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Abstract

Current progress in programmable electrostatic phase plates raises questions about their use-
fulness for specific applications. Here, we explore different designs for such phase plates with the
specific goal of correcting spherical aberration in the Transmission Electron Microscope (TEM).
We numerically investigate whether a phase plate could provide down to 1 Ångström spatial res-
olution on a conventional uncorrected TEM. Different design aspects (fill-factor, pixel pattern,
symmetry) were evaluated to understand their effect on the electron probe size and current den-
sity. Some proposed designs show a probe size (d50) down to 0.66Å , proving that it should be
possible to correct spherical aberration well past the 1Å limit using a programmable phase plate
consisting of an array of electrostatic phase shifting elements.
Key Words: electron optics, aberration correction, phase plate, electrostatic lens, beam forming,
adaptive optics
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1 Introduction

Aberration correction in the electron microscope is a topic that started when, in 1936, Otto Scherzer
proved that chromatic and spherical aberrations are unavoidable in cylindrically symmetric static
electron lenses (later on called ”Scherzer Theorem” due to its importance) [30]. Shortly after, in 1947,
Scherzer realized that using an array of multipolar lenses could allow phase manipulation beyond
his theorem’s rotationally symmetric constraints, thus providing a pathway for correcting the formerly
mentioned aberrations [31]. Attempts toward experimental realization saw many iterations throughout
the following decades [33, 1, 26, 24, 18, 7, 16, 28, 21, 3]. However, the successful implementation of an
aberration corrector for TEM did not come until 50 years later with the Haider-Rose-Urban project
[14, 15, 29]. The implementation of this corrector represented a breakthrough in the field, allowing
for beyond-Ångström resolution in both TEM and STEM and up to atomic resolution in analytical
methods due to a significantly increased current density.
More than 20 years after this breakthrough in the field of TEM, we want to explore the possibility
of implementing a different idea to correct for third-order spherical aberration (Cs). To achieve this,
we take inspiration from the field of optics, more specifically spatial light modulators, that allow to
freely program the wavefront of coherent light, making use of a range of different technologies [8, 22].
”Spatial Electron Modulators,” as opposed to their light optic counterparts, are unfortunately still far
from achieving a similar level of technological advancement.
The concepts and reasons why a programmable phase plate is attractive in general have been discussed
earlier [13, 11]. We have opted for a technological approach that uses an array of electrostatic Einzel
lenses as programmable phase shifters. We demonstrated a 2x2 proof of concept [35] and have since
then put significant efforts into extending the concept to the current state of the art where a 48-
pixel programmable phase is produced by lithographic means [36]. In the meanwhile, other groups
have explored different means to achieve similar freedom in phase shaping of electron beams using
miniaturized multipolar lenses [12], interaction with optical near fields [11, 38, 23, 6, 20], electrostatic
nanofabricated elements applying a projected potential to a region of free space [32, 27, 17, 4, 2], and
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many others.
This technological progress allows to ponder potential applications such phase plate could provide. In
this paper, we will focus on whether an array of electrostatic phase shifters could be made into an
acceptable Cs corrector for TEM. Proving this to be possible, would provide the option of introducing
a small, integrated device into the TEM column with little change to its configuration. Furthermore,
it would offer a rapid response tool, which combined with adaptive algorithms can auto-tune and
respond to instrument or specimen-induced drifts, potentially reducing the overall complication of an
experiment (dose and material efficiency).
As simple as the idea may sound, the devil is in the details, and we attempt in this paper to give an
overview of the design parameters that have to be balanced between manufacturability and expected
performance to evaluate if aberration correction with a programmable electrostatic phase plate could
have a future in TEM.

2 Methods

2.1 Electron Beam Parameters to be Optimized

In order to evaluate different designs for programmable phase plates, we need to first agree on the
beam parameters to optimize.
For aberration correction, we are interested in spatial resolution and current density in the electron
probe. It is convenient to define the spatial resolution as d50, the diameter of the probe containing 50%
of the beam intensity [19]. This definition comes very close to the FWHM for very sharp beams, while
it offers the advantage of accounting for the effect of the beam tails. For the case of current density,
we assume the phase plate to be homogeneously and coherently illuminated with a current density
that would lead to a total probe current of I0 if a circular aperture would replace the phase plate with
the same total diameter. As the electrostatic phase plate will block part of this beam inherent to the
construction of the segments making up for it (sketched in fig. 1), we get for the beam current with
phase plate I ′ = I0ζ with ζ the fill factor of the specific phase plate. Ideally, this fill factor should be
as close to 1 as possible, meaning no blocking of the electron beam, but practical design constraints
will determine what is realistic to achieve.
The average current density, J50, in the d50 probe diameter is then given as:

J50 =
4ζI0
πd2

50

(1)

In comparison, for an ideal aberration-corrected system with circular aperture and convergence half
angle α, this becomes:

d50,ideal ≈ 0.514
λ

α
(2)

J50,ideal ≈ 15.152
I0α

2

πλ2
(3)

Note that in this theoretical design exercise, we ignore other sources of experimental probe broadening,
such as those caused by source size [25], vibrations, partial coherence, and any sources of electronic
noise or thermal drifts that could affect the final probe size [37].
To keep the arguments as general as possible, we focus on high-level design parameters and avoid going
into details and technical challenges arising from manufacturing.

2.2 Phase Plate Design Parameters

After listing the probe parameters we aim to study and optimize, we now will give an insight into
some phase plate design considerations to achieve probe size reduction and current density increase.
We want to pay special attention to the number of phase-shifting elements, their width, and the
percentage of the aperture they will block (all correlated through the interconnections that deliver the
potential to each individual element). A simple rule of thumb would be that more segments come with
more interconnections, thus blocking more of the incoming electron beam. However, as mentioned
before, we will discuss the mathematical implications of the segment/phase plate design leaving the
manufacturing of the phase plate itself out of the scope of this study.
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Figure 1: Sketch of a conventional round aperture versus an array of phase-shifting elements occupying
a similar area as in the round aperture case. Parameters such as fill factor (ζ) and angular range (∆θ)
are indicated along with the relation between maximum aperture (θmax) and radius (r(m)). We show
where the interconnections and supports are allocated in the aperture, thus reducing the fill factor.

2.2.1 The Role of the Fill Factor

Putting material in the path of the beam is inevitable for these phase plates since it is the only way
to break the symmetry constraints imposed by the Maxwell equations on fields in free space. Adding
material to create the structure of the plate segments leads to the concept of the fill factor (ζ), the
amount of optically transparent versus non transparent parts in the phase plate. This modulation of
the local amplitude of the electron beam will inevitably lead to a broadening of the probe as high
spatial frequency tails are introduced.
If we try to estimate this effect, we can begin with a wave function on the probe forming aperture with
a constant amplitude:

ψin(~k) =
1√
A
a(~k)eiφ(~k) (4)

With a(~k) a function defining the aperture’s shape being either 1 (~k < α) or 0 (~k > α), A =
∫
a(~k)d2~k

is the total area of the aperture, φ the local phase, and ~k a vector in the aperture plane. The wave
function in real space then becomes:

Ψ (~r) =

∫
ψin(~k)ei

~k·~rd2~k (5)

We consider as the ideal case a circular aperture and a flat phase (i.e., the diffraction limit). In this
case, the probe will be the sharpest and the wave will have a value at the central point:

Ψideal (0) =
1√
A

∫
a(~k)d2~k =

√
A (6)

Now, if we want to describe the situation of a pixelated phase plate with the same outer dimensions,
we can put a mask M over the ideal aperture, which is either 1 (electron transparent) or 0 (not electron
transparent). If we assume the ideal case where the pixelated phase plate can still provide a flat phase
in those areas where the plate is electron transparent, we get:

ψpp(~k) = ψin(~k)M(~k) (7)
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This mask changes the maximum of the real space wave function to:

Ψpp(0) =
√
Aζ (8)

With ζ =
∫ M(~k)

a(~k)
d2~k the fill factor of the phase plate.

Now, let us consider the resulting probe which consists of the sum of the ideal corrected wave and an
unwanted tail part:

Ψpp(~r) = ζΨideal(~r) + Ψtails(~r) (9)

Where the scale factor ζ describes the scaling of the central maxima with respect to the ideal corrected
case. We can now write the intensity of the probe as:

Ipp(~r) ≈ ζ2Iideal(~r) + Itails(~r) (10)

We assume that the current of the tails does not overlap with the central spot. This assumption is
reasonable given that the ideal probe is a maximally compact function near the center, and the tails
come from the high spatial frequencies of the mask, which are much smaller than the total aperture
radius.
If we normalize the total current illuminating the round aperture Iideal,total = I0 = 1 for simplicity,
the total intensity in the probe then becomes:

Itot,pp ≈ ζ2 + Itot,tails

ζ ≈ ζ2 + Itot,tails

Itot,tails ≈ ζ(1− ζ)

(11)

If we normalize the tails relative to the total intensity in the probe, we get:

Itot,tails,rel ≈ 1− ζ (12)

In other words, the unwanted tail part of the probe formed by a pixelated phase plate scales approxi-
mately as 1− ζ. These tails will form a low-resolution background signal to any scanned probe setup.
This background is highly unwanted as it will increase the counting noise, which is especially bad for
spectroscopic methods since it will bring signal from areas away from the probe center. To prevent
these tails, we want to create a mask having the highest possible fill factor. For the same reason, to
optimize the value of d50, we need a ζ > 0.5, and the ideal case would be to bring this value as close to
1 as possible. Cutting off the tails with an aperture placed lower in the TEM column seems another
option, but this would require cutting apertures with an equivalent real space diameter only a few
orders larger than the probe size, which seems extremely difficult to obtain if we aim for Å probes,
especially when considering that working in another (magnified) plane than the sample plane will
introduce inevitable lens aberrations.

2.3 Phase Plate Pixel Pattern

In order to best compensate for the lens aberrations in a pixelated phase plate, it is important that each
phase-changing segment can locally correct for the phase error of the other lenses in the microscope
as well as possible. This will naturally lead to pixel patterns that will mimic the symmetry of the
aberration function. Starting from the aberration function χ(θ) and considering only the defocus (∆f)
and Cs terms we have:

χ(θ) =
π

λ

[
−∆fθ2 +

Cs
2
θ4

]
(13)

We now look for the highest angle that still can be corrected by a segment in the phase plate, and we
assume a spherically symmetric phase plate segment covering an angular range between θi and θi+1.
Taylor expanding the aberration function to second-order around θi gives:

χ|θi(∆θ) ≈
π

λ

[
−∆fθ2

i +
Cs
2
θ4
i

]
+

2π

λ

[
−∆fθi + Csθ

3
i

]
∆θ+

π

λ

[
−∆f + 3Csθ

2
i

]
∆θ2 + . . .

(14)
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2.3.1 Zeroth-Order Phase Correction

Suppose we use a zeroth-order phase plate which produces a constant phase shift that is programmable
per segment. If we allow for a maximum phase error ε within each segment, we get for the maximum
angle up to which we can correct:

χ|θi(∆θ) < ε (15)

π

λ

[(
−2∆fθi + 2Csθ

3
i

)
∆θ +

(
−∆f + 3Csθ

2
i

)
∆θ2

]
< ε (16)

This puts an upper limit on the maximum angle that can be corrected depending on how small we can
make ∆θ. If we assume only Cs needs correction, we can always choose ∆f = 0, and we also take the
first-order Taylor expansion as sufficient we get:

∆θ <
ελ

π2Csθ3
i

(17)

For a typical Cs = 1 mm, θi=15 mrad, and ε = 2π/10, we obtain a ∆θ < 58µrad. This would require
feature sizes of the segments of only 0.3% of the total aperture diameter and could become rather
difficult to manufacture. Alternatively, we can express the maximum angle for a given minimum size
of ∆θ:

θmax <

(
ελ

2πCs∆θ

) 1
3

(18)

This leads to 5.8 mrad for ∆θ = 1 mrad, giving us the maximum aperture angle we can correct with
a flat phase within the given error ε.

2.3.2 First-Order Phase Correction

If, on the other hand, we allow for first-order correction in each phase segment, meaning a linear
projected potential ramp in the radial direction and thus requiring at least two independent potential
electrodes per segment, the situation changes. In this case the phase could be corrected up to first
order and we get as phase error:

χ|θi(∆θ) < ε (19)
π
λ |
(
−∆f + 3Csθ

2
i

)
|∆θ2 < ε (20)

∆θ <
√

ελ

π(∆f+Cs3θ2i )
(21)

We choose ∆f = 0 , which yields:

∆θ <

√
ελ

3πCsθ2
i

(22)

For a typical Cs = 1 mm, θi=15 mrad, and ε = 2π/10 we get ∆θ < 0.76 mrad which is ≈13 times
larger as compared with zeroth-order correction. Following the steps of the previous section, we can
express the maximum angle for a given minimum size of ∆θ:

θmax <

√
ελ

3πCs∆θ2
(23)

This leads to 11.46 mrad for ∆θ = 1 mrad, nearly double its zeroth-order counterpart.
We give a simplified sketch of the main building blocks needed to make up for both a zeroth- and
first-order phase-shifting elements in fig. 2. Furthermore, we show a plot of eq. 17 & eq. 22 in fig. 3
for two different phase errors ε. To put this into perspective, we give the resolution ranges for some
manufacturing techniques (shaded regions).
In order to translate the previous results to meters, we can take a scaling factor to relate angle (mrad)
and physical distance (meters), assuming that the widest area we can coherently illuminate is in the
order of 100µm (so, despite the maximum aperture angle θ, we still illuminate the same area in meters).
With this in mind, and looking at the right axis scale on fig. 3, we can get a value for the physical
dimension corresponding to the minimum ∆θ needed to keep the phase error under a specific error (ε).
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Figure 2: Sketch of zeroth- and first-order phase element as the main building blocks of an array of
programmable phase-shifting segments.

Figure 3: Minimum ∆θ needed to correct for Cs as a percentage of the total aperture for different
phase errors ε (left axis, log scale). These can be translated to minimum segment feature sizes when
assuming a total aperture diameter of 70 µm (right axis). The shaded regions (green, violet, red) show
approximated region where photolithography, extreme ultra violet (EUV) lithography, and electron
beam lithography (EBL) would be required to make such features [9].
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3 Results

Integrating the design rules discussed above, we numerically simulated a set of different electrostatic
phase plate designs to test their capabilities to correct Cs at 300 keV with two approaches, (1) applying
constant phase shift (zeroth-order) and (2) a combination of constant and linear ramp shift (first-order)
segments. As Cs is rotationally symmetric, the proposed designs all consist of concentric rings to make
maximum use of the symmetry of the problem.
For reference, these proposed concentric segments shown in fig. 4 (a-d) are analogous to those labeled
in fig. 1 as ”individual phase segments,” with the only difference being that we reduce the spacing
between segments arbitrarily for our study, and their working principle is the same as the one sketched
in fig. 2.
After some design iterations, we narrowed down the study to compare three apertures: zeroth-order
concentric rings (fig. 4 b), a hybrid design (fig. 4 c), and a simplified version of the latter (fig. 4 d). We
show the resulting probe profiles from the apertures in fig. 4 (i). This figure shows how the probe from
all proposed designs approaches that of a corrected instrument, visibly improving over a non corrected
instrument. It is essential to mention that fig. 4 (i) only gives a view of an azimuthally integrated
intensity which is normalized to the maximum intensity of each probe for scale (y-axis) and shows only
the tails of the lower spatial frequency features (x-axis).
The fill factor (ζ) displayed in fig. 4 was calculated by counting the number of pixels in the matrix
with a value different than 0 and dividing it by the total number of pixels a round aperture with the
same radius will have. Furthermore, the spacing between holes shown in fig. 1 is arbitrarily reduced
for simplicity. The calculated probe size (d50) for the different proposed designs is shown in fig. 5. We
see the simulated d50 value for each of the plates with an increasing opening angle. We found that all
the proposed designs offer some Cs correction. However, the linear phase profile obtained by applying
first-order correction can keep the phase relatively flat for bigger opening angles, further reducing the
probe size. More specifically, we reach a d50 value of 0.93Å at 15 mrad for the zeroth-order phase plate,
a d50 of 0.66Å at 21 mrad for the hybrid design, and a d50 of 0.75Å at 18 mrad for the simplified
hybrid design. These values represent a 40%, 57%, and 52% improvement in spatial resolution,
respectively, compared with a non corrected instrument. At higher aperture values (i.e., larger than
21 mrad), we must reduce the width of the segment in order to reduce the phase error, and this will
eventually become an issue in terms of fabrication.
The relative current density can be calculated from eq.1 and is plotted in fig.6 assuming I0 =50 pA, all
the proposed designs increase this value. More specifically, 6.4x for the zeroth-order phase plate, 28x for
the hybrid phase plate shown, and 16.4x for the simpler hybrid design compared with a non corrected
round aperture at 10 mrad. This relative current density is highly important for, e.g., spectroscopic
methods where the increased current in a small probe can lead to a vastly improved signal-to-noise
ratio on top of the gain in spatial resolution.

4 Discussion

This design exercise shows that having an adaptive phase plate in the condenser aperture plane can
correct Cs. Not only did we numerically obtain a probe size below the 1Å limit, but we also increased
the relative current density more than 20x. However, implementing a device like the one proposed
in this study poses several challenges. The most critical issue is the possibility of manufacturing a
device with all the necessary electrical connections to control each phase segment separately. As the
aperture angle increases, we quickly approach regions where the aberration function changes rapidly;
this change requires a narrow segment to keep the phase error within a reasonable range. However,
reducing this segment size or going from zeroth-order segments to first-order segments will increase the
number of interconnections needed to control such implementation, ultimately reducing the attainable
fill factor.
We show the relation between probe size (d50) and fill factor (ζ) in fig. 7. We can observe how the
probe size for a plate with a ζ < 0.5 cannot even match the performance of a non corrected instrument
in terms of d50 for small angles, but at angles > 11 mrad this less than ideal phase plate can still
significantly improve d50 and hence increase J50 when compared with the non corrected situation.
This may be of interest in cases where current density is more important than ultimate resolution.
It is important to note that the fill factor has a double negative effect on the probe current. On
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Figure 4: Simulated performance of different apertures at 300 keV. (a) The aberrations over a corrected
round aperture at 21 mrad with Cs = 1µm and Scherzer’s defocus. The aberrations for (b,c,d) are
1.2 mm Cs with Scherzer’s defocus as well. (b) A zeroth-order phase plate with 19 segments and
≈ 77% fill factor at 15 mrad opening angle, (c) and (d) hybrid correction phase plates with four
central zeroth-order segments followed by eight first-order segments and ≈ 89% fill factor at 21 mrad
in the case of (c), and one central zeroth-order hole followed by eight first-order segments and ≈ 92%
fill factor at 18 mrad for (d). (e-h) The simulated probe intensities below the corresponding phase
plate responsible for them; the simulation box is 6x6Å . (i) A radially integrated profile for each of the
abovementioned figures. The proposed alternatives improve the spot size compared with the aberrated
instrument. However, it is important to mention that the feature size of the smallest segment in (b)
is ≈ 270nm, whereas the hybrid plates’ segments are 1.5µm wide. The color wheel inset in (a) shows
the scale used to represent both phase (hue) and amplitude (intensity).
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Figure 5: Simulated probe size d50 assuming 300 keV, Cs = 1.2 mm, and Scherzer defocus for the
phase plates and non corrected aperture. The black line shows the 1Å limit. All proposed phase plate
designs are capable of a probe size below this limit (blue, yellow, green lines). However, they are still
outperformed by a multipole corrector (red line).

Figure 6: Current density J50 for the different phase plate designs at different θmax assuming a
total incoming current up to 50 pA. All proposed designs significantly improve compared with a non
corrected aperture; the red (dotted) line shows the corrected instrument’s performance.
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the one hand, it lowers the current in the beam due to partial blocking by a factor ζ. On top of
this, the beam that gets through is split into the desired part (central spot) and a tail part, which
further lowers the intensity of the desired part of the beam to ζ2. Often there is more than enough
beam current available, and the sample may limit how much current can be used. In such cases,
the initial loss due to finite transparency of the phase plate is not a problem, but the tail argument
still is, as it will provide a degraded image contrast while still doing full probe current beam damage.
Increasing the number of segments (more interconnections) or reducing their size brings the fabrication
process closer to the photolithography resolution limit (≈ 1µm) as indicated in fig.3. For this reason,
one must be careful with the phase plate design since high complexity designs will require higher-
resolution methods such as EUV or e-beam lithography [9]. For instance, a zeroth-order correction
requires only one electrode to create an Einzel lens inside the region of the segment, while a first-order
implementation would require a plate capacitor-like arrangement to achieve the required phase ramp.
Another way to increase the fill factor is to tie the different electrodes together with a fixed resistor
string, saving multiple interconnection lines. The drawback of this solution is that it would take away
the ability to fine-tune each segment individually, and if the projected potentials are not quite what
was expected, there is no easy way to correct them unless resistor values could be, e.g., laser trimmed.
Furthermore, having a significant Cs correction seems unreasonable for phase plates with less than
50% fill factor since most of the current will land on the tails of the probe, as shown above. However,
we demonstrate here that the number of segments needed to achieve sub-1Å correction can be kept
relatively low, thus reducing the design complexity significantly over, e.g., the design proposed in our
previous paper [35]. The predicted resolution should be taken with some reservation as effects like
source size broadening, vibrations, chromatic aberration, higher-order aberrations, and other non-
idealities were not considered for the theoretical study and will further lower the actual attainable
resolution in practice.
An advantage of the proposed designs is that, as indicated earlier, the performance of an electrostatic
phase plate is relatively insensitive to the quality of the voltage sources driving the segments [35]. We
test this claim in the zeroth-order design in fig. 8 by adding different normally distributed phase noise
to each of the phase segments and calculating the resulting d50 and the difference between a case where
no noise is present. We note that the increase in probe size to such noise remains under 0.1Å for

Figure 7: d50 value for different ζ using a zeroth-order phase plate. We kept the same design as in
fig. 4 b. for the segments only increasing the width of the lines going outwards in the radial direction,
thus keeping the sampling on θ the same. We can observe how the d50 is heavily affected by ζ, making
it difficult of a zeroth-order phase plate to obtain a sub-Å probe for ζ < 0.70
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most aperture angles. Assuming an electronic system is designed to provide, e.g., a maximum of 200π
phase shift, such precision and noise requirements would easily be met even, e.g., with a humble 12-bit
digital to analog converter.

Figure 8: Average probe size d50 including different levels of phase noise ε for the zeroth-order ring
phase plate. The shaded area represents the 2σ variation for 10 random realizations of the phase noise
and the black line shows the performance of the phase plate without any phase noise (lower limit).
The plot shows that sub-Å performance is possible for all but the highest noise level simulated here.

5 Conclusion

We have numerically demonstrated how a programmable electrostatic phase plate can correct third-
order spherical aberration in the TEM with phase plates of modest complexity consisting of 19 segments
(zeroth-order) and as few as 8 segments for a hybrid design. All the proposed designs are capable of
flattening the electron wavefront up to relatively high opening angles and can provide sub-1Å probe
sizes.
We discussed the benefit of moving from zeroth-order to first-order phase shifters to contain the phase
error within some error margin. On top of this, we showed how the segment width for a first-order
element does not necessarily need to have unreasonably small dimensions to correct Cs with acceptable
performance. In terms of shape, we naturally confirm that a circularly symmetric design compensates
for the phase shift caused by Cs since it mimics its symmetry; thus, correcting the aberrations more
efficiently within each segment. Nevertheless it is likely that in practice also some breaking of this
symmetry would be useful to compensate for non round aberration. This would bring a further increase
in the number of phase-shifting elements and the complexity of getting interconnects to each.
We found that to achieve Cs correction to any significant extent, the phase plate has to have a fill
factor ζ ≥ 0.75 to achieve d50 ≤ 1Å .
We demonstrated a significant increase in current density, crucial for applications such as STEM EELS,
even for cases where the fill factor is low. When the absolute current density is important, we argued
that it scales as ζ2 as both the total current and the amount of probe tails scale with the fill factor.
We investigated the robustness of the correction versus noise on the electrostatic potentials of the
phase-shifting elements and showed that, for a zeroth-order phase plate, we get excellent results for
ε ≤ 2π/24, which is well within reach of even simple digital-analog converter circuits.
This study demonstrates how an adaptive optical device can potentially be implemented in a non cor-
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rected instrument, improving its performance without any significant changes in the optical setup of
the column. Having adaptive optical elements in an electron microscope allows for increased flexibility
and performance, which opens up a wide variety of experimental setups, ultimately expanding the
microscope’s capabilities.
Besides (adaptive) aberration correction, one of the potential applications for electrostatic phase plates
is to shape the beam to either enlarge the depth of focus or increase the z-resolution. This first idea has
been demonstrated before using a spatial light modulator that can generate Bessel-like beams invariant
with propagation length [5, 34]. However, we can also attempt to correct higher-order aberrations with
a phase plate to increase the opening angle, potentially enhancing the z-resolution (which scales as the
inverse of the aperture squared).
Another possible application is to use the phase plate for phase retrieval experiments. This idea has
already been studied in optics [39, 40, 10], and the possibilities of fast and reliable wavefront tuning
with the electrostatic phase plate can allow us to do the same in the electron microscope.
Increasing selectivity in inelastic scattering experiments by differential experiments changing the probe
rapidly between two or more configurations is another class of applications that could shed light on,
e.g., the magnetic, chiral, and optical response of materials at the nanoscale. Furthermore, having such
adaptive apertures allows for automatic correction and optimization, self-tuning the phase of each of
the segments to match the user’s needs.
However, it is evident that the performance of the proposed designs in terms of Cs correction capabil-
ities is inferior to that of a modern multipole corrector. Still, the proposed setup would offer several
significant advantages, such as small size (1 mm scale), low power consumption (1 W scale), high
speed (up to 100 kHz, extendable to much higher), no hysteresis, vastly reduced precision constraints
on drive electronics (12 bit suffices), negligible drift, and potentially low production cost.
These observations will guide further practical implementations with experimental realization of phase
plate-based aberration correction on the nearby horizon.
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