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Abstract

Most automated fingerprint recognition systems use

minutiae points for comparing fingerprints. In the par-

lance of Computer Vision, minutiae can be viewed as hand-

crafted features, i.e., features that have been proposed by

human experts for the task of fingerprint recognition. In

this work, we raise the following question: Can a ma-

chine learning system automatically determine the signif-

icance of minutiae points for fingerprint matching? To

this effect, a patch-based Siamese Convolutional Neural

Network (CNN), which does not explicitly rely on the ex-

traction of minutiae points, is designed and trained from

scratch. The purpose of this network is to learn the most

effective features for matching fingerprint images. The fea-

tures learned by this network are analyzed using Gradient-

weighted Class Activation Mapping (Grad-CAM) to deter-

mine if they correlate with the locations of minutiae points.

Our experiments suggest that the proposed network auto-

matically learns to focus on minutiae points, when avail-

able, for fingerprint matching. Thus, an automated learner

without any explicit domain knowledge establishes the sig-

nificance of minutiae points for fingerprint matching.

1. Introduction

A fingerprint (FP) consists of ridges and valleys that

form an oriented texture pattern on the tip of each finger.

Fingerprint matching refers to the process of comparing two

fingerprint patterns to determine if they have been acquired

from the same finger or not [18]. This comparison is often

accomplished using minutiae, i.e., ridge anomalies corre-

sponding to ridge endings and ridge bifurcations. The spa-

tial configuration of minutiae points has been assumed to

be unique to every finger [21]; a hypothesis that has been

borne out by large-scale experiments conducted on opera-

tional fingerprint data [33]. Several sophisticated minutiae

descriptors have also been developed to improve the per-

formance of minutiae-based fingerprint recognition [5, 7].

At the same time, non-minutiae-based features such as skin

texture and ridge maps have also been used for fingerprint

recognition [2, 4, 23, 32].

In this work, we raise the following question. Will a rep-

resentation learning scheme automatically discover the sig-

nificance of minutiae points for fingerprint matching? That

is, will an automated feature extractor deduce the signifi-

cance of minutiae points for matching even if no domain-

specific knowledge is provided to it? In this paper, we an-

swer this using a Convolutional Neural Network’s (CNN’s)

capability for automated feature learning.

The advent of CNNs has resulted in the discovery of

powerful features for performing a broad range of com-

puter vision tasks [14]. Since automatic fingerprint recogni-

tion has been typically performed using minutiae features,

CNNs developed for fingerprint matching have inevitably

employed these features. In [12], a CNN-based fingerprint

minutiae extraction approach was proposed that does not

require any pre-processing before feature extraction. The

authors use a dataset consisting of overlapping patches cor-

responding to 200 labelled fingerprint images. The patches

were first processed by JudgeNet to detect those patches that

contain exactly one minutia point. Then, the center area

of each patch (27 × 27 pixels) containing a minutia point

was processed by LocateNet to detect the exact position of

the minutia point. A precision value of 94.59%, a recall

value of 91.63% and an F1-score of 93.09% were reported.

Another CNN, FingerNet [30], integrated some common

processing methods (e.g. orientation estimation, segmen-

tation), resulting in better matching accuracy compared to

the state-of-the-art minutiae-based techniques on the NIST

SD27 (latent) and the FVC 2004 (dab) datasets. The same

datasets were used in [19] where the authors proposed a

CNN named MinutiaeNet, consisting again of two different

sub-networks. The first sub-network, CoarseNet, generated

a minutiae score map by taking advantage of fingerprint do-

main knowledge (image enhancement, orientation field esti-

mation, and segmentation map extraction), while the second

sub-network, FineNet, determined the exact minutiae loca-
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tions using the previously generated minutiae score map.

This approach was also observed to outperform state-of-the-

art algorithms in terms of precision and recall.

Our goal is significantly different from the existing CNN-

based studies for fingerprint recognition, viz., [12, 19, 30].

We are not trying to develop a new fingerprint recognition

system. Instead we attempt to use a CNN’s capability of

learning the most effective features for a specific task based

on the training samples, to answer the following question:

Can a CNN Automatically Learn the Significance of Minu-

tiae Points for Fingerprint Matching? Our goal is to har-

ness the automatic feature learning capability of CNNs to

determine if CNNs agree with human intuition about the

significance of minutiae points for fingerprint matching.

In this regard, we design a CNN to learn local finger-

print features that are rotation and scale invariant. This is

done by adopting a patch-based approach, where a pair of

fingerprint patches is input to the CNN. No assumptions are

made about the presence or absence of minutiae points in

these patches. We allow the CNN to automatically learn

salient and discriminatory features from these patches and

then conduct a post-analysis to investigate the nature of the

automatically learned features.

To conduct this research, we design our network to op-

erate on local image patch-pairs and not on single patches.

The corresponding idea will be introduced in Section 3 in

detail. The rest of this paper is organized as follows: Sec-

tion 2 provides a discussion of related work in other biomet-

ric domains. The description of the CNN is given in Sec-

tion 3. Section 4 introduces the experimental protocol and

details about the datasets and baseline fingerprint matchers

employed in this study. A detailed discussion of the experi-

mental results is provided in Section 5. The conclusions of

this work and future work are discussed in Section 6.

2. Related Work

Over the past decade, various computer vision and pat-

tern recognition tasks have been addressed effectively by

harnessing the automated feature learning and feature clas-

sification prowess of CNNs [11]. In the context of bio-

metrics, CNNs have proven to be valuable in multiple do-

mains [22] including face, fingerprints, iris, voice, gait and

vascular biometrics [28]. For the face modality, general-

purpose CNNs have been successfully appropriated for

matching purposes [6, 25, 31]. For the voice modality,

CNNs have been used to extract features that are differ-

ent from the classical MFCC, LPC or iVector representa-

tions [15]. For the iris modality, off-the-shelf CNNs have

been used to demonstrate their efficacy in extracting useful

information for iris recognition [20]. A detailed review of

the use of CNNs in biometrics can be found in [28].

In the case of fingerprint recognition, CNNs have been

used for image pre-processing [8] as well as minutiae ex-

traction [3, 9, 10]. Furthermore, as stated in the previous

section, deep network architectures have been used to per-

form recognition directly on the raw fingerprint data as in

[12, 19, 30]. However, there is no existing work in the liter-

ature that explores whether CNNs can automatically learn

the significance of minutiae points in fingerprint matching.

This paper seeks to determine if human intuition regarding

the significance of minutiae points (as validated in many

large-scale tests [33]) can be substantiated by a self-learning

CNN.

3. Proposed Approach

To approach the stated goal, we develop a patch-based

approach to fingerprint matching that relies on a CNN to

deduce the features. If the features deduced by the CNN

are correlated with minutiae points, it would reinforce the

importance of minutiae points in fingerprint matching from

an automated representation learning scheme.

We perform fingerprint matching based on tessellated

local fingerprint patches that are independent of minu-

tiae points, i.e., minutiae points are not used to determine

patches of interest. To facilitate this, we design our own

Multi-scale Dilated Siamese CNN (MD-CNN) architecture

that is shown in Figure 1.

The proposed network design is based on Siamese net-

work architecture where there are two identical CNNs with

shared weights. The proposed network is trained on pairs

of fingerprint patches called fingerprint patch-pairs (Dv).
These patches are extracted from pairs of fingerprint im-

ages, explained in further detail in Section 3.2. For training

the network, the data pair Dv has to be provided as input to

the CNN. Here, Dv = (S1, S2), where S1 and S2 are two

fingerprint patch samples taken from fingers ‘X’ and ‘Y’,

respectively. The fingerprint patch-pair (Dv) is deemed to

be a genuine pair if and only if X = Y and both the patches

are taken from the same location (see Section 3.1). The

loss function, described in Section 3.4, is used to help the

proposed network learn the similarity between genuine fin-

gerprint patch-pairs and the dissimilarity between impostor

fingerprint patch-pairs. In the following sections, we will

discuss our fingerprint tessellation process, network design

choices and the rationale behind.

3.1. Patch Alignment

For training the proposed network architecture, we first

arrange fingerprint images into genuine and impostor pairs.

A genuine pair is defined as a pair of fingerprint images

taken from the same finger of the same subject, while an im-

postor pair is defined as a pair of images taken from differ-

ent fingers of the same subject, the same finger of different

subjects, or different fingers of different subjects. The fin-

gerprint image-pairs (Dt) are then aligned to each other us-

ing scale-invariant feature transform (SIFT) key points [16].
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Figure 1: An illustration of the proposed Multi-scale Dilated Siamese CNN (MD-CNN) architecture during training.

Only the overlapping regions of the aligned image pairs are

then retained for generating the fingerprint patch-pairs. It is

important to note that a SIFT-based patch alignment method

may include minutiae points as keypoints. Therefore, to ac-

count for the effect of minutiae points on fingerprint patch

alignment, we implemented two different patch-alignment

strategies. The first strategy, referred to as SIFT with minu-

tiae, uses all the detected SIFT keypoints for performing

fingerprint patch alignment, while the second strategy, re-

ferred to as SIFT without minutiae, discards all SIFT key-

points that are detected in a 10×10 pixel neighborhood of a

minutiae point. Therefore, no minutiae points are involved

in the second alignment strategy.

Table 1: The number of fingerprint patch-pairs contain-

ing (#present) or not containing (#absent) minutiae points

across both the alignment strategies. The datasets corre-

spond to subsets of the CASIA fingerprint Subject Ageing

Version 1.0 dataset (finger1267, T2, uru4000 1, uru4000 2,

uru4500 1 and uru4500 2) and the FVC-2000 dataset (db 1,

db 2, db 3 and db 4).

Datasets

SIFT with minutiae SIFT without minutiae

#all #present #absent #all #present #absent

finger1267 13376 2398 10978 13376 3591 9785

T2 15232 1415 13817 15072 3535 11537

uru4000 1 16672 2164 14508 16224 2116 14108

uru4000 2 14240 2071 12169 13728 1941 11787

uru4500 1 16192 1919 14273 15520 1872 13648

uru4500 2 15200 2292 12908 14624 2261 12363

db 1 6656 301 6355 6208 476 5732

db 2 6656 1411 5245 6240 1303 4937

db 3 7392 461 6931 7072 436 6636

db 4 5216 1145 4071 5152 1117 4035

The number of extracted patch-pairs, reported in Table 1,

varies vastly across the different datasets (given in Sec-

tion 4.1) and the applied alignment strategies. The observ-

able differences can be explained as follows:

1. The two alignment strategies generate a similar number

of fingerprint patches. This is because only a small propor-

tion of the SIFT key points satisfy the elimination criteria in

the second alignment strategy.

2. Furthermore, it is observed that dataset dependent varia-

tions (such as a low number of minutiae points, poor image

quality, etc.) have a high impact on the number of success-

fully extracted patch-pairs. This is demonstrated by the sig-

nificantly low number of fingerprint patch-pairs extracted

from the subsets of the “FVC-2000 dataset” compared to the

“CASIA fingerprint Subject Ageing Version 1.0” dataset.

For this work, we limit the size of the overlapping re-

gions of the aligned fingerprint pairs to 128 × 128 pixels

(see Figure 2). These dimensions represent the largest re-

gion shared by all fingerprint pairs across all the datasets.

The region of interest (ROI) is extracted by masking [13]

the background and cropping the desired region in the fore-

ground.

3.2. Fingerprint Tessellation

The cropped fingerprint images of dimension 128× 128
are tessellated into non-overlapping fingerprint patches of

dimension 32 × 32 pixels. The fingerprint patches are then

arranged into fingerprint patch-pairs as shown in Figure 3.
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Figure 2: (a) A fingerprint region of interest (ROI) with

minutiae points located and plotted (in red circles). (b) Fin-

gerprint patches containing minutiae points (left column)

and without any minutiae points (right column).

Fingerprint patches that are taken from the same corre-

sponding location of the aligned genuine fingerprint pairs

constitute the set of genuine fingerprint patch-pairs. Sim-

ilarly, fingerprint patches taken from different locations of

the aligned impostor fingerprint pairs constitute the set of

impostor fingerprint patch-pairs.
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Figure 3: A visual representation of the fingerprint tessella-

tion process for generating fingerprint patch-pairs Dv from

a fingerprint image-pair Dt

3.3. Multi-scale Dilated Convolution (MD-CNN)

The design of our MD-CNN architecture is primarily fo-

cused on efficiently extracting rotation and scale-invariant

fingerprint image features. Similar to the idea of incep-

tion modules introduced in GoogLeNet [29], we develop a

multi-scale dilated convolution (MDC) module for extract-

ing multi-scale fingerprint features in our MD-CNN archi-

tecture. The inception modules in GoogLeNet [29] learn

multiple filters of different sizes, such as 3 × 3, 5 × 5, etc.

and then use 1 × 1 convolutions for reducing the feature

dimensionality, thereby allowing deeper networks to effi-

ciently learn highly non-linear image features. The multi-

scale dilated convolution module, on the other hand, learns

3×3 convolution filters under different dilation levels, such

as 2 and 3 in the proposed network. As shown in Figure 4,

the dilated 3× 3 filters effectively learn sparse convolution

filters of size 5×5 and 7×7. Also, since the overlap between

the effective receptive fields of the multiple dilated convo-

lution filters is minimal, we choose to fuse their responses

by summing them up, thereby obtaining a multi-scale di-

lated convolution response. The MDC module, therefore,

helps in efficiently learning highly non-linear image fea-

tures at multiple scales while keeping the size of the param-

eter space tractable. Such a module can be very effective

when the training dataset is of limited size. For introduc-

ing rotation invariance into our model, we separately rotate

the fingerprint patches in the patch-pair by a random value

before inputting them to the proposed network.

Sum

3x3 Convolution

3x3 Convolution, 

dilation = 2

3x3 Convolution, 

dilation = 3

Multi-scale 

Dilated Convolution
Input Image

Figure 4: A visual representation of the proposed Multi-

scale Dilated Convolution module.

3.4. Cosine Embedding Loss Function

As described previously, we designed our network ar-

chitecture to be trained on data pairs. Such an architecture

aims to learn a feature embedding in which genuine pairs

are embedded closer to each other than impostor pairs. To

achieve such an embedding, we use the cosine embedding

loss function for training our network:

loss(S1, S2, L) =











1− cos(S1, S2), if L = 1

max(0, cos(S1, S2)

−margin), if L = −1
(1)

Here, S1 and S2 are two fingerprint patch samples taken

from fingers ‘X’ and ‘Y’, respectively. margin is the min-

imum distance between genuine and impostor sample pairs

and is a user-tunable hyper-parameter. L is the ground truth

label. L is set to 1, if X = Y , and −1, otherwise.
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3.5. Modified All-CNN architecture

We also modified the architecture (see Table 2) of the

All-CNN model [27], referred to as modified All-CNN in

this work, to serve as a baseline architecture for CNN-based

fingerprint matching. The All-CNN architecture is chosen

due to its compatibility with 32 × 32 input images and low

computational complexity. However, we modified the orig-

inal All-CNN architecture by reducing the maximum num-

ber of convolution channels from 192 to 64 across all the

layers, thus, lowering the number of trainable parameters.

We also replaced the RELU non-linearity with SELU non-

linearity. These modifications helped the training process

converge faster without over-fitting on the limited training

data.

Table 2: Model description of the modified All-CNN

architecture, based on the architecture of the All-CNN

model [27], used for the fingerprint matching experiments

discussed in Section 4.

Modified All-CNN Architecture

Input Data Input 32× 32 fingerprint patch

Layer #1 3× 3 conv. 2 SELU

Layer #2 3× 3 conv. 4 SELU

Layer #3 3× 3 conv. 8 SELU with stride r = 2

Layer #4 3× 3 conv. 16 SELU

Layer #5 3× 3 conv. 32 SELU with stride r = 2

Layer #6 3× 3 conv. 64 SELU

Layer #7 1× 1 conv. 64 SELU

Layer #8 Adaptive Avg. Pooling

Output Embedding Output 1× 64 embedding

4. Experiments

4.1. Datasets and Baseline Matcher

We have used the “CASIA fingerprint Subject Age-

ing Version 1.0” [1] and the “FVC-2000” [17] fingerprint

datasets for experimentally evaluating both the proposed

MD-CNN and the modified All-CNN architectures.

1. The “CASIA fingerprint Subject Ageing Version 1.0”

dataset was assembled at the Center for Biometrics and

Security Research (CBSR) at the Chinese Academy of

Sciences Institute of Automation (CASIA) and is pub-

licly available.1 We used all 6 subsets (finger1267, T2,

uru4000 1, uru4000 2, uru4500 1 and uru4500 2) of this

dataset in our experiments (see Table 1). Each subset con-

sists of images from 980 fingers corresponding to the fore-

finger and the middle finger of both hands of 49 subjects.

For each finger, 5 impressions were captured.

2. We also used four subsets of the “FVC-2000

dataset” [17], referred to as db 1, db 2, db 3 and, db 4 (see

1http://biometrics.idealtest.org/dbDetailForUser.do?id=15

Table 1), to evaluate the proposed algorithm. Each subset

contains a total of 880 fingerprint images collected from 110
subjects.

3. A state-of-the-art minutiae recognition system (VeriFin-

ger SDK 11.1 2) was used to extract the minutiae posi-

tions from all the fingerprint images. The second alignment

strategy uses these minutiae positions for eliminating those

SIFT keypoints that are located in 10 × 10 neighborhoods

of minutiae points.

4.2. MD-CNN based Experiments

For the experiments on each subset of the CASIA fin-

gerprint Subject Ageing Version 1.0 dataset, 40 subjects are

randomly sampled to constitute the training set and the re-

maining 9 subjects constituted the test set. Similarly, for

each subset of the FVC-2000 dataset, 81 subjects are ran-

domly sampled to constitute the training set and the remain-

ing 29 subjects constituted the test set. Therefore, we main-

tain disjoint subjects in the training and test sets in all ex-

periments. As illustrated in Figure 1, the proposed CNN is

trained using fingerprint patch-pairs extracted from the fin-

gerprints of subjects in the training set. The trained CNN

models are then evaluated using fingerprint patch-pairs ex-

tracted from the fingerprints in the test set.

4.3. Modified All-CNN based Experiments

The modified All-CNN architecture, similar to the pro-

posed MD-CNN architecture, is trained and evaluated as

a Siamese network in verification mode. All the experi-

ments done with the proposed MD-CNN model were re-

peated with the modified All-CNN model. These exper-

iments were performed to examine whether two different

CNN architectures, trained from scratch, can independently

deduce the importance of minutiae points in the context of

fingerprint matching.

5. Results and Analysis

The results of all the experiments are presented in Ta-

bles 3 and 4. We report the fingerprint matching perfor-

mance using True Match Rate at False Match Rates of 1%

and 0.1% (TMR@FMR) in Table 3. We also report the av-

erage genuine and impostor match scores in Table 4. The

match scores are reported in the range [−1, 1], where a

value of 1 indicates a perfect match while a value of −1
indicates a perfect non-match. The matching performance

of patch-pairs is reported for both alignment strategies de-

scribed in Section 3.1. For each alignment strategy, three

types pf evaluations were done: #all, #present, and #ab-

sent. The first one (#all) uses all patch-pairs irrespective of

the presence or absence of minutiae points when compar-

ing fingerprint patches. #present only considers patch-pairs

2http://www.neurotechnology.com/verifinger.html
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Table 3: Results of matching fingerprint patch-pairs using (a) the proposed MD-CNN model and (b) the modi-

fied All-CNN model both evaluated at TMR@FMR=1% and TMR@FMR=0.1%. Higher verification performance

(TMR@FMR={1%, 0.1%}) is observed when matching fingerprint patch-pairs containing minutiae points (#present) as com-

pared to matching fingerprint patch-pairs devoid of any minutiae points (#absent). Red colored font is used to highlight the

entries where higher matching performance is observed in presence of minutiae points. All other entries are given in blue

colored font.

Datasets

TMR@FMR=1% TMR@FMR=0.1%

SIFT with minutiae SIFT without minutiae SIFT with minutiae SIFT without minutiae

#all #present #absent #all #present #absent #all #present #absent #all #present #absent

finger1267 0.57 0.70 0.53 0.49 0.56 0.42 0.32 0.21 0.30 0.14 0.17 0.19

T2 0.48 0.60 0.47 0.46 0.62 0.40 0.24 0.15 0.26 0.21 0.19 0.18

uru4000 1 0.57 0.67 0.55 0.56 0.67 0.55 0.34 0.53 0.32 0.36 0.53 0.34

uru4000 2 0.58 0.62 0.56 0.61 0.70 0.59 0.31 0.35 0.30 0.34 0.52 0.34

uru4500 1 0.57 0.73 0.54 0.60 0.70 0.59 0.32 0.50 0.31 0.41 0.37 0.43

uru4500 2 0.60 0.67 0.58 0.56 0.67 0.55 0.43 0.50 0.37 0.40 0.54 0.38

db 1 0.21 0.01 0.21 0.15 0.18 0.14 0.01 0.01 0.01 0.01 0.18 0.01

db 2 0.02 0.01 0.01 0.20 0.04 0.62 0.01 0.01 0.01 0.01 0.02 0.01

db 3 0.56 0.79 0.53 0.63 0.65 0.62 0.32 0.79 0.31 0.45 0.65 0.44

db 4 0.84 0.87 0.83 0.72 0.05 0.74 0.73 0.56 0.75 0.03 0.01 0.04

(a) Results using the MD-CNN model

Datasets

TMR@FMR=1% TMR@FMR=0.1%

SIFT with minutiae SIFT without minutiae SIFT with minutiae SIFT without minutiae

#all #present #absent #all #present #absent #all #present #absent #all #present #absent

finger1267 0.60 0.71 0.57 0.59 0.79 0.50 0.37 0.29 0.35 0.33 0.38 0.27

T2 0.54 0.65 0.52 0.51 0.73 0.44 0.26 0.00 0.22 0.21 0.52 0.16

uru4000 1 0.57 0.68 0.55 0.58 0.72 0.56 0.34 0.55 0.33 0.35 0.49 0.31

uru4000 2 0.62 0.66 0.61 0.65 0.72 0.64 0.35 0.38 0.33 0.44 0.36 0.43

uru4500 1 0.62 0.73 0.60 0.65 0.75 0.63 0.32 0.54 0.30 0.45 0.47 0.43

uru4500 2 0.59 0.71 0.57 0.62 0.65 0.61 0.42 0.59 0.40 0.45 0.57 0.42

db 1 0.83 0.00 0.82 0.85 0.97 0.83 0.49 0.00 0.48 0.51 0.00 0.50

db 2 0.49 0.62 0.46 0.76 0.83 0.73 0.14 0.00 0.13 0.61 0.00 0.59

db 3 0.54 0.80 0.53 0.59 0.07 0.57 0.14 0.00 0.14 0.26 0.00 0.25

db 4 0.83 0.86 0.82 0.87 0.91 0.85 0.74 0.00 0.63 0.77 0.00 0.66

(b) Results using the modified All-CNN model

containing at least one minutiae point in each of the patches

constituting the pair. #absent only takes into account patch-

pairs devoid of any minutiae points.

• In a majority of the 10 fingerprint data-subsets given in

Tables 3(a) and 3(b), both the MD-CNN and the modified

All-CNN models match fingerprint pairs containing minu-

tiae points (#present) at a higher TMR across both the align-

ment strategies, compared to fingerprint patch-pairs devoid

of any minutiae points (#absent).

• In a majority of the 10 fingerprint data subsets given

in Table 4, both the MD-CNN and the modified All-CNN

models match fingerprint pairs containing minutiae points

(#present) with a higher genuine match score (gen) and a

lower impostor match score (imp) across both the alignment

strategies, compared to fingerprint patch-pairs devoid of any

minutiae points (#absent).

• In a majority of the 10 fingerprint data-subsets given in

Tables 4(a), 4(b), 3(a), and 3(b) the SIFT without minutiae

alignment strategy appears to have only a marginal detri-

mental effect on the overall matching performance when

compared against the SIFT with minutiae alignment strat-

egy. This marginal reduction in overall matching perfor-

mance is explained by the reduction in the overall number of

patch-pairs in the SIFT without minutiae alignment strategy,

as given in Table 1. However, it should be noted, that irre-

spective of the alignment strategy used, both the methods

perform better on patch-pairs containing minutiae points

(#present). This shows that the type of fingerprint features

learned by both the MD-CNN and the modified All-CNN

models are independent of the fingerprint alignment strat-

egy used to generate the fingerprint image-pairs.

• The higher matching performance on the subsets of CA-

SIA fingerprint Subject Ageing Version 1.0 dataset com-

pared to that of the FVC-2000 subsets can be attributed to

the larger number of training samples available for the for-

mer due to the larger number of extracted fingerprint patch-
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Table 4: Average comparison scores of fingerprint patch-pairs (both genuine and impostor pairs) from all datasets using the

proposed the proposed MD-CNN model(top) and the modified All-CNN model(bottom). On an average, a higher genuine

match score (gen) and a lower impostor match score (imp) is observed when matching fingerprint patch-pairs containing

minutiae points (#present) as compared to matching fingerprint patch-pairs devoid of any minutiae points (#absent). The

scores are in the [−1, 1] range.

Datasets

Average Comparison Score

SIFT with minutiae SIFT without minutiae

#all #present #absent #all #present #absent

gen imp gen imp gen imp gen imp gen imp gen imp

finger1267 0.84 0.23 0.87 0.23 0.83 0.23 0.83 0.25 0.88 0.27 0.80 0.25

T2 0.80 0.26 0.85 0.26 0.79 0.26 0.80 0.27 0.86 0.28 0.78 0.27

uru4000 1 0.82 0.22 0.85 0.21 0.82 0.21 0.83 0.23 0.85 0.24 0.83 0.23

uru4000 2 0.84 0.21 0.85 0.21 0.83 0.21 0.84 0.21 0.86 0.21 0.83 0.21

uru4500 1 0.83 0.22 0.87 0.21 0.82 0.22 0.82 0.22 0.86 0.21 0.81 0.22

uru4500 2 0.81 0.20 0.84 0.18 0.80 0.21 0.83 0.23 0.85 0.22 0.82 0.24

db 1 0.88 0.31 0.98 0.25 0.85 0.32 0.88 0.29 0.98 0.26 0.86 0.29

db 2 0.94 0.82 0.96 0.80 0.93 0.82 0.79 0.27 0.84 0.24 0.77 0.27

db 3 0.79 0.22 0.86 0.21 0.78 0.22 0.80 0.21 0.86 0.21 0.79 0.21

db 4 0.89 0.12 0.92 0.11 0.88 0.12 0.89 0.10 0.94 0.11 0.87 0.87

(a) Results using the modified MD-CNN model

Datasets

Average Comparison Score

SIFT with minutiae SIFT without minutiae

#all #present #absent #all #present #absent

gen imp gen imp gen imp gen imp gen imp gen imp

finger1267 0.84 0.16 0.88 0.18 0.83 0.16 0.84 0.16 0.89 0.16 0.81 0.15

T2 0.81 0.20 0.85 0.20 0.80 0.20 0.80 0.25 0.86 0.26 0.78 0.24

uru4000 1 0.83 0.16 0.85 0.15 0.83 0.16 0.84 0.17 0.86 0.17 0.83 0.17

uru4000 2 0.85 0.19 0.86 0.19 0.85 0.19 0.84 0.16 0.87 0.17 0.84 0.16

uru4500 1 0.84 0.16 0.87 0.16 0.83 0.16 0.83 0.16 0.87 0.14 0.83 0.16

uru4500 2 0.82 0.13 0.85 0.12 0.81 0.13 0.82 0.16 0.84 0.14 0.82 0.16

db 1 0.87 0.15 0.96 0.13 0.86 0.15 0.89 0.14 0.97 0.17 0.87 0.14

db 2 0.78 0.34 0.83 0.35 0.77 0.34 0.86 0.16 0.90 0.17 0.85 0.16

db 3 0.80 0.19 0.85 0.21 0.79 0.19 0.80 0.20 0.86 0.21 0.79 0.20

db 4 0.88 0.14 0.91 0.14 0.86 0.14 0.89 0.15 0.93 0.16 0.86 0.15

(b) Results using the modified All-CNN model

pairs, as reported in Table 1.

We also performed Grad-CAM [26] based qualitative anal-

ysis of the image features extracted by the CNNs for per-

forming fingerprint matching at the patch level. Grad-CAM

uses gradient information flowing through the CNN to iden-

tify the local regions in an input image crucial for perform-

ing the task. Grad-CAM analysis revealed that both the

proposed MD-CNN and the modified All-CNN localized

their attention on the vicinity of minutiae points for extract-

ing fingerprint features, as shown in Figure 5. This indi-

cates that both the CNNs focused automatically on minutiae

points (when present), even when they were never explic-

itly made aware of its importance in the task. The same

analysis on fingerprint patches devoid of minutiae points

shows that the proposed MD-CNN network’s attention to

concentrate along the ridges (see Figure 5). However, such

an observation is not made in case of the modified All-

CNN network (see Figure 5). We believe this to be an ef-

fect of the Multi-scale Dilated Convolution modules in the

proposed MD-CNN network that allows the network to fo-

cus on ridges in absence of minutiae points for performing

fingerprint matching. Furthermore, the Grad-CAM results

are obtained on fingerprint images in a cross-dataset and

cross-sensor setup, thereby minimizing any dataset or pre-

processing based bias in the overall results. Additionally,

the observations from the Grad-CAM analysis are substanti-

ated by a quantitative analysis of the patch-based fingerprint

matching process, as illustrated in Figure 6. A genuine and

an impostor pair of an exemplary set of fingerprint images

are tessellated and organized into fingerprint patch-pairs, as

previously illustrated in Figure 3. Fingerprint patch-pairs

are then compared using the MD-CNN. The resultant match

scores in the range [-1,1] are indicated using a color-coded

overlay in Figure 6. All the minutiae points are also anno-
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Patches with minutiae points Patches without minutiae points

Patches

Activations

Patches

Activations

MD_CNN All_CNN MD_CNN All_CNN

Figure 5: Example pairs of fingerprint patches and their cor-

responding Grad-CAM [26] visualizations showing the lo-

calization (contours manually annotated in red color) of the

proposed-CNN’s and modified All-CNN’s attention around

minutiae points (when present). Note that in case of the

MD-CNN, the attention is focused along the ridges of the

fingerprint when minutiae points are absent.
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C
o

lo
r-

c
o

d
e

d
 S

c
o

re
 S

c
a

leG
e

n
u

in
e

 P
a

ir
Im

p
o

st
o

r 
P

a
ir

Figure 6: A visual analysis of patch based fingerprint

matching with respect to presence of minutiae points in cor-

responding patches. Note, impostor patch-pairs containing

minutiae points show lower match scores (red color) than

patch-pairs without minutiae points. The color gradient be-

tween red and green correspond to match score in the range

[−1, 1].

tated using red circles at their corresponding locations. As

seen in Figure 6, all the genuine patch-pairs (top row) are

overlaid with shades of green color, indicating a positive

match result with match scores mostly in the range (0, 1].
The impostor patch-pairs (bottom row), on the other hand,

are observed to be overlaid with shades of red, yellow, and

green, representing corresponding match scores spanning

the entire range [−1, 1]. This observation, combined with

the location of minutiae points, leads to the following infer-

ences:

• The presence of minutiae points in an impostor patch

pair yields a lower match score in the range [−1, 0], as indi-

cated by the red color.

• The absence of minutiae points in an impostor patch pair

yields a higher match score in the range (0, 1], as indicated

by the green color.

• This indicates the positive effect of the the presence of

minutiae points on fingerprint patch pair comparison.

6. Conclusion and Future Goals

The purpose of this work was to determine whether a

representation learning scheme would automatically deduce

the significance of minutiae points for fingerprint match-

ing. In this regard, we designed a Multi-scale Dilated

Siamese CNN architecture capable of extracting scale and

rotation invariant image features for comparing fingerprint

patches. The proposed CNN was trained to perform fin-

gerprint matching without explicitly being made aware of

the concept of minutiae points. The experimental results,

augmented with extended qualitative and quantitative anal-

ysis, show that the proposed CNN automatically learns and

extracts fingerprint features from the vicinity of minutiae

points (when available) for performing fingerprint match-

ing. We performed the experiments using two different

alignment strategies to verify the effect of alignment, with

and without minutiae, on the type of fingerprint features ex-

tracted by the proposed CNN. We also repeated the experi-

ments using a modified All-CNN model and confirmed the

significance of the minutiae points for fingerprint matching

regardless of the choice of CNN architecture used.

We plan to extend this work by evaluating the proposed
method on different types of fingerprints such as latent fin-
gerprints, partial fingerprints, moist fingerprints, etc. This
will help establish the importance of minutiae points in fin-
gerprint matching as a function of the type of fingerprints.
We are also looking at ways in which information extracted
by the proposed network can be better exploited by tradi-
tional fingerprint matchers, especially those used to pro-
cess partial fingerprints [24]. In summary, the results of
this work suggest that automatic feature learning schemes
also determine minutiae points to be of importance for fin-
gerprint matching, therefore, establishing the significance
of minutiae points from a machine learning perspective.
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