
Atmos. Meas. Tech., 14, 2141–2166, 2021

https://doi.org/10.5194/amt-14-2141-2021

© Author(s) 2021. This work is distributed under

the Creative Commons Attribution 4.0 License.

Can a regional-scale reduction of atmospheric CO2 during the

COVID-19 pandemic be detected from space? A case study

for East China using satellite XCO2 retrievals

Michael Buchwitz1, Maximilian Reuter1, Stefan Noël1, Klaus Bramstedt1, Oliver Schneising1, Michael Hilker1,

Blanca Fuentes Andrade1, Heinrich Bovensmann1, John P. Burrows1, Antonio Di Noia2,3, Hartmut Boesch2,3,

Lianghai Wu4, Jochen Landgraf4, Ilse Aben4, Christian Retscher5, Christopher W. O’Dell6, and David Crisp7

1Institute of Environmental Physics (IUP), University of Bremen, 28334 Bremen, Germany
2Earth Observation Science, University of Leicester, LE1 7RH, Leicester, UK
3NERC National Centre for Earth Observation, LE1 7RH, Leicester, UK
4SRON Netherlands Institute for Space Research, 3584 CA Utrecht, the Netherlands
5Directorate of Earth Observation Programmes, European Space Agency (ESA), ESRIN, 00044 Frascati, Italy
6Cooperative Institute for Research in the Atmosphere, Colorado State University (CSU), Fort Collins, CO 80523, USA
7Jet Propulsion Laboratory (JPL), Pasadena, CA 91109, USA

Correspondence: Michael Buchwitz (buchwitz@uni-bremen.de)

Received: 24 September 2020 – Discussion started: 8 October 2020

Revised: 10 February 2021 – Accepted: 11 February 2021 – Published: 18 March 2021

Abstract. The COVID-19 pandemic resulted in reduced an-

thropogenic carbon dioxide (CO2) emissions during 2020 in

large parts of the world. To investigate whether a regional-

scale reduction of anthropogenic CO2 emissions during the

COVID-19 pandemic can be detected using space-based ob-

servations of atmospheric CO2, we have analysed a small en-

semble of OCO-2 and GOSAT satellite retrievals of column-

averaged dry-air mole fractions of CO2, i.e. XCO2. We focus

on East China and use a simple data-driven analysis method.

We present estimates of the relative change of East China

monthly emissions in 2020 relative to previous periods, lim-

iting the analysis to October-to-May periods to minimize the

impact of biogenic CO2 fluxes. The ensemble mean indi-

cates an emission reduction by approximately 10 % ± 10 %

in March and April 2020. However, our results show consid-

erable month-to-month variability and significant differences

across the ensemble of satellite data products analysed. For

example, OCO-2 suggests a much smaller reduction (∼ 1 %–

2 % ± 2 %). This indicates that it is challenging to reliably

detect and to accurately quantify the emission reduction with

current satellite data sets. There are several reasons for this,

including the sparseness of the satellite data but also the weak

signal; the expected regional XCO2 reduction is only on the

order of 0.1–0.2 ppm. Inferring COVID-19-related informa-

tion on regional-scale CO2 emissions using current satellite

XCO2 retrievals likely requires, if at all possible, a more

sophisticated analysis method including detailed transport

modelling and considering a priori information on anthro-

pogenic and natural CO2 surface fluxes.

1 Introduction

Carbon dioxide (CO2) is the most important anthropogenic

greenhouse gas significantly contributing to global warming

(IPCC, 2013). CO2 has many natural and anthropogenic

sources and sinks, and our current understanding of them

has significant gaps (e.g. Ciais et al., 2014; Chevallier

et al., 2014; Reuter et al., 2017c; Crisp et al., 2018;

Friedlingstein et al., 2019). Efforts are ongoing to im-

prove the fundamental understanding of the global carbon

cycle, to improve our ability to project future changes

and to verify the effectiveness of policies such as the

Paris Agreement (https://unfccc.int/process-and-meetings/

the-paris-agreement/the-paris-agreement, last access:

8 September 2020) aiming to reduce greenhouse gas
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emissions (e.g. Ciais et al., 2014, 2015; Pinty et al., 2017,

2019; Crisp et al., 2018; Matsunaga and Maksyutov, 2018;

Janssens-Maenhout et al., 2020).

Retrievals of XCO2 from the satellite sensors SCIA-

MACHY/ENVISAT (Burrows et al., 1995; Bovensmann

et al., 1999; Reuter et al., 2010, 2011) and TANSO-

FTS/GOSAT (Kuze et al., 2016) and from the Orbiting Car-

bon Observatory-2 (OCO-2) satellite (Crisp et al., 2004; El-

dering et al., 2017; O’Dell et al., 2012, 2018) have been used

in recent years to obtain information on natural CO2 sources

and sinks (e.g. Basu et al., 2013; Chevallier et al., 2014;

Chevallier, 2015; Reuter et al., 2014a, 2017c; Schneising et

al., 2014; Houweling et al., 2015; Kaminski et al., 2017; Liu

et al., 2017; Eldering et al., 2017; Yin et al., 2018; Palmer

et al., 2019; Miller and Michalak, 2020), on anthropogenic

CO2 emissions (e.g. Schneising et al., 2008, 2013; Reuter

et al., 2014b, 2019; Nassar et al., 2017; Schwandner et al.,

2017; Matsunaga and Maksyutov, 2018; Miller et al., 2019;

Labzovskii et al., 2019; Wu et al., 2020; Zheng et al., 2020a;

Ye et al., 2020), and for other applications such as climate

model assessments (e.g. Lauer et al., 2017; Gier et al., 2020)

or data assimilation (e.g. Massart et al., 2016).

Here we use an ensemble of satellite retrievals of XCO2

to determine whether COVID-19-related regional-scale (here

∼ 20002 km2) CO2 emission reductions can be detected and

quantified using the current space-based observing system.

This is important in order to establish the capabilities of cur-

rent satellites, which have been optimized to obtain infor-

mation on natural carbon sources and sinks but not to ob-

tain information on anthropogenic emissions. Nevertheless,

data from existing satellites have already been used to as-

sess anthropogenic emissions (see publications cited above).

These assessments and the assessment presented in this pub-

lication are relevant for future satellites focussing on anthro-

pogenic emissions, such as the planned European Coperni-

cus Anthropogenic CO2 Monitoring (CO2M) mission (e.g.

ESA, 2019; Kuhlmann et al., 2019; Janssens-Maenhout et

al., 2020), which is based on the CarbonSat concept (Bovens-

mann et al., 2010; Velazco et al., 2011; Buchwitz et al., 2013;

Pillai et al., 2016; Broquet et al., 2018; Lespinas et al., 2020).

We focus on China because regional-scale COVID-19-

related CO2 emission reductions are expected to be largest

there early in the pandemic (Le Quéré et al., 2020; Liu

et al., 2020). Satellite data have been used to estimate

China’s CO2 emissions during the COVID-19 pandemic as

shown in Zheng et al. (2020b), but that study inferred CO2

reductions from retrievals of nitrogen dioxide (NO2) not

using XCO2. Estimates of emission reductions have also

been derived from bottom-up statistical assessments of fos-

sil fuel use and other economic indicators. According to

Le Quéré et al. (2020), China’s CO2 emissions decreased

by 242 Mt CO2 (uncertainty range 108–394 Mt CO2) during

January–April 2020. As China’s annual CO2 emissions are

approximately 10 Gt CO2 yr−1 (Friedlingstein et al., 2019),

i.e. approximately 3.3 Gt CO2 in a 4-month period assum-

ing constant emissions, the average relative (COVID-19 re-

lated) change during January–April 2020 is therefore approx-

imately 7 % ± 4 % (0.242/3.3 ± 0.14/3.3). This agrees rea-

sonably well with the estimate reported in Liu et al. (2020),

which is 9.3 % for China during the first quarter of 2020 com-

pared to the same period in 2019. Liu et al. (2020) also in-

dicate some challenges in terms of interpreting CO2 emis-

sion reductions as being caused by COVID-19, e.g. the fact

that the first months of 2020 were exceptionally warm across

much of the Northern Hemisphere. CO2 emissions associ-

ated with home heating may have therefore been somewhat

lower than for the same period in 2019, even without the dis-

ruption in economic activities and energy production caused

by COVID-19 and related lockdowns.

Sussmann and Rettinger (2020) studied ground-based

remote-sensing XCO2 retrievals of the Total Carbon Col-

umn Observing Network (TCCON) to find out whether re-

lated atmospheric concentration changes may be detected

by the TCCON and brought into agreement with bottom-up

emission-reduction estimates. Our study is one of the first

attempts to determine whether COVID-19-related regional-

scale CO2 emission reductions can be detected using exist-

ing space-based observations of XCO2. Tohjima et al. (2020)

inferred estimates of China’s CO2 emissions from modelled

and observed ratios of CO2 and methane (CH4) surface con-

centrations at Hateruma Island, Japan. They report for China

fossil fuel emission reductions of 32 ± 12 % and 19 ± 15 %

for February and March 2020, respectively, which is about

10 % higher compared to the results shown in Le Quéré et

al., 2020 (see Table 1 of Tohjima et al., 2020). From model

sensitivity simulations they conclude that even a 30 % re-

duction of China’s fossil fuel CO2 emissions would only

result in a 0.8 ppm XCO2 reduction over China and that it

therefore would be very challenging to detect any COVID-

19-related signal with the existing remote-sensing satellites

GOSAT and OCO-2. Their conjecture has essentially been

confirmed by Chevallier et al. (2020). They used XCO2 from

OCO-2 in combination with other data sets and the modelling

of CO2 emission plumes of localized CO2 sources to obtain

estimates of CO2 emissions focussing on several COVID-

19-relevant regions such as China, Europe, India and the

USA. They concluded that these places have not been well

observed by the OCO-2 satellite because of frequent or per-

sistent cloud conditions and they give recommendations for

future carbon-monitoring systems. Zeng et al. (2020) used

modelling, GOSAT XCO2 and other data sets. They conclude

that GOSAT is able to detect a short-term global mean XCO2

anomaly decrease of 0.2–0.3 ppm after temporal averaging

(e.g. monthly), but for East China they could not identify

a statistically robust COVID-19-related anomaly. Satellite-

derived results related to this application are also provided in

the internet (e.g. ESA-NASA-JAXA, 2020).

Regional-scale reductions of tropospheric NO2 columns

have been reported for China (e.g. Zhang et al., 2020;

Bauwens et al., 2020), but for CO2 such an assessment is
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more challenging because of small XCO2 changes on top of a

large background. For example, over extended anthropogenic

source areas such as East China, the XCO2 enhancement due

to anthropogenic emissions is typically only approximately

1–2 ppm (0.25 %–0.5 % of 400 ppm) or even less (see e.g.

Schneising et al., 2008, 2013; Hakkarainen et al., 2016, 2019;

Chevallier et al., 2020; Tohjima et al., 2020; and this study).

A 10 % emission reduction would therefore only change the

regional XCO2 enhancement by 0.1 to 0.2 ppm. This is be-

low the single measurement precision of current satellite

XCO2 data products (at footprint size, i.e. 10.5 km diameter

for GOSAT (Kuze et al., 2016) and 1.3 × 2.3 km2 for OCO-

2 (O’Dell et al., 2018)), which is about 1.8 ppm (1σ ) (e.g.

Dils et al., 2014; Kulawik et al., 2016; Buchwitz et al., 2015,

2017a; Reuter et al., 2020) for GOSAT and around 1 ppm for

OCO-2 (Wunch et al., 2017; Reuter et al., 2019). In our study

we focus on XCO2 monthly averages. Averaging reduces the

noise of the satellite retrievals (e.g. Kulawik et al., 2016)

but also eliminates day-to-day XCO2 variations (e.g. Agustí-

Panareda et al., 2019), which cannot be interpreted using our

simple analysis methods. The accuracy of the East China

satellite XCO2 retrievals averaged over monthly timescales

is difficult to assess because of limited reference data. The

validation of the satellite data products is primarily based

on comparisons with ground-based XCO2 retrievals from the

TCCON, a relatively sparse network with an uncertainty of

about 0.4 ppm (Wunch et al., 2010).

The purpose of this study is to investigate – using satellite

XCO2 retrievals – if satellite-derived East China fossil fuel

(FF) CO2 emissions in 2020 (COVID-19 period) differ sig-

nificantly compared to pre-COVID-19 periods. Ideally, we

would like to know by how much emissions have been re-

duced due to COVID-19. This question, however, cannot be

answered using only satellite data because they do not con-

tain any information on how much would have been emitted

without COVID-19. Instead, we aim at answering the follow-

ing question: are satellite-derived East China FF CO2 emis-

sions early in the pandemic (here: January–May 2020) sig-

nificantly lower compared to pre-COVID-19 periods?

To answer this question, we analyse relative differences of

estimates of East China monthly FF emissions during dif-

ferent time periods. We focus on October-to-May periods,

and we refer to different periods via the year where a period

ends; i.e. we call the period October 2019 to May 2020 “year

2020 period” or simply “2020”, the period October 2018 to

May 2019 is called 2019, etc. Specifically, we compute and

analyse differences of monthly emissions in the year 2020

period relative to previous year 2016 to 2019 periods; i.e. we

use four periods for comparison with the year 2020 period.

To focus on the COVID-19 aspect, we subtract for each pe-

riod the October-to-December (OND) mean value, and we

refer to these time series as “OND anomalies”. These OND

anomalies are time series at monthly resolution of the rela-

tive emission difference between different periods relative to

OND. Negative OND anomalies during the COVID-19 pe-

riod would then suggest (depending on uncertainty) that an

emission reduction during the COVID-19 period has been

detected.

The structure of our paper reflects this procedure: in the

Data section (Sect. 2) we present the satellite and model in-

put data used for this study. In the Methods section (Sect. 3)

we present the analysis method, which consists of two main

steps. The purpose of the first step is to isolate the East

China FF emission signal from the XCO2 satellite retrievals.

This is done by subtracting appropriate XCO2 background

values from the XCO2 retrievals to obtain XCO2 anoma-

lies, 1XCO2. We use two methods to compute 1XCO2.

We describe one method, the DAM method, in detail in

Sect. 3.1 and only shortly explain the second method (TmS

method), referring for details to Appendix A. In the second

step (Sect. 3.2) we compute estimates of East China monthly

FF CO2 emissions from the XCO2 anomalies. These emis-

sion estimates are then used to compute the OND anomalies

explained above. In Results and discussion section (Sect. 4)

we present and discuss the results, i.e. the application of the

described methods to the satellite data. A summary and con-

clusions are given in Sect. 5.

2 Data

In this section, we present a short overview about the input

data used for this study.

2.1 Satellite XCO2 retrievals

This study uses four satellite XCO2 Level 2 (L2) data prod-

ucts. An overview about these data sets is provided in Ta-

ble 1. The first product listed in Table 1 is the latest ver-

sion of the bias-corrected OCO-2 XCO2 product delivered

to the Goddard Earth Science Data and Information Services

Center (GES DISC) by the OCO-2 team (ACOS v10r Lite).

The other three satellite XCO2 data sets are different ver-

sions of the GOSAT XCO2 product derived using retrieval

algorithms developed by groups at the University of Leices-

ter, UK (UoL-FP v7.3); the SRON Netherlands Institute for

Space Research (RemoTeC v2.3.8); and the University of

Bremen, Germany (FOCAL v1.0).

The XCO2 estimates derived from OCO-2 (e.g. O’Dell

et al., 2018) and GOSAT (e.g. Kuze et al., 2016) obser-

vations are complementary because these two spacecraft

use different sampling strategies. OCO-2 has been operat-

ing since September 2014. Its spectrometers collect about

85 000 cloud-free XCO2 soundings each day along a narrow

(< 10 km) ground track as it orbits the Earth 14.5 times each

day from its sun-synchronous 13:36 (local time) orbit. The

OCO-2 soundings provide continuous measurements with

relatively high spatial resolution (1.3 × 2.3 km2) along each

track, but the individual ground tracks are separated by al-

most 25◦ longitudes in any given day. This spacing is reduced

https://doi.org/10.5194/amt-14-2141-2021 Atmos. Meas. Tech., 14, 2141–2166, 2021
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Table 1. Overview of the satellite XCO2 Level 2 (L2) input data products.

Satellite Algorithm Product Product ID References Data provider and data access information

version

OCO-2 ACOS v10r CO2_OC2_ACOS O’Dell et al. (2018),

Kiel et al. (2019),

Osterman et al.

(2020)

Product OCO2_L2_Lite_FP 10r obtained

from NASA’s Earthdata GES DISC website:

https://disc.gsfc.nasa.gov/datasets?keywords=

OCO-2%20v10r&page=1 (last access:

15 August 2020)

GOSAT UoL-FP v7.3 CO2_GOS_OCFP Cogan et al. (2012),

Boesch et al. (2019)

Generated by Univ. Leicester (contact: Antonio

Di Noia: adn9@leicester.ac.uk) and available

via the CDS∗

GOSAT RemoTeC v2.3.8 CO2_GOS_SRFP Butz et al. (2011),

Wu et al. (2019)

Generated by SRON (contact: Lianghai Wu:

l.wu@sron.nl) and available via the CDS∗

GOSAT FOCAL v1.0 CO2_GOS_FOCA Noël et al. (2020) Generated by Univ. Bremen and available on

request (contact: Stefan Noël:

stefan.noel@iup.physik.uni-bremen.de)

∗ Products are available via the Copernicus Climate Data Store (CDS, https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-carbon-dioxide?tab=overview (last

access: 23 September 2020)) currently until end of 2019. Year 2020 data will be made available via the CDS in mid-2021 but are available from the authors on request (see

contact information).

to approximately 1.5◦ longitude after a 16 d ground track re-

peat cycle. GOSAT has been returning 300 to 1000 cloud-

free XCO2 soundings each day since April 2009. Its TANSO-

FTS spectrometer collects soundings with 10.5 km diameter

surface footprints, separated by approximately 250 km along

and across its ground track at it orbits from north to south

across the sunlit hemisphere.

2.2 Model CO2 data

We use data from NOAA’s (National Oceanic and Atmo-

spheric Administration) CO2 assimilation system, Carbon-

Tracker (CT2019) (Jacobson et al., 2020; Peters et al., 2007),

to define the relationship between XCO2 anomalies and fos-

sil fuel emissions. CarbonTracker is a global atmospheric in-

verse model that assimilates atmospheric CO2 measurements

to produce modelled fields of atmospheric CO2 mole frac-

tions by adjusting land biosphere and ocean CO2 surface

fluxes. An overview about CT2019 set is provided in Ta-

ble 2, including references and access information. In short,

CarbonTracker has a representation of atmospheric transport

based on weather forecasts, as well as modules represent-

ing air–sea exchange of CO2, photosynthesis and respiration

by the terrestrial biosphere, and release of CO2 to the atmo-

sphere by fires and combustion of fossil fuels.

3 Methods

3.1 Methods to compute XCO2 anomalies (1XCO2)

Satellite XCO2 retrievals contain information on anthro-

pogenic CO2 emissions (e.g. Schneising et al., 2013; Reuter

et al., 2014b, 2019; Nassar et al., 2017), but extracting this

information requires appropriate data processing and analy-

sis. For a strong (net) source region XCO2 is typically higher

compared to its surrounding area. Our method is based on

computing and subtracting XCO2 background values. The

purpose of this background correction is to isolate the re-

gional emission signal by removing large-scale spatial and

day-to-day temporal XCO2 variations, which cannot be dealt

with in our simple data-driven method to estimate emissions.

XCO2 varies temporally and spatially (e.g. Agustí-

Panareda et al., 2019; Reuter et al., 2020; Gier et al., 2020),

for example, due to quasi-regular uptake and release of CO2

by the terrestrial biosphere, which results in a strong sea-

sonal cycle, especially over northern mid- and high latitudes.

Compared to fluctuations originating from the interaction

of the terrestrial biosphere and the atmosphere, the spatio-

temporal XCO2 variations due to anthropogenic fossil fuel

(FF) CO2 emissions are typically much smaller (e.g. 1 ppm

compared to 10 ppm; Schneising et al., 2008, 2013, 2014;

Agustí-Panareda et al., 2019).

A method used for background correction is the one de-

scribed in Hakkarainen et al. (2019; see also Hakkarainen

et al., 2016, for a first publication of that method). We use

two different methods for background correction. We refer

to these methods as “daily anomalies via (latitude band) me-

dians” (DAM), which is essentially identical with the method

described in Hakkarainen et al. (2019), and “target minus sur-

rounding” (TmS).

Hakkarainen et al. (2019) applied their method to the

OCO-2 Level 2 XCO2 data product to filter out trends and

seasonal variations in order to isolate CO2 source/sink sig-

nals. For background correction, Hakkarainen et al. (2019)

Atmos. Meas. Tech., 14, 2141–2166, 2021 https://doi.org/10.5194/amt-14-2141-2021
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Table 2. Overview of the CarbonTracker CT2019 data set. For this study we used data from the period January 2015 to December 2018.

Model/version Details Reference Access

CarbonTracker

CT2019

Atmospheric CO2 mole fraction profiles

(spatio-temporal sampling: 3◦ × 2◦,

3-hourly) and CO2 fluxes (spatio-

temporal sampling: 1◦ × 1◦, 3-hourly)

Jacobson et al. (2020), DOI:

https://doi.org/10.25925/39m3-6069

CarbonTracker CT2019,

http://carbontracker.noaa.gov

(last access: 22 July 2020)

Table 3. Corner coordinates of the East China target region as anal-

ysed in this study.

Region ID Comments Latitude Longitude

range range

(◦ N) (◦ E)

East China Target region for DAM 28–44 102–126

and TmS methods

Extended region for 18–54 93–135

TmS method

calculate daily medians for 10◦ latitude bands and linearly

interpolate the resulting values to each OCO-2 data point. In-

stead of interpolation, we compute the median around each

latitude (running median) using a latitude band width of

±15◦. We use a larger width compared to Hakkarainen et

al. (2019), as we also apply our method to GOSAT data,

which are much sparser than OCO-2 data. Our investigations

showed that the width of the latitude band is not critical. The

band needs to be wide enough to contain a statistically sig-

nificant sample but narrow enough to resolve large latitudi-

nal gradients in CO2. We subtract the corresponding median

from each single XCO2 observation in the original Level 2

XCO2 data product files to obtain a data set of XCO2 anoma-

lies, 1XCODAM
2 .

In order to verify that our results do not critically depend

on the details of one method, we also use the second TmS

method. Here we obtain the background by averaging XCO2

in a region surrounding the target region (see Table 3 for the

latitude and longitude corner coordinates of the target and its

surrounding region).

We call these background-corrected XCO2 retrievals

XCO2 anomalies, and satellite-derived maps and time se-

ries of these XCO2 anomalies are presented and discussed in

Sect. 4.1. These XCO2 anomalies are then used to compute

East China FF CO2 emission estimates, COFF
2 , as described

in the following subsection.

3.2 Computation of emission estimates (COFF
2

)

To determine whether satellite XCO2 retrievals can provide

information on relative changes of anthropogenic CO2 emis-

sions for the East China target region, we must establish

a relationship between the XCO2 anomalies (see Sect. 3.1)

and the desired estimates of the target region fossil fuel (FF)

emissions. To develop a method to convert the XCO2 anoma-

lies, 1XCO2, to FF emission estimates, COFF
2 , we use an ex-

isting model data set, the CarbonTracker CT2019 data set de-

scribed in Sect. 2.2, which contains atmospheric CO2 fields

and corresponding CO2 surface fluxes during 2015–2018.

Figure 1 shows CT2019 XCO2 maps (left) and corre-

sponding surface CO2 flux maps (right) for selected days in

the January-to-May-2018 period. The XCO2 has been com-

puted by vertically integrating the CT2019 CO2 vertical pro-

files (weighted with the surface pressure normalized pressure

change over each layer). The model data are sampled at lo-

cal noon, which is close to the overpass time of the satellite

data sets used here. The spatio-temporal sampling of a spe-

cific satellite XCO2 data product is not considered here; i.e.

we use the CT2019 data set independent of any satellite data

product apart for the sampling at local noon. As can be seen

from Fig. 1, XCO2 is clearly elevated over the East China tar-

get region (red rectangle) relative to its surrounding region on

15 January 2018 (Fig. 1a) and on 15 March 2018 (Fig. 1c).

On 15 May 2018 (Fig. 1e) the target region and parts of the

surrounding region contain large areas of lower-than-average

XCO2, a pattern which primarily results from carbon uptake

by vegetation during the growing season, which starts in east-

ern China around May each year. The CO2 fluxes, which are

shown on the right-hand side panels of Fig. 1, show simi-

lar spatial pattern as the XCO2 maps, but due to atmospheric

transport and the long lifetime of atmospheric CO2 there is

no one-to-one correspondence between atmospheric XCO2

and surface emissions. The CO2 fluxes are the sum of several

contributing fluxes including FF emissions, biogenic fluxes

and other fluxes (fires, oceans).

Figure 2a shows time series obtained by applying the

DAM method to CT2019 XCO2 for the East China target

region. The CT2019 data set not only contains atmospheric

CO2 concentrations but also its components due to fossil fuel

(FF) emissions and biogenic (BIO) and other fluxes. From

the CT2019 data set we computed total XCO2 (TOT) and its

FF and BIO components. From these components we sub-

tracted the background using the DAM method, and the cor-

responding monthly 1XCODAM
2 time series are shown in

Fig. 2a. As can be seen from Fig. 2a, total 1XCODAM
2 (black

line) is dominated by its FF (red line) and BIO (green line)

components (their sum, i.e. FF + BIO (grey line), is close to

TOT (black line)). As can also be seen, FF emissions for East

https://doi.org/10.5194/amt-14-2141-2021 Atmos. Meas. Tech., 14, 2141–2166, 2021
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Figure 1. CT2019 XCO2 (a, c, e, in ppm) and corresponding CO2 surface fluxes (b, d, f, in Mt CO2 yr−1 per cell) for 15 January 2018 (a, b),

15 March 2018 (c, d) and 15 May 2018 (e, f). The red rectangle encloses the East China target region as defined for this study.

China (red line) are larger than the BIO fluxes (green line) at

least during October to April. During May to September the

BIO fluxes are negative due to uptake of atmospheric CO2

by the terrestrial biosphere, and their absolute value is on the

same order or may even significantly exceed the FF emis-

sions. As a consequence, total 1XCODAM
2 (black line) gets

negative. During these months, the total anomaly (black line)

is closer to BIO (green line) than to FF (red line).

The task for the satellite inversion is to obtain estimates of

East China FF CO2 emissions from the satellite-derived (to-
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Figure 2. Results obtained by applying the DAM method to CT2019 XCO2 for East China. (a) Different monthly 1XCODAM
2

components:

total 1XCODAM
2

(TOT) and its FF (red) and biogenic (BIO, green) components and their sum (FF + BIO). The non-shaded time periods

October to May indicate the periods analysed in this publication. (b) East China October-to-May FF CO2 emissions (red dots) and estimated

emissions CO
FF(DAM)
2

(black crosses) as obtained from total 1XCODAM
2

(TOT as shown in panel a) using the formula shown in panel (b).

(c) Scatter plot of estimated versus true (i.e. CT2019) FF emissions. (d) Relative difference of estimated and true emissions.

tal) XCO2 anomalies, 1XCODAM
2 (black line in Fig. 2a). To

determine to what extent this is possible, we fitted CT2019

1XCODAM
2 (i.e. the quantity that we can also obtain from

satellites) to the East China CT2019 FF CO2 emissions

(which are the known true emissions in this model data as-

sessment exercise). The results are shown in Fig. 2b for

October-to-May periods. The estimated emissions (black

crosses) have been obtained via a linear fit of 1XCODAM
2

to the CT2019 FF emissions (red dots). The two parameters

of the linear fit are also shown in Fig. 2b: scaling factor A

(= 0.90) and offset B (= 7.41). As can be seen, the estimated

emissions agree reasonably well with the true emissions. The

linear correlation coefficient R is 0.83 (see Fig. 2c), and the

relative difference in terms of mean and standard deviation

is 0.2 % ± 5 % (see Fig. 2d). However, for individual months

the error can be as large as 10 %. From this we conclude that

the (approximately 2σ ) uncertainty of our method is approx-

imately 10 %.

A similar figure but generated using the TmS method is

shown in Appendix A as Fig. A1. As can be seen, the re-

sults shown in Fig. A1b to d are similar to the ones shown

in Fig. 2b to d, but the linear correlation is slightly worse
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and the errors are slightly larger. In contrast, the time se-

ries shown in panel (a) differ significantly. This is because of

the different background corrections used for the two meth-

ods. But despite these significant differences the quality of

the derived emissions is similar (the standard deviation of

the monthly biases is 5.5 % for TmS and 4.8 % for DAM;

see panel d). Nevertheless, the DAM method gives slightly

better results compared to the TmS method, and this is also

confirmed by applying both methods to the satellite data (see

Sect. 4). Therefore, the DAM method is our baseline method,

and we focus on results obtained with the DAM method.

It is perhaps surprising that the offset (fit parameter B; see

above) is so large (7.41 for DAM and 7.63 for TmS). Prob-

ably one would assume that the XCO2 anomalies 1XCO2

are directly proportional to the target region fossil fuel emis-

sions, i.e. one would assume that FF is (approximately)

equal to a constant multiplied by 1XCO2 (no offset added)

(for example, for FF = 8 Gt CO2 yr−1 and 1XCO2 = 2 ppm

one would have expected that the conversion factor is 4

Gt CO2 yr−1 ppm−1). In that case, as we are only inter-

ested in relative changes in emissions, we would not need

to know the exact value of the scaling factor. However,

when analysing the satellite data, we found that 1XCO2

is around 2 ppm for January but decreases in subsequent

months, nearly approaching zero in May (which is consistent

with the CT2019 results shown in Fig. 2a). As anthropogenic

emissions are not expected to change that much within a few

months (and zero emissions around May are not realistic at

all), we concluded that the simple proportionality assump-

tion does not hold. To investigate this we used the CT2019

data set to test and improve our method, and the results are

reported in this section. We applied our method to CT2019

XCO2 (as shown in Fig. 2) and compared the retrieved FF

values with the (true) CT2019 FF values. We found large dif-

ferences, which could be significantly reduced by adding an

offset to the linear fit as discussed above. The reason for the

large offset is the influence of the biosphere. Around May the

uptake of atmospheric CO2 due to the biosphere is so large

that 1XCO2 is close to zero – but the FF emissions are not –

and the East China target region is essentially carbon neutral

or even a net sink (see also Fig. 1).

As explained, scaling factor A and offset B are obtained

empirically via a linear fit using CT2019 data (Fig. 2b) and

used for the conversion of the satellite XCO2 anomalies dur-

ing the entire time period January 2015 to May 2020 (as will

be shown in Sect. 4). As can be seen from Fig. 2b and c,

the retrieval biases are within ±10 % during 2015–2018. We

assume in our study that the same conversion is also appro-

priate for 2019 and 2020. However, it cannot be ruled out that

2019 or 2020 were significantly different compared to previ-

ous years with respect to aspects relevant for our study. To

address this, we compare the period October 2019 to May

2020 results with the corresponding results from previous

October-to-December periods to find out to what extent the

period of interest, i.e. October 2019 to May 2020, is signifi-

Figure 3. DAM XCO2 anomaly map at 1◦ × 1◦ resolution gener-

ated from OCO-2 Level 2 XCO2 (v10r, land) for 2015 to 2019.

cantly different, taking into account the year-to-year variabil-

ity, which we use to obtain uncertainty estimates.

The methods described in this section have been applied

to convert satellite-derived target region XCO2 anomalies,

1XCO2, into estimated target region FF CO2 emissions,

COFF
2 . How this has been done using the DAM method for

background correction is explained in the following Sect. 4,

where we refer for the corresponding TmS method results to

Appendix A.

4 Results and discussion

In this section, we present results obtained by applying the

DAM method (see Methods Sect. 3.1) to the satellite data to

obtain XCO2 anomalies from which we derive FF emission

estimates (see Methods Sect. 3.2).

4.1 Application of the DAM method to satellite XCO2

retrievals

The DAM method has been applied to the OCO-2 and

GOSAT satellite XCO2 data products listed in Table 1. Fig-

ure 3 shows a global OCO-2 DAM XCO2 anomaly map at

1◦ × 1◦ resolution for the period 2015–2019. A similar map

is shown in Hakkarainen et al. (2019; see their Fig. 3, top

panel). The degree of agreement confirms the finding re-

ported in Sect. 3.1 that the generation of these anomaly maps

does not critically depend on how exactly the median is com-

puted and used to subtract the background. Hakkarainen et

al. (2019) discuss their OCO-2-derived maps in quite some

detail also in terms of seasonal averages and comparisons

with model simulations. They show that positive anomalies

correspond to fossil fuel combustion over major industrial ar-

eas including China. Their seasonal maps (see their Fig. 4)

show a strong positive anomaly over East China (similar

to that shown here in Fig. 3) except for the June–August

(JJA) summer season, where the XCO2 anomaly can be neg-

ative. This is consistent with the CT2019 results presented in

Sect. 3.2.
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Figure 4. As Fig. 3 but for China and surrounding areas.

A zoom into Fig. 3 is presented in Fig. 4, which shows

more details for China and its surrounding area. As can be

seen from Fig. 4, 1XCODAM
2 is positive especially in the re-

gion between Beijing, Wuhan and Hong Kong, with the high-

est values in the area between Beijing and Shanghai. This

positive anomaly indicates that this region is a strong CO2

source region as also discussed in Hakkarainen et al. (2019).

As already explained, there is no one-to-one correspondence

(especially not for every grid cell) between local XCO2

anomalies and local CO2 emissions (or uptake) because the

emitted CO2 is transported and mixed in the atmosphere.

Furthermore, the satellite data are typically sparse due to

strict quality filtering to avoid potential XCO2 biases, for ex-

ample, due to the presence of clouds. Cloud-contaminated

ground scenes are identified to the extent possible via the cor-

responding retrieval algorithm (see references listed in Ta-

ble 1) and flagged to be bad and are therefore not used for

this analysis. The sparseness of the satellite data set is obvi-

ous from Fig. 5, which shows OCO-2 DAM XCO2 anomaly

maps for February during the 6 years 2015 to 2020.

A key difference between the OCO-2 and the GOSAT

data products is the different sampling of the target region,

with GOSAT having much sparser coverage compared to

OCO-2. This is illustrated in Fig. 6, which shows February-

to-March-2020 averages of the OCO-2 XCO2 data product

(Fig. 6a) and the three GOSAT data products (Fig. 6b–d) at

1◦ × 1◦ resolution. The OCO-2 product shown in Fig. 6a is

NASA’s OCO-2 operational Atmospheric CO2 Observations

from Space (ACOS) algorithm version 10r bias-corrected

XCO2 product (the so-called Lite product), which is re-

ferred to in this publication via the product identifier (ID)

CO2_OC2_ACOS. The three GOSAT XCO2 products are

(see details and references as given in Table 1) the Univer-

sity of Leicester’s GOSAT product (ID CO2_GOS_OCFP;

Fig. 6b), SRON Netherlands Institute for Space Research

GOSAT product (CO2_GOS_SRFP; Fig. 6c), and University

of Bremen’s GOSAT product (CO2_GOS_FOCA; Fig. 6d)

as retrieved with the Fast atmOspheric traCe gAs retrievaL

(FOCAL) retrieval algorithm initially developed for OCO-2

(Reuter et al., 2017a, b). As can be seen from Fig. 6, the spa-

tial sampling of the target region is different for each prod-

uct as only quality-filtered (i.e. good) data are shown and the

quality filtering is algorithm specific (see references listed in

Table 1).

Figure 6 also shows as red rectangle the East China tar-

get region as defined for this study (the geographical coordi-

nates are listed in Table 3). The fossil fuel (FF) CO2 emis-

sions of this target region are approximately 8 Gt CO2 yr−1;

i.e. the selected target region covers approximately 80 %

of the FF emissions of all of China, which are approxi-

mately 10 Gt CO2 yr−1 (Le Quéré et al., 2018; Friedlingstein

et al., 2019). In the following section we present East China

FF emission estimates as derived from the satellite XCO2

anomalies during and before the COVID-19 period.

4.2 Emission estimates

Carbon dioxide fossil fuel emission estimates, COFF
2 , have

been derived from the XCO2 anomalies, 1XCO2, computed

for each of the four satellite XCO2 data products listed in

Table 1. In this section the emission results are presented

and discussed. We focus on results based on 1XCO2 derived

with the DAM method and refer to Appendix A for results

based on the TmS method.

4.2.1 Emission estimates from NASA’s OCO-2 (version

10r) XCO2

Figure 7 shows the results obtained by applying the DAM

method to product CO2_OC2_ACOS (see Table 1) for the

East China target region for the period January 2015 to May

2020 (the TmS version of this figure is shown as Fig. A2 in

Appendix A). Figure 7a shows daily DAM XCO2 anomalies

as a thin grey line and the corresponding monthly averages

as red dots. The amplitude (approximately ±1 ppm) and time

dependence (e.g. the minimum in the middle of each year)

are similar to that for CT2019 (Fig. 2a black line). To ensure

that there are a sufficiently large number of observations per

month, two criteria need to be fulfilled: There must be a min-

imum number of days per month (here: 5) and a minimum

number observations per day (here: 30). The latter criterion

is also relevant for the daily data shown in Fig. 7(a) (grey

line). We also used other combinations of these two parame-

ters (as shown below, e.g. Fig. 9).

Figure 7b shows monthly 1XCODAM
2 for different

October-to-May periods, and Fig. 7c shows the correspond-

ing estimated FF emissions, CO
FF(DAM)
2 . Figure 7d shows

relative differences of the time series shown in Fig. 7c. For

example, the blue data are referred to as “(2020–2019)/2019”

in Fig. 7d, where 2019 refers to the blue data in Fig. 7c,

which corresponds to the period ending in May 2019. Shown

are differences of year 2020 data (red in Fig. 7c) minus data

from previous periods; i.e. Fig. 7d shows to what extent 2020

(strictly speaking the period October 2019–May 2020, i.e.
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Figure 5. As Fig. 4 but for (a) February 2015 to (f) February 2020.

the period which ends in 2020) differs relative to previous

October-to-May periods.

To find out if we can detect a difference between the

COVID-19 period and pre-COVID-19 periods, we subtract

from each time series shown in Fig. 7d the October-to-

December (OND) mean value. The corresponding time se-

ries are shown in Fig. 7e and are referred to as OND anoma-

lies in the following. As can be seen from Fig. 7e, the OND

anomalies vary within ±5 %. Values before January scatter

around zero as the mean value of OND anomalies is zero by

definition during October to December. In January the values

also scatter around zero. After January most values are nega-

tive, indicating reduced emissions compared to pre-COVID-

19 periods. This can be seen more clearly in Fig. 8, where the

same data as in Fig. 7e are shown, but in addition the ensem-

ble mean (light blue thick lines and dots) and median (royal

blue thick lines and dots) has been added, including uncer-

tainty estimates as computed from the standard deviation of

the ensemble members.

Figures 7 and 8 have been generated with the requirement

that for each day at least 30 observations need to be available

in the target region and for each month at least 5 d fulfilling

this 30 observations per day requirement. Figure 9 is similar

to Fig. 8 except that also results for additional combinations

have been added, i.e. other combinations of minimum num-

ber of observations per day and minimum number of days

per month. As can be seen, the results depend somewhat on

which combination of these parameters is used, but the en-

semble median and its uncertainty (royal blue symbols and

lines) are similar. The ensemble median values are similar

and negative during February to May 2020. The large uncer-

tainties (vertical lines; 1σ error estimates) reflect the scatter

of the ensemble members. The errors bars (1σ ) overlap with

the zero (i.e. no reduction) line, indicating that it cannot be

claimed with confidence that a significant drop of the emis-

sions during the COVID-19 period has been detected.
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Figure 6. (a) OCO-2 XCO2 (version 10r, product ID CO2_OC2_ACOS) over land at 1◦ × 1◦ resolution for February–March 2020. The red

rectangle encloses the investigated East China target region. (b–d) As panel (a) but for products CO2_GOS_OCFP (b), CO2_GOS_SRFP (c)

and CO2_GOS_FOCA (d) (see Table 1 for details).

4.2.2 Emission estimates from GOSAT XCO2 data

products

The same analysis method as applied to NASA’s OCO-

2 data product (Sect. 4.2.1) has also been applied to the

three GOSAT XCO2 data products listed in Table 1. The

results are shown in Fig. 10 for product CO2_GOS_OCFP,

in Fig. 11 for product CO2_GOS_SRFP and in Fig. 12 for

product CO2_GOS_FOCA. The month-to-month variations

are larger for these GOSAT products compared to OCO-2

product (note the different scale of the y axes compared to

Fig. 9). This is because GOSAT products are much sparser

compared to the OCO-2 product (as shown in Fig. 6) and

because the single observation random error is larger for

GOSAT compared to OCO-2. As can be seen from a com-

parison of the results obtained for the three GOSAT prod-

ucts (Figs. 10–12), there are large differences among the

results obtained from these products. For example, product

CO2_GOS_OCFP (Fig. 10) suggests that the largest emis-

sion reduction is in April, in contrast to the other two prod-

ucts. The large spread of the GOSAT results means that no

clear conclusions can be drawn concerning East China emis-

sion reductions during the COVID-19 period.

4.2.3 Ensemble mean and uncertainty

An overview about the results obtained from all four satellite

data products using the DAM method is shown in Fig. 13 (the

corresponding TmS version of this figure is shown as Fig. A3

in Appendix A). The results obtained from the individual

products (as shown in royal blue in Figs. 9–12) are shown

here using reddish colours (the corresponding numerical val-

ues are listed in Table 4). Also shown in Fig. 13 is the mean of

the ensemble members and its estimated uncertainty (in dark

blue); the corresponding numerical values are listed in the

bottom row of Table 4. The ensemble mean suggests emis-

sion reductions by approximately 10 % ± 10 % in March and

April 2020. However, as can also be seen, there are signif-

icant differences across the ensemble of satellite data prod-

ucts. For example, the analysis of the OCO-2 data suggests

a much smaller emission reduction of only about 1 %–2 %.

Because of the large differences between the individual en-

semble members it is concluded that the expected emission

reduction cannot be reliably detected and accurately quanti-

fied with our method.

5 Summary and conclusions

We have analysed a small ensemble of satellite XCO2 data

products to investigate whether a regional-scale reduction of

atmospheric CO2 during the COVID-19 pandemic can be de-

tected for East China. Specifically, we analysed four XCO2

data products from the satellites OCO-2 and GOSAT. For this

purpose, we used a simple data-driven approach, which in-

volves the computation of XCO2 anomalies, 1XCO2, using

a method called DAM (daily anomalies via (latitude band)

medians). This method, which is essentially identical with
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Figure 7. DAM analysis of the OCO-2 ACOS version 10r XCO2 product (CO2_OC2_ACOS) for the East China region from January 2015

to May 2020. (a) The thin grey line shows the daily DAM XCO2 anomalies, i.e. daily 1XCODAM
2

. The red dots are the corresponding

monthly values, which are also shown in panel (b) for different October–May periods. (c) As panel (b) but for CO
FF(DAM)
2

, i.e. for the

estimated East China monthly FF emissions (see main text). The data for October 2019–May 2020 (10.2019–5.2020) are shown in red (see

annotation for other periods). (d) Relative CO
FF(DAM)
2

differences for different periods. In blue, for example, the differences correspond

to the period 10.2019–5.2020 (shown in red in panel c) minus 10.2018–5.2019 (shown in blue in panel c). (e) As panel (d) but after the

October-to-December mean value (OND anomalies). The following parameters have been used to generate this figure: minimum number of

observations per day: 30; minimum number of days per month: 5.
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Figure 8. Ensemble member CO
FF(DAM)
2

OND anomalies derived from the satellite product CO2_OC2_ACOS. The thin lines and small

symbols show the same data also shown in the bottom panel of Fig. 7. The thick dots and lines show the corresponding ensemble median,

mean and scatter. The following parameters have been used to generate this figure (see also annotation): minimum number of observations

per day: 30; minimum number of days per month: 5.

Figure 9. The same as Fig. 8 but with additional combinations of minimum number of observations per day (30 as in Fig. 8 and in addition

50, 15 and 10) and minimum number of days per month (5 as in Fig. 8 and in addition 10) (see annotation).
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Figure 10. The same as Fig. 9 but for the product CO2_GOS_OCFP. Results are shown for several values of the required minimum number

of observations per day: 2, 4, 6, 8, 10 and 15. The required minimum number of days per month is 5.

Figure 11. The same as Fig. 10 but for the product CO2_GOS_SRFP.
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Figure 12. The same as Fig. 10 but for the product CO2_GOS_FOCA.

Figure 13. Overview of the ensemble-based CO
FF(DAM)
2

results for January–May 2020 relative to October–December 2019 and previous

years (also shown in Figs. 9–12) via reddish colours for each of the four analysed satellite XCO2 data products (see Table 1). The corre-

sponding ensemble mean value and its uncertainty is shown in dark blue. The uncertainty has been computed as the standard deviation of the

ensemble members. The corresponding numerical values of the ensemble members are listed in Table 4.

the method developed at the Finnish Meteorological Insti-

tute (FMI, Hakkarainen et al., 2019), helps to isolate local

or regional XCO2 enhancements originating from anthro-

pogenic CO2 emissions from large-scale daily XCO2 back-

ground variations (note however that the FMI method is not

supposed to extract exclusively anthropogenic emission con-

tributions to XCO2; see Hakkarainen et al., 2019). In addition

to the DAM method we also used a second method for the

computation of 1XCO2, which is referred to as TmS (tar-

get minus surrounding). Using model and satellite data we
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Table 4. Numerical values of the ensemble-based CO
FF(DAM)
2

results as shown in Fig. 13. Listed are the median values and corresponding

1σ uncertainties (in brackets). The dimensionless values listed here represent the relative CO
FF(DAM)
2

change for January–May 2020 relative

to October–December 2019 and previous years (OND anomalies; see main text).

Month

Product ID October November December January February March April May

2019 2019 2019 2020 2020 2020 2020 2020

CO2_OC2_ACOS −0.004 0.001 −0.010 0.008 −0.010 −0.003 −0.018 −0.019

(0.025) (0.024) (0.015) (0.026) (0.024) (0.020) (0.023) (0.027)

CO2_GOS_OCFP −0.049 0.026 0.071 −0.110 −0.055 −0.151 −0.281 −0.141

(0.046) (0.038) (0.050) (0.077) (0.087) (0.101) (0.055) (0.158)

CO2_GOS_SRFP −0.076 0.111 −0.061 0.038 −0.064 0.011 −0.082 0.024

(0.031) (0.030) (0.054) (0.101) (0.053) (0.081) (0.059) (0.077)

CO2_GOS_FOCA −0.057 0.053 0.008 −0.044 0.046 −0.176 −0.041 −0.080

(0.042) (0.029) (0.040) (0.062) (0.081) (0.066) (0.069) (0.064)

Ensemble −0.047 0.048 0.002 −0.027 −0.021 −0.085 −0.106 −0.054

(0.031) (0.047) (0.054) (0.065) (0.050) (0.091) (0.120) (0.072)

found that the results obtained with the DAM method pro-

vide better results compared to the TmS method. Therefore,

we focussed on DAM-based results but also report selected

results obtained with the TmS method (reported separately

in Appendix A). We analysed satellite data between January

2015 and May 2020 and compared year 2020 monthly XCO2

anomalies with the corresponding monthly XCO2 anomalies

from previous periods.

In order to link the satellite-derived XCO2 anomalies to

East China fossil fuel (FF) CO2 emissions, we used out-

put from NOAA’s CO2 assimilation system CarbonTracker

(CT2019) covering the years 2015 to 2018. We focus on

October-to-May periods to minimize the impact of the terres-

trial biosphere. Using CT2019, we show that 1XCO2 can be

converted to FF emission estimates, denoted COFF
2 , via a lin-

ear transformation. The two coefficients slope and offset of

this linear transformation have been obtained empirically via

a linear fit; i.e. we established a linear empirical equation to

relate the two quantities 1XCO2 and COFF
2 . We show using

CT2019 that the retrieved emissions during October-to-May

periods agree within 10 % with the CT2019 East China FF

emissions.

For the analysis of the satellite data we focus on the

October-2019-to-May-2020 period, which covers months

during the COVID-19 pandemic but also pre-COVID-19

months. We compare results obtained during this period with

earlier October-to-May periods to find out to what extent

year 2020 differs from previous years. Our analysis is limited

to October-to-May periods because our simple data-driven

analysis method cannot deal with the large and highly vari-

able terrestrial biosphere CO2 fluxes outside of this period.

On the other hand this period is challenging for satellite re-

trievals because of the low sun angles especially during the

winter months and cloudiness.

We applied our method to each of the four satellite XCO2

data products to obtain monthly emission estimates, COFF
2 ,

for East China. We focus on changes relative to pre-COVID-

19 periods. Our results show considerable month-to-month

variability (especially for the GOSAT products) and signifi-

cant differences across the ensemble of satellite data products

analysed. The ensemble mean suggests emission reductions

by approximately 10 % ± 10 % in March and April 2020.

This estimate is dominated by the GOSAT ensemble mem-

bers. Analysis of the OCO-2 product yields smaller values,

indicating a reduction of only about 1 %–2 % with an uncer-

tainty of approximately ±2 %.

The large uncertainty, which is on the order of the derived

reduction (i.e. 100 %, 1σ ), and the large spread of the results

obtained for the individual ensemble members indicate that

it is challenging to reliably detect and to accurately quantify

the emission reduction using the current generation of space-

based methods and the simple DAM-based analysis strategy

adopted here.

These findings, which are consistent with other recent

studies (e.g. Chevallier et al., 2020; Zeng et al., 2020), are

not unexpected. Regional XCO2 enhancements due to fos-

sil fuel emissions are typically only 1 to 2 ppm and even a

10 % emission reduction would therefore only correspond to

a reduction of the fossil-fuel-related regional XCO2 enhance-

ment by 0.1 to 0.2 ppm. XCO2 variations as small as 0.2 ppm

are below the estimated uncertainty of the single footprint

satellite XCO2 retrievals. The uncertainty of single observa-

tions, which is typically around 0.7 ppm (e.g. Buchwitz et

al., 2017a; Reuter et al., 2020), has been obtained by com-

parisons with ground-based Total Carbon Column Observing
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Network (TCCON) XCO2 retrievals, which have an uncer-

tainty of 0.4 ppm (1σ , Wunch et al., 2010). In this study we

focus on monthly averaged data because our analysis method

cannot properly deal with day-to-day variability and because

of the sparseness of the satellite data. Averaging results in the

reduction of the random error, but investigations have shown

that random errors do not simply scale with the inverse of

the square root of number of observations added due to (un-

known) systematic errors and error correlations (Kulawik et

al., 2016). Of course also other sources of uncertainty are

relevant in this context, in particular time-dependent atmo-

spheric transport and varying biogenic CO2 contributions

(e.g. Houweling et al., 2015, and references given therein).

We conclude that inferring COVID-19-related information

on regional-scale CO2 emissions using current (quite sparse)

satellite XCO2 retrievals requires, if at all possible, a more

sophisticated analysis method including the use of detailed a

priori information and atmospheric transport modelling.

The extent to which COVID-19-related emission reduc-

tions can be resolved on smaller scales – such as power

plants or cities (e.g. Nassar et al., 2017; Reuter et al., 2019;

Zheng et al., 2020a; Wu et al., 2020) has not been investi-

gated in this study. For this purpose, XCO2 retrievals from

NASA’s OCO-3 mission are promising, especially because of

its Snapshot Area Map (SAM) mode, which permits the map-

ping of XCO2 over ∼ 80 km by 80 km areas around localized

anthropogenic CO2 emission sources (see https://ocov3.jpl.

nasa.gov/, last access: 28 August 2020). Even more complete

coverage is planned for the Copernicus CO2M mission in the

future (e.g. Janssens-Maenhout et al., 2020).
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Appendix A

As explained in the main text, a second method has been ap-

plied to the CT2019 and the satellite data. This method is

called “target minus surrounding” (TmS) and differs from

the DAM method in the approach to determine the XCO2

background. Whereas the DAM method computes the (daily)

background as the median of the XCO2 values in latitude

bands, the TmS background is computed from the XCO2 val-

ues in an area surrounding the target region (the coordinates

are listed in Table 3).

The TmS results are discussed in the main text. Here we

only show three figures. Figure A1 is the same as Fig. 2 but

using the TmS method instead of the DAM method. Fig-

ure A2 is the TmS version of Fig. 7, and Fig. A3 is the TmS

version of Fig. 13.

Figure A1. The same as Fig. 2 but using the target minus surrounding (TmS) method.
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Figure A2. The same as Fig. 7 but using the TmS method.
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Figure A3. The same as Fig. 13 but using the TmS method.
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Data availability. The key results of this study are listed in this pa-

per in numerical form (Table 4). Access information for the satellite

data used as input for this study is provided in Table 1. The CT2019

data are available from NOAA (see access information given in Ta-

ble 2).
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