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Short Communication

Can attention enable MLPs to catch up with CNNs?
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In the first week of May 2021, researchers from four
different institutions: Google, Tsinghua University,
Oxford University, and Facebook shared their latest
work [1–4] on arXiv.org at almost the same time, each
proposing new learning architectures, consisting mainly
of linear layers, claiming them to be comparable or
superior to convolutional-based models. This sparked
immediate discussion and debate in both academic
and industrial communities as to whether MLPs are
sufficient, many thinking that learning architectures are
returning to MLPs. Is this true?

In the following, we give a brief history of learning
architectures, including multilayer perceptrons (MLPs),
convolutional neural networks (CNNs), and transformers.
We then examine what the four newly proposed
architectures have in common. Finally, we give our
views on challenges and directions for new learning
architectures, hoping to inspire future research.

1 Learning architectures for visual tasks
Multilayer perceptrons (MLPs) [5] consist of an input
layer and an output layer, possibly with multiple
hidden layers in between. Layers are typically
fully connected using linear transformations and
activation functions. MLPs were the basis for neural
networks before deep convolutional neural networks
(DCNNs) took over, and greatly improved the power
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of computers to handle problems of classification
and regression. However, MLPs are computationally
costly and prone to overfitting, due to their large
numbers of parameters. MLPs are also poor at
capturing local structures in the input, since the
linear transformations between layers always take the
output from the previous layer as a whole. However,
we note that the capabilities of MLPs were not fully
explored when they were proposed, both because of
limited computer performance, and unavailability of
massive data for training.

To learn local structures in the input while
maintaining computational efficiency, convolutional
neural networks (CNNs) were proposed. In 1998,
LeCun et al. [6] presented LeNet, which greatly
improved the accuracy of handwritten digit recognition
using a five-layer convolutional neural network. Later,
AlexNet [7] led to wide acceptance of CNNs in the
research community: it was much larger than previous
CNNs like LeNet, and beat all other competitors by
a significant margin in the ImageNet Large Scale
Visual Recognition Challenge in 2012�. Since then,
many more models with ever deeper architectures have
been developed, with many providing more accurate
results than humans in various realms, resulting in
profound paradigm changes in both scientific research,
and engineering and commercial applications.

Notwithstanding advances in computing power and
amounts of training data, the key success of CNNs lies
in the inductive bias they introduce: they assume that
information has spatial locality and can thus reduce
the number of network parameters by making use of a
sliding convolution with shared weights. However, the
side-effect of this approach is that the receptive fields
of CNNs are limited, making CNNs less able to learn

� https://image-net.org/challenges/LSVRC/2012/
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long-range dependencies. To enlarge the receptive
field, a larger convolutional kernel is required, or other
special strategies must be employed, such as dilated
convolutions [8]. Simply composing a large kernel
from several small kernels is not a suitable approach
for enlarging the receptive field of CNNs [9].

Recently, the Transformer neural network
architecture was proposed [10] for sequential data,
with great success in natural language processing
[11, 12], and more recently, in vision [13–17]. The
attention mechanism is at the core of Transformer,
which is readily capable of learning long-range
dependencies between any two positions in the input
data in the form of an attention map. However,
this additional freedom and reduced inductive bias
mean that effectively training Transformer-based
architectures requires huge amounts of data. For best
results, such models should be first pre-trained on a
very large dataset, such as GPT-3 [18] or ViT [13].

2 Linear layer based architectures
2.1 Four recent architectures

To avoid the drawbacks of the aforementioned learning
architectures, and, with the aim of achieving better
results at lower computational cost, very recently,
four architectures motivated by self-attention and
transformers were proposed almost simultaneously
[1–4]. Their common aim is to take full advantage of
linear layers. We briefly summarize these architectures
below; also see Fig. 1. All four employ transposition to
model interactions at all scales. Residual connections
and normalization are also utilized in a similar way to
ensure stable training.

2.2 MLP-Mixer

MLP-Mixer [1] takes S non-overlapping image
patches of resolution P × P as input. Each patch is
first projected to a C-dimensional embedding via a
shared-weight linear layer: this representation of the
input image is thus a matrix, X ∈ R

S×C .
Next, X is fed into a sequence of identical mixer

layers, each of which is composed of a token-mixing
MLP block and a channel-mixing MLP block, mixing
information from all patches, and from all channels,
respectively. We may express the computation as

U = X + f2(σ(f1(Norm(X)T)))T (1)
Y = U + f4(σ(f3(Norm(U))) (2)

where f1, · · · , f4 are linear layers, and σ denotes
GELU (nonlinear) activation [19]. Layer normalization
[20] is employed. U ∈ R

S×C is the intermediate
matrix after per-channel feature aggregation: a
shared-weight mapping R

S �→ R
S of the column

vectors in X. Similarly, two linear transformations
are performed per patch, giving the output Y .

2.3 External attention

External attention [2] reveals the relation between
self-attention and linear layers. It first simplifies self-
attention as in Eq. (4), where F ∈ R

N×d is the input
feature map.

A = softmax(F F T) (3)
Fout = AF (4)

Then an external memory unit M ∈ R
S×d is

introduced to replace F -to-F attention by M -to-F
attention as below:

A = (α)i,j = Norm(F MT) (5)
Fout = AM (6)

Finally, like self-attention, it uses two different memory
units Mk and Mv as the key and the value to increase
the capability of the network respectively. The overall
computation of external attention is as below:

A = Norm(F MT
k ) (7)

Fout = AMv (8)
Because F MT

k is a matrix multiplication, it is linear
in F , so Eq. (8) can be written as

Fout = f2(Norm(f1(F ))) (9)
The final output is then obtained by adding an
identity mapping as below:

Fout = F + f2(Norm(f1(F ))) (10)
Based on this external attention, Guo et al. [2] also
designed a multi-head external attention and provided
an all MLP architecture EAMLP.

2.4 Feed-forward-only model

The feed-forward-only model [3] replaces the attention
layers in Transformer [10] by simple feed-forward
layers on the token dimension. It firstly uses linear
layers on the channel dimension and then adopts
linear layers on the token dimension in a linear block.
Given an input X ∈ R

N×C , the computation can be
expressed in detail as

U = X + f2(σ(f1(LayerNorm(X)))) (11)
Y = U + f4(σ(f3LayerNorm(UT)))T (12)
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Fig. 1 Basic blocks of four recent architectures in which linear layers predominate.

2.5 ResMLP

ResMLP [4] also separately aggregates information
in per-patch-style and per-channel-style, and can be
formulated as follows:

U = X + Norm(f1(Norm(X)T)T) (13)

Y = U + Norm(f3(σ(f2(Norm(U)))) (14)
A major difference of ResMLP is that it uses an
affine transformation in the role of a normalization
layer. This affine transformation is parameterized
by two learnable vectors to scale and shift the input
component-wise:

Affα,β(X) = Diag(α)x + β (15)
Note that no statistics of the input are used in the
above, and thus it can be integrated in the linear
layers during inferencing for further speed.

3 Common themes
We now examine the above approaches, to see what
they have in common.

3.1 Long distance interactions

As in self-attention, interactions between different
patches are taken into account by these four methods.
MLP-Mixer, ResMLP, and the Feed-forward-only
model use linear layers acting on the token dimension
to allow different patches to communicate with each

other. External attention adopts softmax and L1
normalization to perform a similar role. Unlike CNNs,
these models can consider long distance interactions
between patches and automatically select suitable
and irregular receptive fields.

3.2 Local semantic information

Unlike each word in natural language, single pixels
have very little semantic information and their
interactions with other pixels are not directly infor-
mative. It is thus important to extract meaningful
information before using MLPs. MLP-Mixer, ResMLP,
and the Feed-forward-only model divide the image
into 16 × 16 local patches to obtain semantic
information. External attention adopts a T2T module
[16] or a CNN backbone to provide rich semantics
before passing information to linear layers.

3.3 Residual connections

Residual connections [21] solve the problem of
vanishing gradients and stabilize the training process,
so they are commonly used in deep convolutional
neural networks. They also benefit architectures
based around linear layers and are adopted by all
the above models.

3.4 Reduced inductive bias

Localised processing in CNNs results in inductive
bias, which can decrease accuracy given sufficient
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training data. The recently introduced architectures
use linear layers on single tokens independently, or
process all tokens equally, resulting in lower inductive
bias than CNNs.

4 Challenges and future directions
These promising recently introduced architectures
have simple network structure and fast inferencing
throughput. However, on ImageNet, their results are
currently 5%–10% less accurate than those provided
by the best CNNs or Transformer networks. They also
do not significantly outperform light-weight networks
in the trade-off between accuracy and speed. Thus
additional research is needed if the potential of such
architectures is to be realised.

We suggest possible directions for future work
below, and make other observations about these
architectures:
• All linear layers process image patches in

a direct or indirect manner to extract local
features, thereby reducing computational cost.
Dividing images into non-overlapping patches
again introduces inductive bias. On one hand,
CNNs capture local structure extremely well, but
lack the ability to handle long range interactions.
On the other hand, these four architectures
provide a good way to process long range
interactions. It seems natural to try to combine
the advantages of both architectures.

• More reasonable global interaction and fewer
inductive bias. Self-attention has been success-
fully used in many kinds of fields to capture long
range dependency. However, whether there is a
more effective global interaction method is still
worth exploring.

• One main goal of these four methods is to avoid
the use of the self-attention mechanism. The
successful configurations used for this purpose in
Transformer could be employed in these linear
architectures. For example, Transformer can use
multi-head attention, and a similar multi-head
mechanism could be employed by these methods
to improve model capability.

• Residual connections play a key role in all these
methods, indicating that the network structure
is crucial. Because these new architectures are
simpler than CNNs, better backbones are needed.

• Due to the simplicity of these new architectures,

they can easily tackle irregular data structures
used in various applications, including point
clouds, graphs, etc. Furthermore, this flexibility
promises the ability to make cross-modal models,
with a unified network backbone for all modes of
data.

• An additional benefit is that all computations
are matrix multiplications, which can be highly
optimized in deep learning frameworks and readily
performed on hardware. This simplicity can
promote deployment in industry and commerce,
and also reduce energy consumption.

5 Conclusions
Overall, the new architectures motivated by self-
attention separately apply linear layers in the element
(token) dimension and channel dimension to learn
long range interactions between any two positions in
the feature matrix, while traditional MLPs mix these
two dimensions together as a long vector, with too
much freedom for effective learning. We conclude that
the new architectures do not simply reuse traditional
MLPs, but are a significant advance over them.
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