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INTRODUCTTION

The number of species which can be packed within a-biological com-
munity continues to be one of the most intriguing problems in ecology
(Volterra 1931, Gause 1934, MacArthur and Levins 1964, Levins 1968,
Levin 1970, May and MacArthur 1972, Stewart and Levin 1973). A very
general result on this problem states that the number of species in a com-
munity cannot exceed the number of limiting factors (Levin 1970). Levin's,
as most earlier models are of the form

dx:

P
1
dt = fi (ZI, ...... Zp) = % O‘ij Zj + \[i (1)

1
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ere x; is the density of the 1 speécies and z; is intensity of the j—
limiting factor which in turn is a function of the™population densities
Xiseveonnn x, and the externally determined resources yi,....... » Ym- The
P [imiting factors determine the growth rates f;,.....% T. . I, completely.
Levin has shown that (i) when the number 'p' of Iimiting factors required to
determine'“the growth rates fl 'is smaller than the total number 'n' of the
species and (ii) when fi's are assumed to be linear functions of the zj Ys;
there will be n-p relationships between the population densities IR x
which, in general, depend on time and are of the form

x?l X%Z;;%} ..... xil’l = Ke (2)

When it is assumed, in addition, that (iii) all the populations are non-vanish-
ing and remain bounded for all time, the, value of b in equation (2) has to
-equal zero and the equation becomes independent of time. In this case, even
when equilibrium points exist, they will not be asymptotically stable and as
such the possibility of a stable co-existence of n species is ruled out when
(i), (ii) and (iii) hold.

It is important to note that this result depends crucially on the linearity
assumption and will not in general, be valid for nonlinear systems. The non-
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linearities present in realistic models of biological communities limit severely
the applicability of this result in understanding the diversity of these commu-
nities. Furthermore the assumption of boundedness of x%;'s, which is also
crucial to the proof is an additional assumption which may 6r may not be
reasonable for the systems modelled by (1). In fact, we have presented a
model in this paper in which it is not necessary to expect x;'s to remain
bounded although the governing equation is of the type (1).7

The important question that remains is: under what conditions can a
single resource support move than one species? ¥ rom a biological view
point this will occur when both of the following conditions are satisfied.

(i) The relative efficiency of two competing species in utilizing a resource
depends upon the density of the resource. Thus one species may be more

efficient in utilizing a resource at a low density while the other may be more
efficient at a high resource density (see e. g., fig.1).

SUN-LOVING

SHADE TOLERANT

NET PHOTOSYNTHESIS

LIGHT INTENSITY

Figure 1. A diagramatic representation of the rate of net photosynthesis
as a function of light intensity for a sun-loving versus a
shade -tolerant plant.

(ii) There is a persistent temporal or spatial heterogeneity in the density
of the resource.

Clearly, for a community in which two species with properties des-
cribed in (i) are initially present and a temporal or spatial variation in the
density of the resource is externally imposed, the final state will contain a
mixed population for a certain range of parameters. This is shown by
Roughgarden (1971) for a genetic system and by Stewart and Levin (1973)
for a community supported by a time-dependent resource. It is important
to note that co-existence is rendered possible in such a model only when the
spatial or temporal variation of the resource is externally maintained i.e.
only in,the presence of a favourable boundary condition imposed by forces
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outside the community. Stewart and Levin have shown that for their model
the number species cannot exceed the number of resources when the re-
gsource inputs are uniform in space and time.

Now if it can be shown that for a resource which is supplied uniformly
in space and time, the community itself generates the heterogeneity in re-~
source density which in turn supports the diversity, then we have a mechani-

_sm to maintain the diversity which is not crucially dependent on the externally
imposed boundary conditions. Such a mechanism will clearly add another di-
mension to the extent of diversity possible in a community. The most fami-

"liar example of a situation in which spatial variation is generated internally
within the biological community is the vertical gradient of light intensity in
a plant community:, In this paper, we develop a mathematical model of the
inter- and intra-species interaction within a plant community in the presence
of a uniform light intensity at the top of the canopy, and demonstrate the
possibility of co-existence of more than one species supported by a single
resource for this system.

PLANT COMPETITION

We use an extension of Cohen's (1971) model of growth and seed
production in a plant with a limited growing period as our basic model. Thus,
defining,

W(t) = weight of the vegetative tissues at time t

R = net assimilation rate per unit vegetative tissue

F(t) = fraction of net assimilation diverted to seeds at time t
T = the total life-span

The growth rate and the rate of seed production are given by

dwW
& = R(l-F)W (3)
ds
- = RFW (4)

For a discrete model Cohen (1971) has shown that the optimal sequence of
allocation of the resources to seed production consists of no allocation upto
a transition time t and total allocation after t Thus, the life history
comprises a phase of exclusive vegetative growth followed by a phase of
exclusive reproductive growth.

We will assume this for our model also and take
F(t) = 0 t

35

Z
= 1 t ¢ t <« T (5)
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Integration of equations (3) and (4), yields

W) = W(o)eR?t £ 2 i

S(t) = R W{(o) eR (T - t)

The total seed production S(T) is maximized when

d S(T

T o,
dt

This implies

t = T - 1/R

Wio) oR(T - 1/R)

[S(T)] maximum =

Consider now two plants i and j growing side by side and competing
for light. We assume that their heights are proportional to the weights of
their vegetative tissues Wj; and w; . The larger plant will be unaffected by
the smaller one in this competition but the smaller one will be shaded by the
larger plant and its photosynthesis will be depressed. This may be modelled
by assuming the growth of the smaller plant i to be given by

~ dWwi m
t o<t % = Ryw (W /wy) (6)
- ds;
= m
t; «t €T dt = R, W, (Wl/w_‘})
where m > 0. The growth of the larger plant will be given as before by
~ de
t t ——= R, W
<t dt J
- ds,
t, ¢t < T -2 = r W
J dt i

Note that the index m determines the extent to which the photosynthesis is
depressed by the shading. Since this depression will be greater in sun-
loving plantg in comparison with the shade tolerant plants we take m = 1 for
the former and m &£ 1 for the latter type of plants. This disadvantage
to the sun-loving plants will be counterbalanced by a higher rate of net photo-
synthesis when exposed to full sunlight. We therefore, assume that the
value of R for the sun-loving plants is greater than that for shade-tolerant
plants.
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Competition between two sun-loving plants

Consider the competiti&e interactions of'two sun-loving plants 1i.e
plants with m =1 when they have germinated simultaneously and have the.

same biomass W (o) at the initial instant. Let i.cease its vegetative
growth first, at t = £ and j cease its vegetative growth some time later at
t; where

o= &+ oa - a > o {(7)

The two plants grow side by side upto the instant t;, neither shading
‘the other till''t = £;. Beyond that, the seed production &f i will be affected
by the shading by ] whereas j will remain unaffected by the presence of i
throughout its life history. Hence using (6)

tj , T
W.f(l?.l)dt : Wi2 (£;) dt -
S, (T) = R L 1 +R -4
; W (t) W ()
t; <
j
This is given by _
Rt;
5, (T) = W{oj e (1 + e [(T—t—a)R—l]
S;(T) = RW (o) e R (t +a) (T - t;-a)
Define
Dy (t; a) = 8;(T) - §;(T)
Then
- Rt; . -aR . .. . "
Dy (f a) = Weo)e '‘[l-e 2R 2R (T - - a) sinh (aR)]

(8)

The function D;. represents the difference between the total seed- -outputs

of the plants ~—"i and j where the 1th plant is assumed to stop its vegeta-
tive growth before j . It is clear from (8) that Dis ig a monotomcauy
increasing function of t , .the time at which the 1th plant starts seed
production. Furthermore,

. - ? R

Dj; (£ = SI/R -a)=1-e" & 0
- : -aR
T L | )
th

This 1mp11es that the seed production of the i plant is less than that of the
_lth plant when the .l starts seed productlon at - 1/R. This is only to
be expected smce the seed production of the __]_ Plant, will be the maximum
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possible in this case. On the other hand, when the ith plant stops its vege-
tative growth at T - a, the _ith plant spends its entire life-span T in vege-
tative growth and hence the seed production of the ith plant is clea-rly greater
than that of j. In between these two extremes is a point "fi so that when T:'iz't?i
the seed production of the ith plant equals. that of _ith plant. Since we expect”
both the competitors to have evolutionary flexibility, each of them will choose
a life history which will imply a minimum disadvantage in terms of their seed

production relative to the competitor. Thus i will try to maximise
Si(T) - S;(T) and j will try to maximize Sj(T) - 8; (T). The outcome

o—fmition may then be expected to be

Si(T) = 5;(T) (10)
Now (10) is trivially satisfied when we take

t, =t (11)

The other contour along which (10) holds is given from (8) as

-aR
- 1 - e
T - t -a = R (12)
R(e+a _e—aR)
T
Si>Sj
034 a
T-924 Si=Sj
— 4 ———————————
T T 2R :
4 Si<S; 5 Si <
|
I
S;>Sj | Si=3j
- I
R 1 1 034
TR == TR T
il——*'b-

Figure 2. Seed production till the end of growth period S(T), for two
Eompetitora i and j as a function of the time of lransition
T from vegetative growth to seed production.
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In Figure 2, both (11) and (12) are drawn in a (_1_:—'1» , -_-EJ ) plane. Note
that the intersection of (11) and (I2) occurs at T; which can be readily
obtained from (12) by taking the limit as a tends to zero.

AT L 2
t; = >0 [T - >R -a+ 0(%)]
Hence
~ P
tt = T - 1/2R = t (13)

The point (13) is a saddle point and it can be seen that the strategy of mini-
mizing the disadvantage in seed production will lead to the choice of the value
(13) for tl and tJ by the following argument. If the ith plant chooses t1 to
be tl then S; (T)x 53 (T )} whereas for any other value of E’ the lh plant
‘can choose a2 tj which will make its seed output greater than that of i i.e.
S5i(T) € 8j (T). " The argument is symmetrically true for j and'the plant j
will again choose __t_:J to be equal to tj. Thus the evolutionary outcome will

be that both the plants will start seed production at the instant given by (13)
and will achieve the same seed output and hence a relative fitness equal to one.
It is seen that the competition between thése plants has delayed the time of
transition from vegetative to seed production from T - 1/R for the non-
competing plants to T - 1/2R. This implies a decline in the total seed output

RT - 1/2
2

to | W{o) e

Competition in a community of sun—lovfrig-and ’shade-tolerant plants
Consider next the competition between a sun-loving plant, denoted

by the subscript L and a shade-tolerant plant, ‘denoted by the subscrlpt s.
Then

R, > R | (14)

We further assume that the shade-tolerant plants, being less affected by
shadmg are not involved in a race for light as discussed for the sun-loving

- plants, and stop vegetative growth uniformly at T - 1/Rs "We also assume
Wi, (6) = Wg (o) and the time of germination to be the same. Let ELJ and

‘815 (T) be the ¥ and the seed output of"_ith plant when competing for light
WLth the l plant, then we have : X - ‘

tsL = tss = T - 1‘/RE
tg = T~‘1/RL'
tpr,= T - 1/2R;
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Note that (14) implies

R . (T - 1/Rg) T-1
s R W (o) e ® o at =‘W(o)e(RS )
sS
T- 1/R
(T - 1/2R.) (R, T-1/2)
S, R, W(o)e *L L' 4t = wlo)e T
T-1/2R;:
(T-1/R ;) R.T - 1)
SLS = R W(o) e o L dt” = W(o)e L
T- 1/R
T-1/R ntl) T mtl)
S = Mdt + RSWS' (ts) dt
sl m m -~
Wp o (t) Wi (ty)
T-1/Rg t T—l/RL LT

From the above expressions we get by using assumption (14)

S (R - R_)T
Ls - e L S > 1
Sss
T
Rs dt
T-1/R
Sss, - / B > 1
SsL T : m
w_(T-1/R
Rg We () dt
T-1/R L

since W, / WL < 1

Thus S > S > S
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There is no clear cut inequality between S;; and S ; Defining

b = R_ /Ry

+ m-(m+l) R; T + 1/2

SsL 2be

(1 - 1/m (1_e—m(1/b 4)))

LI [I_b(l_e—mRLT-m/b)]

0.9
,T o7
m
05
0.3
01 1 L 1 L I
0.91 0-93 095 097 099
Rg/RL —»

Figure 3. Behaviour of the ratio Sgj, /SLLas a function of Ry /RL
and m. Ry, is assumed to be 2.0, and T to be o

In figure 3, SSL/SLL is plotted as a function of RS/RL and m. As
expected, this ratio increases as the ratio of the net assimilation rates Rs/RL
increases and decreases as m, which measures the detrimental effect of the
larger plant on the smaller, increases. It is seen that there is a range of
parameter values for which S_; > S;;. For this particular range of para-
meters we have:

SLS > Sss > SsL > SLL (15)

An inspection of this inequality immediately reveals that under these
conditions sun-loving and shade-tolerant plants would co-exist because of the
frequency dependence of their seed production rates, which may be equated to
population growth rates. If a population largely comprises of L. plants, then
the relevant seed production rates are Sg1, and Sy . Since Sg1, > Sy, the
proportion of s's will increase in such a populatich.™ On the other hand, if
a population were to be largely made up of s plants, the relevant seed ,
production rates are Sgg and Sy, . Since Sig > Sgs L's would increase
in proportion in such a populatiom. In either case then the minority type will
tend to increase. We would then expect a co-existence of the two competing
types in such a system.
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POPULATION DYNAMICS

This co-existence may be shown formally in a model of a mixed
population of L. and s plants. We assume L and s to differ in seed pro-
duction, but be equivalent in mortality rates. Consider a mixed population
of such plants to be held at some constant density through density dependent
mortality which does not distinguish between s and L plants. We may
study such a situation by using a model without explicitly introducing the
density induced mozrtality. We then have

dN, dNy, e
a  Te s a - TuNL (16)

T and Ty, would be functions of Sss’ SsL’ SLL’ SLs and Ns' NL'

Ng Ny,
P = P =

s N, + N, L Ny + N

We do not expect the total population to increase exponentially as implied by (16).
But since we assume that the total population is limited by density dependent
mortality which does not distinguish between the two categories, and we are
mainly interested in the possibility of co-existence, -it is sufficient to consider
(16) and investigate under what conditions the frequencies Py and F, remain
between zero and one. Since we assume that the population density is held at

a constant level, the incidence of neighbour types would be proportional to

their frequency. In that case:

r = S

] SSpS+S

sL PL

T, 7 SpePs T SLpPL

Our complete model then is :

dNS
= Ns [Sss ps+SsL pL]
dt
dN
L =
- Ny [Spep+Sp Py ] (a7
Hence
dp_ 1 dN_ N, d(N_+ N, )

= 2
dt N, +Np dt (Ng + Ny ) dt
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i.e.

dpg _

R — - - - - - &

dt - ps-(l ps) [SsL sLL+(SsstSLL SsL OLs)ps]'
- (18)

dp 2 dp

__.__.If = . 5 (19)

dt dt

In this formalism, equilibrium implies a steady frequency and both types of
plants will co-exist provided that there exists a steady non-zero frequency
less than one for each of them. Note that from (18), we get

dpg ~
—_— = 0 at P =90, 1,p
dt s s
where
~ SLI: SsL (20)
p = - -
S SLLSSL+ Sss SLs
Both species will co-exist if
~
0 P ! (21)
Co-existence is possible under two sets of conditions
Sgg > SBig and S > SsL (22)
or Sge € S and S < S (23)

Stability

We have shown above that there are three points of equilibrium; two
corresponding to populations consisting of one type alone and the last one %s
corresponding to a mixed population. We investigate now the stability of ™
all these points in order to determine the conditions under which a mixed popu-
lation will result from an arbitrary initial frequency.

Definc

(24)
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From (18) and (20}

dp ~

—= = Mp(l -p_)(p, -P,)

dt
Equation (24) gives

de ) 2

= Mp (-p )k O ()
Using (21), we get

1 dE >0 if M > 0

¢ dt <0 M < 0

Thus the perturbation ¢ will grow if M > 0 and decay if M<0 implying
that the equilibrium will be stable for the latter case. Note that this implies
that the equilibirum is stable when (23) holds and unstable when (22) holds.

Similarly it can be shown that the points pg; = 0,1 are stable when M > 0

and unstable when M < 0.
To sum up:

1) Sgs> Srs and Spi >Sps implies that the points /135 = 0 and
B, =1 are stable, while the intermediate point, 0< $; <1 i§unstable.
Hence in such a system a mixed population would evolve towards the extinction
of one or the other species depending on the initial conditions (fig 4a}.

(a) »)
1 A>o0 1 A<o

N N

i H
P \ P \
0 1 o} k1
Ds i ps—+

Figure 4. Phase diagram to illustrate the possible equilibria for the
system of equations {18) and {19). The three possible
points of equilibria at which dpg/dt = dpy /dt = 0 are
are pg = i, PI =1 or snme_ﬁ—= b where 0C M. <L.
{a) when M > 0, the first two are stable and M is un-
stable and (b) when M_< 0 the first two are unstable
and 4 is stable.
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/(\2) Sgs £ Spg and Sp1, & Sgr implies that the points /Bs =0 or
Ps = 1 are points of unstable equilibria, while the intermediate eguilibrium

point 0(,»65 £ 1 is stable. Such a system would permit the permanent co-
existence of the two competing species (fig 4b).

It may be mentioned that for this situation the population of species L
is related to that of species s through a relation similar to (2) viz

Ny Ng\ +Bt

o i} s :

A = Oss " SsL g . 2LsSsL 7 Sss Srp
Sts - SLL Sps " SLL

However, here nonzero values of B are permitted because the condition of
boundedness of individual populations at large time is not imposed. The
imposition of an additional density dependent mortality which does not discern
between the two competitors will keep the populations of these two species
bounded but will not alter the frequency of the final state and hence will also
lead to a mixed population for this case.

Our model for the competitive interactions between sun-loving and
shade-tolerant plants generated the inequality (15) for certain values of
R's and m;

Sps > Sgs > Ssr > SiL

This is obviously compatible with the set of inequalities (23), and such a
system would permit the permanent co-existence of two species limited by a
single resource, which is being continually supplied at a constant level. This
co-existence is rendered possible by the spatial heterogeneity in the density
of that resource generated by the action of the plant community itself.

Such internally induced spatial heterogeneties are particularly likely
to occur in the case of sessile organisms such as plants, but need not be
restricted to them. For example, territorial animals may crop their food
plants more intensely near the centre of the territotry, and less intensely
towards periphery. Other animals using these as shelter may then diversify,
a species needing denser cover chosing the periphery and a species requiring
thinner cover occurring towards the centre of the territory.

SPECIES PACKING

The problem of packing of species at different levels of resource
densities is analogous to.that of packing of species along a resource continuum
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analysed by May and MacArthur (1972). These authors consider the prob-
lem of packing of species specialised;, for example, to take prey of different
sizes. The ability of the species to utilize prey of various sizes may be re-
presented by a utilization function along the prey-size axis (fig 5a). They
assume that these utilization functions are Gaussian, and have identical areas
under the curve. They show that under these conditions the species may be
packed in a variable environment with-the peaks of utilization functions
separated by a distance roughly equalling one standard deviation. For our

(al
AVAILABILITY,
> =
E o UTILIZATION
5%
<qEL N
H4° 3
5
Zz b
PREY SIZE
(5]
AVAILABILITY
>.
P-4
5 3
Em';(
39N
s £ UTILIZATION
< 5

RESOQURCE DENSITY —

Figure 5. Utilization functions, ov the cfficiency with which a re-
source may be used ({a) along a resource continuud *°
of prey size and (b) at different resource densities, |
The uppermost curve represents the total concentra-
tion of resources at (a} dlfferent prey sizes or (b) at’
various resource densities.

model, we may consider analogous utilization {functions along a rescurce den-
sity axis. These could not be Gaussian but would increase monotonically to
an asymptote as in the case of the photosynthetic response to light intensity
(fig 1). In this case, the resource density at which the species is more ef-
ficient than all of its competing species would correspond to the peak of the
utilization {unctions of the resource continuum case ({ig 5a and b). The
problem of how closely the species could be packed in this case deserves to’
be investigated.

S UMMARY

The conclusion that the number of species co-existing within a bio-
logical community cannot exceed the number of limiting factors is not valid
if we assume that (i) the relative efficiency of two competingidpecies in uti-
‘lizing a resource is not independent of the resource density, :but one species:
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may be more efficient at a lower'density and less efficient at a higher density
and (ii) there is a spatial or temporal heterogeneity in the density of the
resource. This spatial or temporal heterogeneity does not have to be fur-
nished by factors external to the biological community, but may be generated
within the biological community itself as in the case of a vertical gradient of
light in a plant community. This possibility of a stable co-existence of
more than one species in a community limited by a single resource, even
when-the resource is being supplied uniformly in space and time, is formally
demonstrated.
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