Tetracyclines	Tetracycline	0.6	29.5	[25.4 - 33.8]									69.9	0.6	0.4	8.6	20.4			


* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

Rank of animercoolesis based on workin Health organization's categorization of critical importance in nurran
 CLSI: Clinical and Laboratory Standards histitute
 Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

§ Percent of isolates that were resistant § Percent of isolates that were resistant The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed

The solve contraction the value (or in precent resistant (or in the calculated using the reason calculated using the reason calculated using the reason calculated using the calculated using the reason calculated using the calculated using the reason calculated using the reason calculated using the reason calculated using the calcu

Figure 21. Antimicrobial resistance pattern for Shigella, 2009

SΙ R

Table 34. Percentage and number of Shigella isolates resistant to antimicrobial agents, 2000–2009

Year			2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total I	Isolates		450	344	620	495	316	396	402	480	549	475
Rank	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.2%	0.0%	0.2%	0.0%	0.0%	1.0%	0.2%	0.8%	0.4%	0.6%
		(MIC ≥ 16)	1	0	1	0	0	4	1	4	2	3
		Streptomycin	57.1%	53.2%	54.4%	57.0%	59.8%	68.7%	60.7%	73.3%	80.7%	89.1%
		(MIC ≥ 64)	257	183	337	282	189	272	244	352	443	423
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	2.2%	4.4%	2.6%	1.4%	1.6%	1.0%	1.5%	0.4%	3.3%	2.1%
	combinations	(MIC ≥ 32/16)	10	15	16	7	5	4	6	2	18	10
	Cephems	Ceftiofur	0.0%	0.0%	0.2%	0.2%	0.3%	0.5%	0.2%	0.0%	0.0%	0.6%
		(MIC ≥ 8)	0	0	1	1	1	2	1	0	0	3
		Ceftriaxone	0.0%	0.0%	0.2%	0.2%	0.3%	0.5%	0.2%	0.0%	0.0%	0.6%
		(MIC ≥ 64)	0	0	1	1	1	2	1	0	0	3
	Penicillins	Ampicillin	79.1%	79.7%	76.6%	79.4%	77.5%	70.7%	62.4%	63.8%	62.5%	46.3%
	(MIC ≥ 32)		356	274	475	393	245	280	251	306	343	220
	Quinolones	Ciprofloxacin	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.2%	0.2%	0.7%	0.6%
		(MIC ≥ 4)	0	1	0	0	0	0	1	1	4	3
		Nalidixic acid	0.9%	1.7%	1.6%	1.0%	1.6%	1.5%	3.5%	1.7%	1.6%	2.1%
		(MIC ≥ 32)	4	6	10	5	5	6	14	8	9	10
	Aminoglycosides	Kanamycin	1.3%	0.6%	0.8%	0.4%	0.0%	0.8%	0.0%	0.2%	0.5%	0.4%
		(MIC ≥ 64)	6	2	5	2	0	3	0	1	3	2
	Cephems	Cefoxitin	0.2%	1.2%	0.3%	0.0%	0.3%	0.3%	0.0%	0.0%	0.0%	0.6%
		(MIC ≥ 32)	1	4	2	0	1	1	0	0	0	3
		Cephalothin	8.0%	9.0%	6.6%	9.3%	Not	Not	Not	Not	Not	Not
		(MIC ≥ 32)	36	31	41	46	Tested	Tested	Tested	Tested	Tested	Tested
Ш	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	55.8%	56.4%	31.8%	33.9%	52.5%	57.6%	40.3%	25.8%	28.6%	30.5%
		(MIC ≥ 512)	251	194	197	168	166	228	162	124	157	145
		Trimethoprim-sulfamethoxazole	52.9%	46.8%	37.3%	38.6%	46.8%	53.3%	46.0%	25.8%	31.3%	40.4%
		(MIC ≥ 4/76)	238	161	231	191	148	211	185	124	172	192
	Phenicols	Chloramphenicol	14.0%	21.5%	7.6%	8.5%	15.2%	10.9%	10.9%	8.3%	6.9%	9.3%
		(MIC ≥ 32)	63	74	47	42	48	43	44	40	38	44
	Tetracyclines	Tetracycline	44.9%	59.3%	30.6%	29.1%	49.4%	38.4%	34.6%	25.6%	24.2%	29.5%
		(MIC ≥ 16)	202	204	190	144	156	152	139	123	133	140

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important CLSI: Clinical and Laboratory Standards Institute
 \$ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 35	Resistance	natterns	of	Shinella i	solatos	2000-2009
Table 55.	Resistance	patterns	01	Siliyella i	solales,	2000-2009

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total Isolates	450	344	620	495	316	396	402	480	549	475
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	7.3%	4.9%	8.2%	8.5%	4.7%	4.5%	6.5%	7.1%	4.4%	4.0%
	33	17	51	42	15	18	26	34	24	19
Resistance ≥ 1 CLSI class*	92.7%	95.1%	91.8%	91.5%	95.3%	95.5%	93.5%	92.9%	95.6%	96.0%
	417	327	569	453	301	378	376	446	525	456
Resistance ≥ 2 CLSI classes*	64.7%	68.6%	55.2%	57.8%	64.2%	71.7%	64.7%	65.4%	68.3%	67.8%
	291	236	342	286	203	284	260	314	375	322
Resistance ≥ 3 CLSI classes*	61.3%	59.9%	41.5%	40.2%	59.2%	58.6%	43.8%	27.7%	35.2%	36.4%
	276	206	257	199	187	232	176	133	193	173
Resistance ≥ 4 CLSI classes*	31.8%	45.3%	24.4%	24.8%	32.9%	19.4%	15.4%	11.7%	10.4%	13.3%
	143	156	151	123	104	77	62	56	57	63
Resistance ≥ 5 CLSI classes*	6.4%	7.6%	2.7%	3.6%	7.0%	4.8%	5.2%	4.6%	2.7%	6.3%
	29	26	17	18	22	19	21	22	15	30
At least ACSSuT [†]	5.6%	6.4%	1.8%	3.2%	6.0%	4.0%	5.0%	3.8%	2.2%	5.9%
	25	22	11	16	19	16	20	18	12	28
At least ACT/S [‡]	6.9%	7.0%	2.7%	3.6%	6.6%	6.3%	6.0%	4.0%	2.9%	6.7%
	31	24	17	18	21	25	24	19	16	32
At least AT/S§	44.4%	37.5%	29.8%	33.7%	34.5%	35.6%	26.6%	12.9%	16.0%	17.5%
	200	129	185	167	109	141	107	62	88	83
At least ANT/S [¶]	0.0%	0.6%	0.3%	0.8%	0.6%	0.5%	0.5%	0.8%	0.0%	0.2%
	0	2	2	4	2	2	2	4	0	1
At least ACSSuTAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.2%	0.3%	0.3%	0.2%	0.0%	0.0%	0.0%
resistant	0	0	0	1	1	1	1	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

+ ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

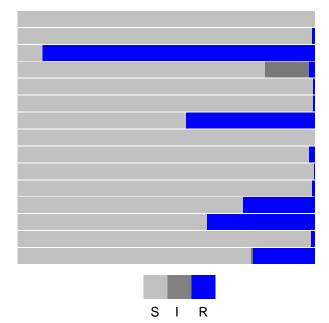
§ AT/S: resistance to ampicillin, trimethoprim-sulfamethoxazole

¶ ANT/S: resistance to AT/S, naladixic acid

** ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

Table 36. Minimum inhibitory concentrations (MICs) and resistance of Shigella sonnei isolates to antimicrobial agents, 2009 (N=410)

	CLSI [†] Antimicrobial Class			% of is	olates						Percen	t of all i	isolates	with M	IC (µg/n	n L)					
капк	CLSI [®] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 0.9]						0.5	2.0	35.1	59.5	2.9						
		Gentamicin	0.0	0.7	[0.1 - 2.1]					1.5	14.9	78.0	4.4	0.5		0.2	0.5	_			
		Streptomycin	N/A	91.5	[88.3 - 94.0]											•	8.5	48.3	43.2		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	14.6	2.0	[0.8 - 3.8]							2.4	2.7	50.5	27.8	14.6	1.5	0.5			
I.	Cephems	Ceftiofur	0.0	0.5	[0.05 - 1.7]				5.6	83.4	8.3	2.2			0.5						
		Ceftriaxone	0.0	0.5	[0.05 - 1.7]					99.3	0.2				0.5						
	Penicillins	Ampicillin	0.0	43.2	[38.3 - 48.1]							4.4	47.8	4.1	0.5		0.2	42.9			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 0.9]	98.0	0.2	1.0	0.2	0.5											
		Nalidixic acid	N/A	1.7	[0.7 - 3.5]						4.6	83.7	8.3	1.7			1.0	0.7			
	Aminoglycosides	Kanamycin	0.0	0.2	[0.00 - 1.3]										99.5	0.2			0.2		
	Cephems	Cefoxitin	0.0	0.7	[0.1 - 2.1]						0.5	18.8	73.7	5.9	0.5		0.5	0.2			
	Folate pathway inhibitors	Sulfisoxazole	N/A	23.9	[19.9 - 28.3]											65.6	7.1	2.2	1.2		23.9
		Trimethoprim-sulfamethoxazole	N/A	36.1	[31.4 - 41.0]				5.6	1.5	5.9	21.5	29.5	10.2	25.9					•	
	Phenicols	Chloramphenicol	0.0	1.2	[0.4 - 2.8]								20.2	76.3	2.2			1.2			
	Tetracyclines	Tetracycline	0.5	20.7	[16.9 - 25.0]									78.8	0.5	0.2	9.0	11.5			


* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

CLSt: Clinical and Laboratory Standards Institute
 Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

§ Percent of isolates that were resistant
§ Percent of isolates that were resistant
§ The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).

* The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensitire plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MCs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 22. Antimicrobial resistance pattern for Shigella sonnei, 2009

'ear 'otal	Isolates		2000 366	2001 239	2002 536	2003 434	2004 241	2005 340	2006 321	2007 414	2008 496	2009 410
Rank [*]	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.3%	0.0%	0.0%	0.0%	0.0%	1.2%	0.0%	1.0%	0.4%	0.7%
		(MIC ≥ 16)	1	0	0	0	0	4	0	4	2	3
		Streptomycin	56.0%	54.0%	55.4%	56.5%	56.8%	70.3%	61.7%	76.8%	82.5%	91.5%
		(MIC ≥ 64)	205	129	297	245	137	239	198	318	409	375
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	1.9%	4.6%	2.2%	1.4%	1.7%	1.2%	1.9%	0.5%	3.2%	2.0%
	combinations	(MIC ≥ 32/16)	7	11	12	6	4	4	6	2	16	8
	Cephems	Ceftiofur	0.0%	0.0%	0.0%	0.0%	0.4%	0.6%	0.0%	0.0%	0.0%	0.5%
1		(MIC ≥ 8)	0	0	0	0	1	2	0	0	0	2
		Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.4%	0.6%	0.0%	0.0%	0.0%	0.5%
		(MIC ≥ 64)	0	0	0	0	1	2	0	0	0	2
	Penicillins	Ampicillin	80.6%	82.8%	77.6%	79.7%	79.3%	70.6%	62.6%	64.0%	61.5%	43.29
		(MIC ≥ 32)	295	198	416	346	191	240	201	265	305	177
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.6%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	3	0
		Nalidixic acid	1.1%	0.8%	1.5%	0.5%	1.7%	1.2%	2.8%	1.2%	1.6%	1.7%
		(MIC ≥ 32)	4	2	8	2	4	4	9	5	8	7
	Aminoglycosides	Kanamycin	1.6%	0.4%	0.4%	0.0%	0.0%	0.0%	0.0%	0.2%	0.6%	0.2%
		(MIC ≥ 64)	6	1	2	0	0	0	0	1	3	1
	Cephems	Cefoxitin	0.3%	1.7%	0.4%	0.0%	0.4%	0.3%	0.0%	0.0%	0.0%	0.7%
		(MIC ≥ 32)	1	4	2	0	1	1	0	0	0	3
		Cephalothin	8.7%	12.6%	7.3%	10.1%	Not	Not	Not	Not	Not	Not
		(MIC ≥ 32)	32	30	39	44	Tested	Tested	Tested	Tested	Tested	Teste
Ш	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	56.0%	54.4%	29.9%	31.3%	49.0%	57.9%	33.3%	20.0%	25.0%	23.9%
Ш		(MIC ≥ 512)	205	130	160	136	118	197	107	83	124	98
		Trimethoprim-sulfamethoxazole	54.9%	50.6%	37.9%	38.5%	46.9%	55.0%	42.7%	22.0%	29.4%	36.19
		(MIC ≥ 4/76)	201	121	203	167	113	187	137	91	146	148
	Phenicols	Chloramphenicol	2.7%	1.3%	0.2%	1.2%	2.5%	2.4%	0.9%	1.2%	1.0%	1.2%
		(MIC ≥ 32)	10	3	1	5	6	8	3	5	5	5
	Tetracyclines	Tetracycline	34.4%	44.8%	23.5%	22.1%	36.1%	29.4%	22.7%	16.2%	17.3%	20.7%
		(MIC ≥ 16)	126	107	126	96	87	100	73	67	86	85

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important
 † CLSI: Clinical and Laboratory Standards Institute
 ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 38. Resistance	patterns of Shigella	sonnei isolates.	2000-2009

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total Isolates	366	239	536	434	241	340	321	414	496	410
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	7.7%	5.4%	7.1%	8.5%	5.4%	4.4%	6.2%	6.8%	4.4%	3.7%
	28	13	38	37	13	15	20	28	22	15
Resistance ≥ 1 CLSI class*	92.3%	94.6%	92.9%	91.5%	94.6%	95.6%	93.8%	93.2%	95.6%	96.3%
	338	226	498	397	228	325	301	386	474	395
Resistance ≥ 2 CLSI classes*	60.7%	59.8%	51.9%	54.1%	56.4%	70.3%	59.8%	63.0%	65.7%	65.1%
	222	143	278	235	136	239	192	261	326	267
Resistance ≥ 3 CLSI classes*	56.8%	51.5%	36.4%	35.3%	50.6%	55.3%	35.8%	21.3%	29.8%	29.8%
	208	123	195	153	122	188	115	88	148	122
Resistance ≥ 4 CLSI classes*	25.4%	37.7%	19.8%	20.5%	25.7%	12.4%	8.1%	5.1%	5.6%	5.9%
	93	90	106	89	62	42	26	21	28	24
Resistance ≥ 5 CLSI classes*	1.4%	0.0%	0.6%	0.5%	0.8%	0.9%	0.0%	1.2%	0.4%	0.2%
	5	0	3	2	2	3	0	5	2	1
At least ACSSuT [†]	0.8%	0.0%	0.0%	0.2%	0.0%	0.3%	0.0%	0.5%	0.2%	0.0%
	3	0	0	1	0	1	0	2	1	0
At least ACT/S [‡]	1.9%	0.8%	0.2%	0.9%	1.7%	2.4%	0.9%	0.5%	0.8%	1.0%
	7	2	1	4	4	8	3	2	4	4
At least AT/S [§]	46.2%	41.0%	30.2%	33.6%	35.3%	35.6%	22.7%	9.4%	14.3%	12.2%
	169	98	162	146	85	121	73	39	71	50
At least ANT/S [¶]	0.0%	0.0%	0.2%	0.2%	0.8%	0.3%	0.0%	0.7%	0.0%	0.0%
	0	0	1	1	2	1	0	3	0	0
At least ACSSuTAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.4%	0.3%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	0	0	1	1	0	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

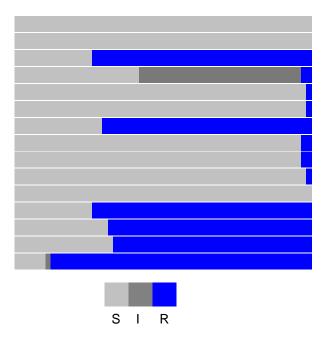
§ AT/S: resistance to ampicillin, trimethoprim-sulfamethoxazole

¶ ANT/S: resistance to AT/S, naladixic acid

** ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

Table 39. Minimum inhibitory concentrations and resistance of Shigella flexneri isolates to antimicrobial agents, 2009 (N=57)

				% of is	olates						Perce	ent of al	l isolate	swith	MIC (µg	/mL)					
Rank	CLSI [†] Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] ¹	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 6.3]							1.8	22.8	59.6	14.0	1.8					
		Gentamicin	0.0	0.0	[0.0 - 6.3]					1.8	24.6	68.4	5.3					•			
		Streptomycin	N/A	73.7	[60.3 - 84.5]											-	26.3	12.3	61.4		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	54.4	3.5	[0.4 - 12.1]							1.8	19.3	8.8	12.3	54.4	3.5				
1	Cephems	Ceftiofur	0.0	1.8	[0.02 - 9.4]				38.6	47.4	8.8	3.5				1.8					
		Ceftriaxone	0.0	1.8	[0.02 - 9.4]					98.2							1.8				
	Penicillins	Ampicillin	0.0	70.2	[56.6 - 81.6]							24.6	5.3					70.2			
	Quinolones	Ciprofloxacin	0.0	3.5	[0.4 - 12.1]	94.7	1.8							1.8	1.8		-				
		Nalidixic acid	N/A	3.5	[0.4 - 12.1]						1.8	71.9	19.3	3.5				3.5			
	Aminoglycosides	Kanamycin	0.0	1.8	[0.02 - 9.4]										98.2				1.8		
	Cephems	Cefoxitin	0.0	0.0	[0.0 - 6.3]							3.5	52.6	40.4	3.5						
	Folate pathway inhibitors	Sulfisoxazole	N/A	73.7	[60.3 - 84.5]											24.6	1.8				73.7
		Trimethoprim-sulf amethoxazole	N/A	68.4	[54.8 - 80.1]				26.3	3.5	1.8				68.4						
	Phenicols	Chloramphenicol	0.0	66.7	[52.9 - 78.6]								29.8	1.8	1.8		15.8	50.9			
	Tetracyclines	Tetracycline	1.8	87.7	[76.3 - 94.9]									10.5	1.8	1.8	5.3	80.7			


* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

† CLSI: Clinical and Laboratory Standards Institute Percent of isolates with intermediate susceptibility, N/A if no MIC range of intermediate susceptibility exists § Percent of isolates that were resistant

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).

resistance (x%). * The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 23. Antimicrobial resistance pattern for Shigella flexneri, 2009

Table 40. Percentage and number of Shigella flexneri isolates resistant to antimicrobial agents, 2000-2009

Year			2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total I	solates		75	91	73	51	62	52	74	61	45	57
Rank	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%
		(MIC ≥ 16)	0	0	1	0	0	0	1	0	0	0
		Streptomycin	61.3%	47.3%	43.8%	60.8%	71.0%	57.7%	58.1%	52.5%	62.2%	73.7%
		(MIC ≥ 64)	46	43	32	31	44	30	43	32	28	42
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	4.0%	4.4%	5.5%	2.0%	1.6%	0.0%	0.0%	0.0%	4.4%	3.5%
	combinations	(MIC ≥ 32/16)	3	4	4	1	1	0	0	0	2	2
	Cephems	Ceftiofur	0.0%	0.0%	1.4%	2.0%	0.0%	0.0%	1.4%	0.0%	0.0%	1.8%
		(MIC ≥ 8)	0	0	1	1	0	0	1	0	0	1
		Ceftriaxone	0.0%	0.0%	1.4%	2.0%	0.0%	0.0%	1.4%	0.0%	0.0%	1.8%
		(MIC ≥ 64)	0	0	1	1	0	0	1	0	0	1
	Penicillins	Ampicillin	77.3%	72.5%	75.3%	84.3%	80.6%	75.0%	63.5%	63.9%	75.6%	70.2%
		(MIC ≥ 32)	58	66	55	43	50	39	47	39	34	40
	Quinolones	Ciprofloxacin	0.0%	1.1%	0.0%	0.0%	0.0%	0.0%	1.4%	1.6%	2.2%	3.5%
		(MIC ≥ 4)	0	1	0	0	0	0	1	1	1	2
		Nalidixic acid	0.0%	3.3%	2.7%	5.9%	1.6%	3.8%	5.4%	4.9%	2.2%	3.5%
		(MIC ≥ 32)	0	3	2	3	1	2	4	3	1	2
	Aminoglycosides	Kanamycin	0.0%	1.1%	4.1%	3.9%	0.0%	3.8%	0.0%	0.0%	0.0%	1.8%
		(MIC ≥ 64)	0	1	3	2	0	2	0	0	0	1
	Cephems	Cefoxitin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 32)	0	0	0	0	0	0	0	0	0	0
		Cephalothin	2.7%	1.1%	2.7%	3.9%	Not	Not	Not	Not	Not	Not
		(MIC ≥ 32)	2	1	2	2	Tested	Tested	Tested	Tested	Tested	Tested
Ш	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	53.3%	57.1%	41.1%	52.9%	66.1%	55.8%	68.9%	62.3%	62.2%	73.7%
		(MIC ≥ 512)	40	52	30	27	41	29	51	38	28	42
		Trimethoprim-sulfamethoxazole	42.7%	34.1%	28.8%	39.2%	46.8%	44.2%	59.5%	49.2%	48.9%	68.4%
		(MIC ≥ 4/76)	32	31	21	20	29	23	44	30	22	39
	Phenicols	Chloramphenicol	69.3%	74.7%	63.0%	68.6%	61.3%	65.4%	54.1%	55.7%	68.9%	66.7%
		(MIC ≥ 32)	52	68	46	35	38	34	40	34	31	38
	Tetracyclines	Tetracycline	92.0%	94.5%	78.1%	82.4%	95.2%	94.2%	83.8%	83.6%	86.7%	87.7%
		(MIC ≥ 16)	69	86	57	42	59	49	62	51	39	50

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

CLSI: Clinical and Laboratory Standards Institute ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 41. Resistance	patterns of Shi	gella flexneri isolates,	2000-2009
----------------------	-----------------	--------------------------	-----------

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total Isolates	75	91	73	51	62	52	74	61	45	57
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	4.0%	3.3%	15.1%	7.8%	0.0%	5.8%	5.4%	9.8%	4.4%	5.3%
	3	3	11	4	0	3	4	6	2	3
Resistance ≥ 1 CLSI class*	96.0%	96.7%	84.9%	92.2%	100.0%	94.2%	94.6%	90.2%	95.6%	94.7%
	72	88	62	47	62	49	70	55	43	54
Resistance ≥ 2 CLSI classes*	82.7%	89.0%	76.7%	86.3%	93.5%	80.8%	85.1%	80.3%	93.3%	86.0%
	62	81	56	44	58	42	63	49	42	49
Resistance ≥ 3 CLSI classes*	81.3%	79.1%	75.3%	80.4%	90.3%	78.8%	75.7%	68.9%	84.4%	82.5%
	61	72	55	41	56	41	56	42	38	47
Resistance ≥ 4 CLSI classes*	64.0%	62.6%	57.5%	62.7%	64.5%	65.4%	47.3%	55.7%	57.8%	63.2%
	48	57	42	32	40	34	35	34	26	36
Resistance ≥ 5 CLSI classes*	32.0%	25.3%	19.2%	31.4%	29.0%	30.8%	28.4%	27.9%	28.9%	49.1%
	24	23	14	16	18	16	21	17	13	28
At least ACSSuT [†]	29.3%	22.0%	15.1%	29.4%	27.4%	28.8%	27.0%	26.2%	24.4%	47.4%
	22	20	11	15	17	15	20	16	11	27
At least ACT/S [‡]	32.0%	23.1%	21.9%	27.5%	24.2%	32.7%	28.4%	26.2%	26.7%	47.4%
	24	21	16	14	15	17	21	16	12	27
At least AT/S§	38.7%	25.3%	27.4%	37.3%	35.5%	38.5%	43.2%	36.1%	33.3%	52.6%
	29	23	20	19	22	20	32	22	15	30
At least ANT/S [¶]	0.0%	1.1%	1.4%	5.9%	0.0%	1.9%	2.7%	1.6%	0.0%	1.8%
	0	1	1	3	0	1	2	1	0	1
At least ACSSuTAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	2.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%
resistant	0	0	0	1	0	0	1	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline
 ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ AT/S: resistance to ampicillin, trimethoprim-sulfamethoxazole

¶ ANT/S: resistance to AT/S, naladixic acid
 ** ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

4. Escherichia coli O157

Table 42. Minimum inhibitory concentrations (MICs) and resistance of Escherichia coli O157 isolates to antimicrobial agents, 2009 (N=188)

	CLSI [†] Antimicrobial Class			% of is	olates						Perce	nt of al	lisolate	swith	MIC (µg	/mL)"					
капк	CLSI [®] Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 1.9]						2.1	55.3	39.9	2.7							
		Gentamicin	0.0	0.5	[0.01 - 2.9]					29.8	63.3	6.4					0.5				
		Streptomycin	N/A	4.8	[2.2 - 8.9]												95.2	3.7	1.1		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.0	0.5	[0.01 - 2.9]							1.1	8.5	85.6	4.3		0.5				
1	Cephems	Ceftiofur	0.0	0.0	[0.0 - 1.9]				1.6	8.0	87.8	2.7	_								
		Ceftriaxone	0.0	0.0	[0.0 - 1.9]					100.0					-		_				
	Penicillins	Ampicillin	0.5	4.3	[1.9 - 8.2]							3.2	81.9	10.1		0.5		4.3			
	Quinolones	Ciprofloxacin	0.0	0.5	[0.01 - 2.9]	97.3	0.5			1.6					0.5						
		Nalidixic acid	N/A	2.1	[0.6 - 5.4]							1.1	87.2	9.6				2.1			
	Aminoglycosides	Kanamycin	0.0	0.5	[0.01 - 2.9]										98.9	0.5			0.5		
	Cephems	Cefoxitin	1.1	0.5	[0.01 - 2.9]							2.1	3.7	85.6	6.9	1.1		0.5			
	Folate pathway inhibitors	Sulfisoxazole	N/A	6.4	[3.3 - 10.9]									_		36.2	52.1	5.3			6.4
		Trimethoprim-sulfamethoxazole	N/A	4.3	[1.9 - 8.2]				94.1	1.1	0.5				4.3		_				
	Phenicols	Chloramphenicol	0.0	1.1	[0.1 - 3.8]								1.1	23.4	74.5			1.1			
	Tetracyclines	Tetracycline	0.0	7.4	[4.1 - 12.2]									92.6				7.4			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

CLSt Clinical and Laboratory Standards Institute
 Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

§ Percent of isolates that were resistant ¶ The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).

The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Susceptible, Intermediate, and Resistant Proportion **Antimicrobial Agent** Amikacin Gentamicin Streptomycin Amoxicillin-clavulanic acid Ceftiofur Ceftriaxone Ampicillin Ciprofloxacin Nalidixic acid Kanamycin Cefoxitin Sulfisoxazole Trimethoprim-sulfamethoxazole Chloramphenicol Tetracycline

Figure 24. Antimicrobial resistance pattern for Escherichia coli O157, 2009

Table 43. Percentage and number of *Escherichia coli* O157 isolates resistant to antimicrobial agents,2000–2009

Year	-2003		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total	solates		407	277	399	158	169	194	233	190	159	188
Rank [*]	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.5%	0.4%	0.0%	0.0%	0.6%	0.5%	0.0%	0.0%	1.3%	0.5%
		(MIC ≥ 16)	2	1	0	0	1	1	0	0	2	1
		Streptomycin	5.2%	1.8%	2.3%	1.9%	1.8%	2.1%	2.6%	2.1%	1.9%	4.8%
		(MIC ≥ 64)	21	5	9	3	3	4	6	4	3	9
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	1.0%	0.7%	0.0%	1.3%	0.0%	0.0%	1.3%	0.5%	0.6%	0.5%
	combinations	(MIC ≥ 32/16)	4	2	0	2	0	0	3	1	1	1
1	Cephems	Ceftiofur	1.0%	1.1%	0.0%	1.3%	0.0%	0.0%	1.3%	0.0%	0.6%	0.0%
		(MIC ≥ 8)	4	3	0	2	0	0	3	0	1	0
		Ceftriaxone	1.0%	0.7%	0.0%	1.3%	0.0%	0.0%	1.3%	0.0%	0.6%	0.0%
		(MIC ≥ 64)	4	2	0	2	0	0	3	0	1	0
	Penicillins	Ampicillin	2.7%	2.2%	1.5%	3.2%	1.2%	4.1%	2.6%	2.1%	3.8%	4.3%
		(MIC ≥ 32)	11	6	6	5	2	8	6	4	6	8
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.5%	0.0%	0.5%
		(MIC ≥ 4)	0	0	0	0	0	0	1	1	0	1
		Nalidixic acid	0.5%	1.1%	1.0%	0.6%	1.8%	1.5%	2.1%	2.1%	1.3%	2.1%
		(MIC ≥ 32)	2	3	4	1	3	3	5	4	2	4
	Aminoglycosides	Kanamycin	1.0%	0.0%	0.5%	0.0%	0.0%	0.5%	0.4%	0.0%	0.0%	0.5%
		(MIC ≥ 64)	4	0	2	0	0	1	1	0	0	1
	Cephems	Cefoxitin	1.0%	0.7%	0.0%	1.3%	0.6%	0.0%	1.3%	0.0%	1.3%	0.5%
		(MIC ≥ 32)	4	2	0	2	1	0	3	0	2	1
		Cephalothin	1.2%	1.4%	1.5%	3.2%	Not	Not	Not	Not	Not	Not
		(MIC ≥ 32)	5	4	6	5	Tested	Tested	Tested	Tested	Tested	Tested
Ш	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	5.9%	5.1%	3.5%	3.8%	1.8%	6.7%	3.0%	2.6%	3.1%	6.4%
"		(MIC ≥ 512)	24	14	14	6	3	13	7	5	5	12
		Trimethoprim-sulfamethoxazole	0.7%	0.7%	0.5%	0.6%	0.0%	0.5%	0.4%	1.1%	1.3%	4.3%
		(MIC ≥ 4/76)	3	2	2	1	0	1	1	2	2	8
	Phenicols	Chloramphenicol	3.7%	1.4%	1.3%	1.3%	0.6%	1.0%	1.3%	0.5%	0.6%	1.1%
		(MIC ≥ 32)	15	4	5	2	1	2	3	1	1	2
	Tetracyclines	Tetracycline	7.1%	5.4%	3.0%	5.7%	1.8%	8.8%	4.7%	4.7%	1.9%	7.4%
	1	(MIC ≥ 16)	29	15	12	9	3	17	11	9	3	14

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important † CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 44. Resistance patterns of Escherichia coli O157 isolates, 2000–2009

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total Isolates	407	277	399	158	169	194	233	190	159	188
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	90.4%	91.3%	94.0%	90.5%	94.7%	87.6%	91.8%	92.1%	91.8%	89.9%
	368	253	375	143	160	170	214	175	146	169
Resistance ≥ 1 CLSI class*	9.6%	8.7%	6.0%	9.5%	5.3%	12.4%	8.2%	7.9%	8.2%	10.1%
	39	24	24	15	9	24	19	15	13	19
Resistance ≥ 2 CLSI classes*	6.6%	5.4%	3.8%	5.1%	2.4%	6.7%	4.7%	3.2%	3.1%	7.4%
	27	15	15	8	4	13	11	6	5	14
Resistance ≥ 3 CLSI classes*	4.7%	2.2%	2.0%	3.2%	1.2%	5.2%	3.4%	2.1%	2.5%	5.9%
	19	6	8	5	2	10	8	4	4	11
Resistance ≥ 4 CLSI classes*	3.4%	1.4%	0.8%	1.3%	0.6%	1.0%	2.1%	1.1%	1.3%	4.3%
	14	4	3	2	1	2	5	2	2	8
Resistance ≥ 5 CLSI classes*	1.2%	0.4%	0.0%	0.0%	0.0%	0.0%	0.9%	0.5%	0.0%	0.5%
	5	1	0	0	0	0	2	1	0	1
At least ACSSuT [†]	1.2%	0.4%	0.0%	0.0%	0.0%	0.0%	0.9%	0.0%	0.0%	0.0%
	5	1	0	0	0	0	2	0	0	0
At least ACT/S [‡]	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.6%	0.0%
	1	0	0	0	0	0	0	0	1	0
At least ACSSuTAuCx§	1.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	4	1	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid resistant	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	1	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

+ ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

5. Campylobacter

Table 45. Frequency of Campylobacter species isol

Species	2	2009
	Ν	(%)
Campylobacter jejuni	1355	(90.2%)
Campylobacter coli	143	(9.5%)
Other	4	(0.3%)
Total	1502	(100.0%)

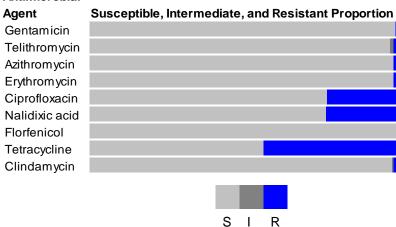
Table 46. Minimum inhibition concentrations (MICs) and resistance of Campylobacter isolates to antimicrobial agents, 2009 (N=1502)

				% of is	olates						Perce	nt of al	l isolate	swith	MIC (µg	/m L)					
Rank	CLSI [†] Antim icrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.9	[0.5 - 1.5]				1.1	21.4	61.7	14.4	0.5					0.9			
	Ketolide	Telithromycin	0.9	1.5	[0.9 - 2.2]			0.1	0.2	8.3	32.1	36.7	16.7	3.5	0.9	1.5					
	Macrolides	Azithromycin	0.0	1.7	[1.1 - 2.4]	0.7	15.4	45.0	28.8	7.7	0.7	< 0.1							1.7		
		Erythromycin	0.0	1.7	[1.1 - 2.4]			< 0.1	1.6	23.3	47.2	19.8	5.0	1.3	< 0.1			< 0.1	1.6		
	Quinolones	Ciprofloxacin	< 0.1	22.9	[20.8 - 25.1]		1.1	27.8	40.3	5.9	1.7	0.2	< 0.1	1.5	9.1	7.4	3.1	1.4	0.4		
		Nalidixic acid	< 0.1	23.2	[21.1 - 25.4]									62.1	12.8	1.9	< 0.1	3.1	20.1		
	Phenicols	Florfenicol ^{††}	0.0	0.5	[0.2 - 1.0]					< 0.1	14.0	69.1	13.8	2.5	0.5	< 0.1		-			
	Tetracyclines	Tetracycline	0.1	43.5	[40.9 - 46.0]			4.3	26.3	16.5	6.0	2.7	0.5	< 0.1	0.1	0.4	2.5	9.9	30.6		
ш	Lincosamides	Clindamycin	0.3	1.4	[0.9 - 2.1]		1.4	16.2	42.5	27.9	7.5	2.3	0.5	0.3	0.3	0.5	0.7				

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important; Rank 3, Important

CLSt Clinical and Laboratory Standards Institute
 Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

§ Percent of isolates that were resistant


The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).

* The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

the Only a susceptible breakpoint (≤ 4 μg/ml) has been established. In this report, isolates with an MIC≥ 8 μg/ml are categorized as resistant.

Figure 25. Antimicrobial resistance pattern for Campylobacter, 2009

Antimicrobial

Table 47. Percentage and number of Campylobacter isolates resistant to antimicrobial agents, 2000–2009

Year			2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
	solates		324	384	354	328	347	890	816	1100	1159	1502
Rank [*]	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Gentamicin	0.3%	0.0%	0.0%	0.3%	0.3%	0.7%	0.1%	0.6%	1.1%	0.9%
		(MIC ≥ 8)	1	0	0	1	1	6	1	7	13	13
	Ketolides	Telithromycin	Not	Not	Not	Not	Not	1.0%	1.6%	1.5%	2.5%	1.5%
		(MIC ≥ 16)	Tested	Tested	Tested	Tested	Tested	9	13	16	29	22
	Macrolides	Azithromycin	1.9%	2.1%	2.0%	0.9%	0.6%	1.9%	1.7%	2.0%	3.0%	1.7%
		(MIC ≥ 8)	6	8	7	3	2	17	14	22	35	25
		Erythromycin	1.2%	2.1%	1.4%	0.9%	0.3%	1.8%	1.7%	2.0%	3.0%	1.7%
		(MIC ≥ 32)	4	8	5	3	1	16	14	22	35	25
	Quinolones	Ciprofloxacin	14.8%	19.5%	20.1%	17.7%	19.0%	21.7%	19.6%	26.0%	23.0%	22.9%
		(MIC ≥ 4)	48	75	71	58	66	193	160	286	267	344
		Nalidixic acid	16.7%	20.3%	20.6%	18.9%	19.6%	22.4%	20.1%	26.5%	23.6%	23.2%
		(MIC ≥ 64)	54	78	73	62	68	199	164	291	273	348
	Phenicols	Chloramphenicol	0.0%	0.3%	0.3%	0.0%	1.4%	Not	Not	Not	Not	Not
		(MIC ≥ 32)	0	1	1	0	5	Tested	Tested	Tested	Tested	Tested
		Florfenicol [‡]	Not	Not	Not	Not	Not	0.6%	0.0%	0.0%	0.5%	0.5%
		Susceptible breakpoint: (MIC ≤ 4)	Tested	Tested	Tested	Tested	Tested	5	0	0	6	8
	Tetracyclines	Tetracycline	38.3%	40.9%	41.2%	38.4%	46.1%	40.6%	46.0%	44.4%	43.7%	43.5%
		(MIC ≥ 16)	124	157	146	126	160	361	375	488	507	653
Ш	Lincosamides	Clindamycin	0.9%	2.1%	2.0%	0.6%	2.0%	1.5%	2.0%	1.7%	2.8%	1.4%
	1	(MIC ≥ 8)	3	8	7	2	7	13	16	19	32	21

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important; Rank 3, Important † CLSI: Clinical and Laboratory Standards Institute ‡ Only a susceptible breakpoint (≤ 4 µg/ml) has been established. In this report, isolates with an MIC ≥ 8 µg/ml are categorized as resistant

Table 48. Resistance patterns of Campylobacter isolates, 2000–2009

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total Isolates	324	384	354	328	347	890	816	1100	1159	1502
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	52.2%	49.2%	48.3%	50.9%	46.1%	48.4%	43.9%	45.2%	45.8%	46.4%
	169	189	171	167	160	431	358	497	531	697
Resistance ≥ 1 CLSI class*	47.8%	50.8%	51.7%	49.1%	53.9%	51.6%	56.1%	54.8%	54.2%	53.6%
	155	195	183	161	187	459	458	603	628	805
Resistance ≥ 2 CLSI classes*	8.0%	13.3%	12.7%	8.5%	14.1%	13.6%	12.0%	17.5%	15.6%	13.8%
	26	51	45	28	49	121	98	192	181	207
Resistance ≥ 3 CLSI classes*	0.9%	1.6%	1.1%	0.9%	1.2%	1.5%	1.5%	1.7%	2.5%	1.6%
	3	6	4	3	4	13	12	19	29	24
Resistance ≥ 4 CLSI classes*	0.3%	0.3%	0.0%	0.3%	0.3%	0.3%	0.5%	0.9%	1.1%	1.0%
	1	1	0	1	1	3	4	10	13	15
Resistance ≥ 5 CLSI classes*	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.3%
	0	0	0	0	0	0	0	0	3	4

* CLSI: Clinical and Laboratory Standards Institute

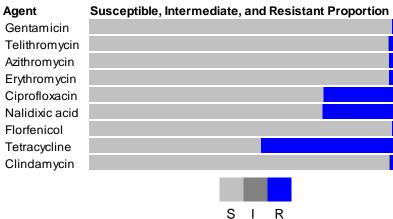
Table 49. Minimum inhibitory concentrations (MICs) and resistance of Campylobacter jejuni isolates to antimicrobial agents, 2009 (N=1355)

				% of is	olates						Perce	nt of al	lisolate	swith	MIC (µg	/mL)					
Rank	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.7	[0.3 - 1.3]				1.1	23.0	63.2	11.7	0.3					0.7			
	Ketolide	Telithromycin	0.5	1.4	[0.8 - 2.2]			< 0.1	0.1	8.0	33.6	38.4	16.2	1.8	0.5	1.4					
	Macrolides	Azithromycin	0.0	1.5	[1.0 - 2.4]	0.7	16.8	48.0	26.7	5.8	0.4	< 0.1							1.5		
		Erythromycin	0.0	1.5	[1.0 - 2.4]				1.7	25.2	48.7	18.7	3.6	0.4					1.5		
	Quinolones	Ciprofloxacin	0.0	23.0	[20.8 - 25.4]		1.3	29.2	40.6	4.9	1.0	0.1		1.3	9.4	7.1	3.3	1.4	0.4		
		Nalidixic acid	0.0	23.2	[21.0 - 25.5]									64.1	11.1	1.6		2.6	20.6		
	Phenicols	Florfenicol ^{††}	0.0	0.6	[0.3 - 1.2]					< 0.1	14.8	70.3	12.2	2.0	0.5	< 0.1		-			
	Tetracyclines	Tetracycline	0.1	43.4	[40.7 - 46.1]			4.6	27.6	16.3	5.3	2.1	0.4	< 0.1	0.1	0.4	2.8	10.6	29.5		
ш	Lincosamides	Clindamycin	0.2	1.3	[0.8 - 2.1]		1.5	17.3	45.4	27.8	5.0	1.3	0.1	0.2	0.3	0.4	0.7				

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important; Rank 3, Important

† CLSI: Clinical and Laboratory Standards Institute

‡ Percent of isolates with intermediate susceptibility, N/A if no MIC range of intermediate susceptibility exists § Percent of isolates that were resistant


The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).

** The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitive plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

†↑ Only a susceptible breakpoint (≤ 4 µg/ml) has been established. In this report, isolates with an MIC≥ 8 µg/ml are categorized as resistant.

Figure 26. Antimicrobial resistance pattern for Campylobacter jejuni, 2009

Antimicrobial

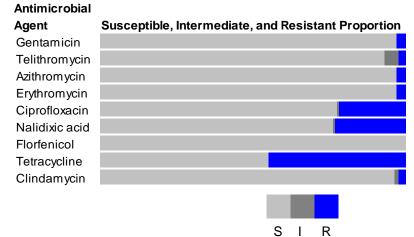
Table 50. Percentage and number of Campylobacter jejuni isolates resistant to antimicrobial agen	ıts,
2000–2009	

Year			2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Total I	solates		306	365	329	303	320	791	709	992	1046	1355
Rank [*]	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Gentamicin	0.0%	0.0%	0.0%	0.0%	0.3%	0.5%	0.0%	0.7%	1.1%	0.7%
		(MIC ≥ 8)	0	0	0	0	1	4	0	7	12	9
	Ketolides	Telithromycin	Not	Not	Not	Not	Not	0.6%	0.8%	1.0%	2.2%	1.4%
		(MIC ≥ 16)	Tested	Tested	Tested	Tested	Tested	5	6	10	23	19
	Macrolides	Azithromycin	1.6%	1.9%	1.8%	0.3%	0.6%	1.8%	0.8%	1.6%	2.3%	1.5%
		(MIC ≥ 8)	5	7	6	1	2	14	6	16	24	21
		Erythromycin	1.0%	1.9%	1.2%	0.3%	0.3%	1.6%	0.8%	1.6%	2.3%	1.5%
		(MIC ≥ 32)	3	7	4	1	1	13	6	16	24	21
	Quinolones	Ciprofloxacin	14.7%	18.4%	20.7%	17.2%	18.1%	21.5%	19.5%	25.8%	22.4%	23.0%
		(MIC ≥ 4)	45	67	68	52	58	170	138	256	234	312
		Nalidixic acid	16.0%	18.9%	21.3%	17.8%	18.4%	21.9%	19.0%	26.1%	22.8%	23.2%
		(MIC ≥ 64)	49	69	70	54	59	173	135	259	239	314
	Phenicols	Chloramphenicol	0.0%	0.3%	0.3%	0.0%	1.6%	Not	Not	Not	Not	Not
		(MIC ≥ 32)	0	1	1	0	5	Tested	Tested	Tested	Tested	Tested
Ш		Florfenicol [‡]	Not	Not	Not	Not	Not	0.5%	0.0%	0.0%	0.6%	0.6%
		Susceptible breakpoint: (MIC ≤ 4)	Tested	Tested	Tested	Tested	Tested	4	0	0	6	8
	Tetracyclines	Tetracycline	39.2%	40.3%	41.3%	38.3%	46.9%	41.8%	47.4%	44.8%	44.3%	43.4%
		(MIC ≥ 16)	120	147	136	116	150	331	336	444	463	588
Ш	Lincosamides	Clindamycin	0.7%	1.9%	1.8%	0.0%	2.2%	1.1%	1.0%	1.3%	2.1%	1.3%
an a		(MIC ≥ 8)	2	7	6	0	7	9	7	13	22	18

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important; Rank 3, Important CLSI: Clinical and Laboratory Standards Institute \ddagger Only a susceptible breakpoint ($\le 4 \text{ µg/ml}$) has been established. In this report, isolates with an MIC $\ge 8 \text{ µg/ml}$ are categorized as resistant

Table 51. Minimum inhibitory concentrations (MICs) and resistance of Campylobacter coli isolates to antimicrobial agents, 2009 (N=143)

Daugh		Antimizzakiel Azzart		% of is	olates						Perce	nt of al	lisolate	swith	MIC (µg	/m L)					
Rank	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	2.8	[0.8 - 7.0]				0.7	5.6	48.3	39.9	2.8					2.8			
	Ketolide	Telithromycin	4.9	2.1	[0.4 - 6.0]			0.7	0.7	11.2	18.9	21.0	21.0	19.6	4.9	2.1					
	Macrolides	Azithromycin	0.0	2.8	[0.8 - 7.0]	0.7	2.1	18.2	47.6	25.2	3.5								2.8		
1		Erythromycin	0.0	2.8	[0.8 - 7.0]			0.7	0.7	5.6	34.3	29.4	16.8	9.1	0.7			0.7	2.1		
	Quinolones	Ciprofloxacin	0.7	21.7	[15.2 - 29.3]			15.4	37.8	15.4	8.4	0.7	0.7	3.5	5.6	9.8	1.4	1.4			
		Nalidixic acid	0.7	23.1	[16.4 - 30.9]									43.4	28.0	4.9	0.7	7.0	16.1		
	Phenicols	Florfenicol ^{††}	0.0	0.0	[0.0 - 2.5]						7.0	56.6	29.4	7.0							
	Tetracyclines	Tetracycline	0.0	44.8	[36.4 - 53.3]			1.4	14.7	17.5	12.6	8.4	0.7					3.5	41.3		
ш	Lincosamides	Clindamycin	1.4	2.1	[0.4 - 6.0]		0.7	5.6	16.8	28.7	29.4	11.9	3.5	1.4		1.4	0.7				


* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important; Rank 3, Important

CLSI: Clinical and Laboratory Standards Institute
 Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

§ Percent of isolates that were resistant ¶ The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).
** The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in

the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensitire plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MCs equal to or less than the low est tested concentration. CLSI breakpoints were used when available. †† Only a susceptible breakpoint (≤ 4 µg/m) has been established. In this report, isolates with an MC ≥ 8 µg/m are categorized as resistant.

Figure 27. Antimicrobial resistance pattern for *Campylobacter coli*, 2009

Table 52. Percentage and number of *Campylobacter coli* isolates resistant to antimicrobial agents, 2000–2009

2003												
Year			2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
	solates	-	12	17	25	22	26	98	97	105	110	143
Rank [*]	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Gentamicin	8.3%	0.0%	0.0%	4.5%	0.0%	2.0%	1.0%	0.0%	0.9%	2.8%
		(MIC ≥ 8)	1	0	0	1	0	2	1	0	1	4
	Ketolides	Telithromycin	Not	Not	Not	Not	Not	4.1%	7.2%	5.7%	5.5%	2.1%
		(MIC ≥ 16)	Tested	Tested	Tested	Tested	Tested	4	7	6	6	3
	Macrolides Azithromycin		8.3%	5.9%	4.0%	9.1%	0.0%	3.1%	8.2%	5.7%	10.0%	2.8%
		(MIC ≥ 8)	1	1	1	2	0	3	8	6	11	4
'		Erythromycin	8.3%	5.9%	4.0%	9.1%	0.0%	3.1%	8.2%	5.7%	10.0%	2.8%
		(MIC ≥ 32)	1	1	1	2	0	3	8	6	11	4
	Quinolones	Ciprofloxacin	25.0%	47.1%	12.0%	22.7%	30.8%	23.5%	21.6%	28.6%	30.0%	21.7%
		(MIC ≥ 4)	3	8	3	5	8	23	21	30	33	31
		Nalidixic acid	25.0%	47.1%	12.0%	22.7%	34.6%	26.5%	23.7%	30.5%	30.0%	23.1%
		(MIC ≥ 64)	3	8	3	5	9	26	23	32	33	33
	Phenicols	Chloramphenicol	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not	Not	Not	Not
		(MIC ≥ 32)	0	0	0	0	0	Tested	Tested	Tested	Tested	Tested
Ш		Florfenicol [‡]	Not	Not	Not	Not	Not	1.0%	0.0%	0.0%	0.0%	0.0%
		Susceptible breakpoint: (MIC ≤ 4)	Tested	Tested	Tested	Tested	Tested	1	0	0	0	0
	Tetracyclines	Tetracycline	25.0%	58.8%	40.0%	45.5%	38.5%	30.6%	39.2%	41.9%	40.0%	44.8%
		(MIC ≥ 16)	3	10	10	10	10	30	38	44	44	64
Ш	Lincosamides	Clindamycin	8.3%	5.9%	4.0%	9.1%	0.0%	4.1%	9.3%	5.7%	9.1%	2.1%
		(MIC ≥ 8)	1	1	1	2	0	4	9	6	10	3

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important; Rank 3, Important † CLSI: Clinical and Laboratory Standards Institute

 \ddagger Only a susceptible breakpoint ($\le 4 \mu g/ml$) has been established. In this report, isolates with an MIC $\ge 8 \mu g/ml$ are categorized as resistant

References

CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): 2005 Human Isolates Final Report. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2007.

Clinical and Laboratory Standards Institute. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria: Approved Guideline. CLSI Document M45-A2. CLSI, Wayne, Pennsylvania, 2010.

Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement. CLSI Document M100-S20-. CLSI, Wayne, Pennsylvania, 2010.

Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard-Eighth Edition. CLSI Document M07-A8. CLSI, Wayne, Pennsylvania, 2009.

Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard-Third Edition. CLSI Document M31-A3. CLSI, Wayne, Pennsylvania, 2008.

Fleiss JL, Levin B, Paik MC. Statistical Methods in for Rates and Proportions. In: Shewart WA, Wilks SS, eds. Wiley Series in Probability and Statistics. Published Online; 2004.

Gonzalez, I, Grant KA, Richardson PT, Park SF, Collins MD. Specific identification of the enteropathogens *Campylobacter jejuni* and *Campylobacter coli* by using a PCR test based on the *ceuE* gene encoding a putative virulence determinant. Journal of Clinical Microbiology 1997;35:759-63.

Linton D, Lawson AJ, Owen RJ, Stanley J. PCR detection, identification to species level, and fingerprinting of *Campylobacter jejuni* and *Campylobacter coli* direct from diarrheic samples. Journal of Clinical Microbiology 1997;35:2568-72.

Linton D, Owen RJ, Stanley J. Rapid Indentification by PCR of the genus *Campylobacter* and of five *Campylobacter* species enteropathogenic for man and animals. Research in Microbiology 1996;147:707-718.

Pruckler, J., et al., Comparison of four real-time PCR methods for the identification of the genus *Campylobacter* and speciation of *C. jejuni* and *C. coli*. ASM 106th General meeting; Poster C282.

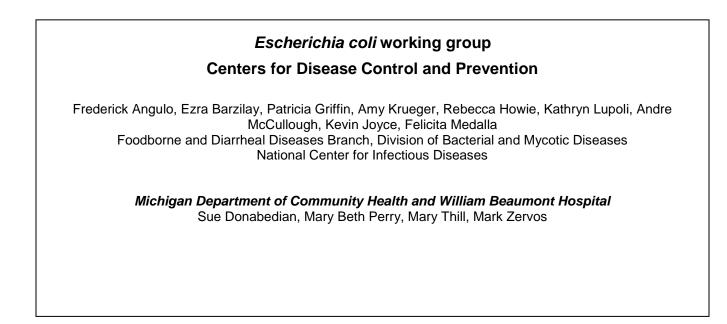
World Health Organization (WHO). Critically Important Antimicrobials for Human Medicine. Report of the Second WHO Expert Meeting. Switzerland, 2007.

NARMS Publications in 2009

Folster JP, Rickert R, Barzilay EJ, Whichard JM. Identification of the aminoglycoside resistance determinants, armA and rmtC among non-Typhi *Salmonella* isolates from humans in the United States. Antimicrob Agents Chemother. 2009 Oct;53(10): 4563-4.

Hendricksen RS, Mikoleit M, Kornschober C, Rickert RL, Van Duyne S, Kjelso C, Hasman H, Cormican M, Mevius D, Threlfall EJ, Angulo FJ. Emergence of multidrug-resistant *Salmonella* Concord infections in Europe and the United States in children adopted from Ethiopia, 2003-2007. Pediatr Infect Dis J. 2009 Sept;28(9):814-8.

Hendricksen RS, Seyfarth AM, Jensen AB, Whichard JM, Karlsmose S, Joyce K, Mikoleit M, DeLong SM, Weill FX, Aidara-Kane A, Lo Fo Wong DM, Angulo FJ, Wegener HC, Aarestrup FM. Results of use of WHO Global Salm-Surv external quality assurance system for antimicrobial susceptibility testing of *Salmonella* isolates from 2000-2007. J Clin Microbiol. 2009 Jan;47(1):79-85.


Lynch M, Blanton EM, Bulens S, Polyak C, Stevenson J, Medalla F, Barzilay E, Joyce K, Barrett T, Mintz ED. Typhoid fever in the United States, 1999-2006. JAMA. 2009 Aug;302(8): 859-65.

Petrov P, Hendricksen RS, Kantardjev T, Asseva G, Sorensen G, Fields P, Mikoleit M, Whichard JM, McQuiston JR, Torpdahi M, Aarestrup FM, Angulo FJ. Occurrence and characterization of *Salmonella enterica* subspecies *enterica* serovar 9,12:I,v:- strains from Bulgaria, Denmark, and the United States. Eur J Clin Microbiol Infect Dis. 2009

Sjolund-Karlsson M, Folster JP, Pecic G, Joyce K, Medalla F, Rickert R, Whichard JM. Emergence of plasmidmediated quinolone resistance among non-Typhi *Salmonella enterica* isolates from humans in the United States. Antimicrob Agents Chemother. 2009 May; 53(5):2142-4.

Appendix A

Summary of Escherichia coli Resistance Surveillance Pilot Study, 2009

INTRODUCTION

Escherichia coli is a Gram–negative coccobacillus bacterium that is part of the intestinal flora of humans and other animals. Because antimicrobial resistance genes commonly reside in mobile genetic elements that can be transferred horizontally to other bacteria, antimicrobial–resistant bacteria of the intestinal flora, including *E. coli*, constitute an important reservoir of resistance genes for pathogenic bacteria of humans and other animals. Furthermore, when introduced into a normally sterile site, *E. coli* is an important cause of infections, including septicemia, urinary tract infections, and wound infections. The human intestinal tract is the predominant source of *E. coli* causing these infections. Antimicrobial resistance among *E. coli* causing such infections complicates treatment options.

The use of antimicrobial agents creates a selective pressure for the emergence and dissemination of resistant bacteria. Use of antimicrobial agents in food animals selects resistant bacteria, including resistant *E. coli* in the intestinal tract of food animals. These resistant bacteria can be transmitted to humans through the food supply. Therefore, monitoring resistance in *E. coli* isolated from the intestinal flora of humans and animals is important to determining the role of these bacteria as human pathogens and as reservoirs of resistance determinants for human pathogens. The *E. coli* Resistance Surveillance Pilot is designed to determine the prevalence of resistance to clinically important antimicrobial agents among *E. coli* isolated from persons in the community.

SUMMARY OF 2009 SURVEILLANCE DATA

Background

Beginning in 2004, NARMS began to prospectively monitor the prevalence of antimicrobial resistance of *E. coli* isolated from human stool samples in two sites: Maryland and Michigan.

SURVEILLANCE AND LABORATORY TESTING METHODS

In 2009, Michigan was the sole participant in the study. Michigan cultured 10 human stool samples, from outpatients, each month for *E. coli* using Eosin Methylene Blue agar and subsequent biochemical confirmation. One *E. coli* isolate, if present, from each stool sample was sent to CDC for susceptibility testing to antimicrobial agents using broth microdilution (Sensititre[®]) to determine the minimum inhibitory concentration (MIC) for each of

15 antimicrobial agents: amikacin, ampicillin, amoxicillin-clavulanic acid, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfonamides, tetracycline, and trimethoprim-sulfamethoxazole.

Interpretive criteria from the Clinical and Laboratory Standards Institute (CLSI) were used when available (<u>Table</u> <u>53</u>). The 95% CIs for the percentage of resistant isolates calculated using the Clopper-Pearson exact method, are included in the MIC distribution tables. Similarly, multiclass resistance by CLSI antimicrobial class was defined as resistance to two or more classes.

RESULTS

In 2009, CDC received 45 isolates; of these, 45 (100.0%) were viable *E. coli* isolates. MIC was determined for *E. coli* isolates for 15 antimicrobial agents (<u>Table 54</u>). Of the 45 *E. coli* isolates, 22.2% (10/45) were resistant to ampicillin, 17.8% (8/45) to sulfisoxazole, 17.8% (8/45) to tetracycline, and 8.9% (4/45) to nalidixic acid (<u>Table 55</u>).

Multidrug-Resistant E. coli

Multidrug resistance is described in NARMS by the number of antimicrobial classes and also by specific coresistant phenotypes. Antimicrobial classes of agents defined by CLSI are used in this report.

- 11.1% (5/45) of *E. coli* isolates were resistant to three or more classes of antimicrobial agents (Table 56).
- 8.9% (4/45) of *E. coli* isolates were resistant to five or more classes of antimicrobial agents (Table 56).

Clinically Important Resistance

Antimicrobial agents commonly used to treat serious *E. coli* infections in humans include third-generation cephalosporins and fluoroquinolones.

- 2.2% (1/45) of *E. coli* isolates were resistant to ceftriaxone (Table 55).
- 8.9% (4/45) of *E. coli* isolates were resistant to ciprofloxacin (Table 55).

REFERENCES

- 1. Levy SB, Fitzgerald GB, Macone AB. Changes in intestinal flora of farm personnel after introduction of a tetracycline-supplemented feed on a farm. The New England Journal of Medicine 1976;295:583–8.
- 2. Schaberg DR, Culver DH, Gaynes RP. Major trends in the microbial etiology of nosocomial infection. The American Journal of Medicine 1991;91(Suppl 3B):3B-72S–5S.
- 3. Van den Bogaard AE, Stobberingh EE. Epidemiology of resistance to antibiotics: links between animals and humans. International Journal of Antimicrobial Agents 2000;14:327–35.
- 4. Corpet DE. Antibiotic resistance from food. The New England Journal of Medicine 1988;318:1206-7.
- 5. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement. CLSI Document M100-S20. CLSI, Wayne, Pennsylvania, 2010.

Table 53. Antimicrobial agents used for susceptibility testing of Escherichia coli, 2009

CLSI class	Antimicrobial Agent	Antimicrobial Agent	MIC Interpr	etive Standard	d (µg/mL)
		Concentration Range (µg/mL)	Susceptible	Intermediate	Resistant
Aminoglycosides	Amikacin	0.5 – 64	≤16	32	≥64
	Gentamicin	0.25 – 16	≤4	8	≥16
	Kanamycin	8 - 64	≤16	32	≥64
	Streptomycin	32 – 64	≤32		≥64
β –lactam / β -lactamase inhibitor					
combinations	Amoxicillin–Clavulanic acid	1/0.5 – 32/16	≤8/4	16/8	≥32/16
Cephems	Cefoxitin	0.5 – 32	≤8	16	≥32
	Ceftiofur	0.12-8	≤2	4	≥8
	Ceftriaxone	0.25 – 64	≤1	2	≥4
Folate pathway inhibitors	Sulfisoxazole	16 – 256	≤256		≥512
	Trimethoprim-Sulfamethoxazole	0.12/2.4 - 4/76	≤2/38		≥4/76
Penicillins	Ampicillin	1 – 32	≤8	16	≥32
Phenicols	Chloramphenicol	2 – 32	≤8	16	≥32
Quinolones	Ciprofloxacin	0.015 – 4	≤1	2	≥4
	Nalidixic acid	0.5 – 32	≤16		≥32
Tetracyclines	Tetracycline	4 – 32	≤4	8	≥16

Table 54. Minimum inhibition concentrations (MICs) and resistance of Escherichia coli isolates to antimicrobial agents, 2009 (N=45)

Dem h.	CLSI [†] Antimicrobial Class	Antimicrobial Agent		% of is	olates						Perce	nt of al	l isolate	eswith	MIC (µg	/mL) ^{``}					
Ralik	CESI [®] Antimicrobial Class	Antimicrobial Agent	%l‡	%R§	[95% CI] ¹	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 7.9]						6.7	31.1	57.8	4.4							
		Gentamicin	0.0	0.0	[0.0 - 7.9]					15.6	75.6	6.7	2.2					-			
		Streptomycin	N/A	8.9	[2.4 - 21.2]												91.1	4.4	4.4		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.2	2.2	[0.03 - 11.8]							8.9	22.2	44.4	20.0	2.2	2.2				
Т	Cephems	Ceftiofur	0.0	2.2	[0.03 - 11.8]				8.9	71.1	15.6	2.2				2.2					
		Ceftriaxone	0.0	2.2	[0.03 - 11.8]					97.8					-		2.2				
	Penicillins	Ampicillin	0.0	22.2	[11.2 - 37.1]							6.7	66.7	2.2	2.2			22.2			
	Quinolones	Ciprofloxacin	0.0	8.9	[2.4 - 21.2]	88.9	2.2								8.9		-				
		Nalidixic acid	N/A	8.9	[2.4 - 21.2]							33.3	46.7	8.9		2.2		8.9			
	Aminoglycosides	Kanamycin	0.0	6.7	[1.4 - 18.3]										93.3		I		6.7		
	Cephems	Cefoxitin	0.0	6.7	[1.4 - 18.3]						2.2	15.6	44.4	28.9	2.2		4.4	2.2			
	Folate pathway inhibitors	Sulfisoxazole	N/A	17.8	[8.0 - 32.1]											33.3	44.4	4.4			17.8
		Trimethoprim-sulfamethoxazole	N/A	8.9	[2.4 - 21.2]				86.7	4.4					8.9						
	Phenicols	Chloramphenicol	4.4	2.2	[0.03 - 11.8]								8.9	66.7	17.8	4.4		2.2			
	Tetracyclines	Tetracycline	2.2	17.8	[8.0 - 32.1]									80.0	2.2		2.2	15.6			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

† CLSI: Clinical and Laboratory Standards Institute

2 Percent of solates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists § Percent of isolates with intermediate susceptibility.

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).

resistance (K%). ** The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 28. Antibiotic resistance pattern for Escherichia coli, 2009

	·	
Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportio	on
Amikacin		
Gentamicin		
Streptomycin		
Amoxicillin-clavulanic acid		
Ceftiofur		
Ceftriaxone		
Ampicillin		
Ciprofloxacin		
Nalidixic acid		
Kanamycin		
Cefoxitin		
Sulfisoxazole		
Trimethoprim-sulfamethoxazole		
Chloramphenicol		
Tetracycline		

Table 55. Percentage and number of *Escherichia coli* isolates resistant to antimicrobial agents, 2004–2009

tam/β-lactamase inhibitor pinations iems	Antibiotic (Resistance breakpoint) Amikacin (MIC \geq 64) Gentamicin (MIC \geq 16) Streptomycin (MIC \geq 64) Amoxicillin-clavulanic acid (MIC \geq 32) Ceftiofur	2004 151 0.0% 0 2.0% 3 10.6% 16 2.6% 4	2005 119 0.0% 0 3.4% 4 14.3% 17 4.2%	2006 82 0.0% 0 3.7% 3 7.3% 6 6	2007 66 0.0% 0 3.0% 2 13.6% 9	2008 57 0.0% 0 0.0% 0 8.8% 5	2009 45 0.0% 0 0.0% 0 8.9% 4
[†] Antimicrobial s loglycosides tam/β-lactamase inhibitor pinations	(Resistance breakpoint)Amikacin(MIC \geq 64)Gentamicin(MIC \geq 16)Streptomycin(MIC \geq 64)Amoxicillin-clavulanic acid(MIC \geq 32)	0.0% 0 2.0% 3 10.6% 16 2.6%	0.0% 0 3.4% 4 14.3% 17	0.0% 0 3.7% 3 7.3% 6	0.0% 0 3.0% 2 13.6% 9	0.0% 0 0.0% 0 8.8%	0.0% 0 0.0% 0 8.9%
s loglycosides tam/β-lactamase inhibitor pinations	(Resistance breakpoint)Amikacin(MIC \geq 64)Gentamicin(MIC \geq 16)Streptomycin(MIC \geq 64)Amoxicillin-clavulanic acid(MIC \geq 32)	0 2.0% 3 10.6% 16 2.6%	0 3.4% 4 14.3% 17	0 3.7% 3 7.3% 6	0 3.0% 2 13.6% 9	0 0.0% 0 8.8%	0 0.0% 0 8.9%
oglycosides tam/β-lactamase inhibitor pinations	Amikacin (MIC \geq 64) Gentamicin (MIC \geq 16) Streptomycin (MIC \geq 64) Amoxicillin-clavulanic acid (MIC \geq 32)	0 2.0% 3 10.6% 16 2.6%	0 3.4% 4 14.3% 17	0 3.7% 3 7.3% 6	0 3.0% 2 13.6% 9	0 0.0% 0 8.8%	0 0.0% 0 8.9%
tam/β-lactamase inhibitor pinations	$\begin{array}{l} (\text{MIC} \geq 64) \\ \hline \text{Gentamicin} \\ (\text{MIC} \geq 16) \\ \hline \text{Streptomycin} \\ (\text{MIC} \geq 64) \\ \hline \text{Amoxicillin-clavulanic acid} \\ (\text{MIC} \geq 32) \end{array}$	0 2.0% 3 10.6% 16 2.6%	0 3.4% 4 14.3% 17	0 3.7% 3 7.3% 6	0 3.0% 2 13.6% 9	0 0.0% 0 8.8%	0 0.0% 0 8.9%
pinations	Gentamicin (MIC ≥ 16) Streptomycin (MIC ≥ 64) Amoxicillin-clavulanic acid (MIC ≥ 32)	2.0% 3 10.6% 16 2.6%	3.4% 4 14.3% 17	3.7% 3 7.3% 6	3.0% 2 13.6% 9	0.0% 0 8.8%	0.0% 0 8.9%
pinations	$\begin{array}{l} (M C \geq 16) \\ \hline \\ Streptomycin \\ (M C \geq 64) \\ \hline \\ Amoxicillin-clawlanic acid \\ (M C \geq 32) \end{array}$	3 10.6% 16 2.6%	4 14.3% 17	3 7.3% 6	2 13.6% 9	0 8.8%	0 8.9%
pinations	Streptomycin (MIC ≥ 64) Amoxicillin-clawlanic acid (MIC ≥ 32)	10.6% 16 2.6%	14.3% 17	7.3% 6	13.6% 9	8.8%	8.9%
pinations	$(MIC \ge 64)$ Amoxicillin-clawlanic acid $(MIC \ge 32)$	16 2.6%	17	6	9		
pinations	Amoxicillin-clavulanic acid (MIC \geq 32)	2.6%		-	-	5	4
pinations	(MIC ≥ 32)		4 2%			-	4
		1		3.7%	0.0%	3.5%	2.2%
iems	Ceftiofur	4	5	3	0	2	1
	o o i i i o i u i	0.0%	0.8%	0.0%	0.0%	1.8%	2.2%
	(MIC ≥ 8)	0	1	0	0	1	1
	Ceftriaxone	0.0%	0.8%	0.0%	0.0%	1.8%	2.2%
	(MIC ≥ 64)	0	1	0	0	1	1
Penicillins Quinolones	Ampicillin	24.5%	26.1%	28.0%	21.2%	26.3%	22.2%
	(MIC ≥ 32)	37	31	23	14	15	10
	Ciprofloxacin	3.3%	7.6%	4.9%	7.6%	10.5%	8.9%
	$(MIC \ge 4)$	5	9	4	5	6	4
	Nalidixic Acid	9.3%	9.2%	11.0%	10.6%	12.3%	8.9%
	(MIC ≥ 32)	14	11	9	7	7	4
Aminoglycosides	Kanamycin	2.0%	0.0%	0.0%	1.5%	1.8%	6.7%
	(MIC ≥ 64)	3	0	0	1	1	3
Cephems	Cefoxitin	2.6%	0.8%	1.2%	0.0%	0.0%	6.7%
	(MIC ≥ 32)	4	1	1	0	0	3
Folate pathway inhibitors II Phenicols	Sulfisoxazole [‡]	17.9%	18.4%	17.1%	24.2%	14.0%	17.8%
							8
							8.9%
	· · · · · · · · · · · · · · · · · · ·						4
	, , , , , , , , , , , , , , , , , , ,					-	2.2%
							1
Tetracyclines	· · · · · ·		-	-		-	17.8%
cyclines	,					8	8
e	pathway inhibitors	Cefoxitin (MIC \geq 32) pathway inhibitors Sulfisoxazole [‡] (MIC \geq 512) Trimethoprim-sulfamethoxazole ¹ (MIC \geq 4) cols Chloramphenicol (MIC \geq 32)	emsCefoxitin (MIC \geq 32)2.6% 4e pathway inhibitorsSulfisoxazole [‡] (MIC \geq 512)17.9% 27Trimethoprim-sulfamethoxazole ¹ 11.3% (MIC \geq 4)17colsChloramphenicol (MIC \geq 32)1.3% 2yclinesTetracycline13.2%	Image: Second state stat	Image: system stress Cefoxitin (MIC \geq 32) 2.6% 0.8% 1.2% a pathway inhibitors Sulfisoxazole [‡] 17.9% 18.4% 17.1% (MIC \geq 512) 27 21 14 Trimethoprim-sulfamethoxazole [±] 11.3% 14.9% 12.2% (MIC \geq 4) 17 17 10 cols Chloramphenicol 1.3% 2.5% 3.7% yclines Tetracycline 13.2% 19.3% 14.6%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

† CLSI: Clinical and Laboratory Standards Institute

‡ Results unavailable for 5 isolates

Year	2004	2005 119	2006 82	2007 66	2008 57	2009 45
Total Isolates	151					
	%	%	%	%	%	%
	n	n	n	n	n	n
No resistance detected	62.9%	63.0%	63.4%	65.2%	64.9%	68.9%
	95	75	52	43	37	31
Resistance ≥1CLSI class*	37.7%	37.0%	36.6%	34.8%	35.1%	31.1%
	57	44	30	23	20	14
Resistance ≥2 CLSI classes*	17.9%	22.7%	22.0%	21.2%	21.1%	13.3%
	27	27	18	14	12	6
Resistance ≥3 CLSI classes*	9.9%	14.3%	15.9%	15.2%	12.3%	11.1%
	15	17	13	10	7	5
Resistance ≥4 CLSI classes*	5.3%	9.2%	8.5%	9.1%	8.8%	8.9%
	8	11	7	6	5	4
Resistance ≥5 CLSI classes*	3.3%	7.6%	1.2%	4.5%	7.0%	8.9%
	5	9	1	3	4	4
At least ACSSuT [†]	1.3%	0.8%	0.0%	0.0%	1.8%	0.0%
	2	1	0	0	1	0
At least ACT/S [‡]	1.3%	0.8%	1.2%	1.5%	3.5%	0.0%
	2	1	1	1	2	0
At least ACSSuTAuCx [§]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid resistant	0.0%	0.0%	0.0%	0.0%	1.8%	2.2%
	0	0	0	0	1	1

Table 56. Resistance patterns of Escherichia coli isolates, 2004–2009

* CLSI: Clinical and Laboratory Standards Institute

+ ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone