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Abstract

Reliable, short-term forecasts of traditional public health reporting streams (such as cases, hospital-
izations, and deaths) are a key ingredient in effective public health decision-making during a pandemic.
Since April 2020, our research group has worked with data partners to collect, curate, and make publicly
available numerous real-time COVID-19 indicators, providing multiple views of pandemic activity. This
paper studies the utility of these indicators from a forecasting perspective. We focus on five indicators,
derived from medical insurance claims data, web search queries, and online survey responses. For each
indicator, we ask whether its inclusion in a simple model leads to improved predictive accuracy relative to
a similar model excluding it. We consider both probabilistic forecasting of confirmed COVID-19 case rates
and binary prediction of case “hotspots”. Since the values of indicators (and case rates) are commonly
revised over time, we take special care to ensure that the data provided to a forecaster is the version that
would have been available at the time the forecast was made. Our analysis shows that consistent but
modest gains in predictive accuracy are obtained by using these indicators, and furthermore, these gains
are related to periods in which the auxiliary indicators behave as “leading indicators” of case rates.
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Tracking and forecasting indicators from public health reporting streams—such as confirmed cases and
deaths in the COVID-19 pandemic—is crucial for understanding disease spread, formulating public policy
responses, and anticipating future public health resource needs. In a companion paper, we describe our
research group’s (Delphi’s) efforts in curating and maintaining a database of real-time indicators that
track COVID-19 activity and other relevant phenomena. The signals (a term we use synonomously with
“indicators”) in this database are accessible through the COVIDcast API [1], with associated R [2] and Python
[3] packages for convenient data fetching and processing tools. In the current paper, we aim to quantify
the utility provided by a core set of these indicators for two fundamental prediction tasks: probabilistic
forecasting of COVID-19 case rates and prediction of future COVID-19 case hotspots (defined by the event
that a relative increase in COVID-19 cases exceeds a certain threshold).

At the outset, we should be clear that our intent in this paper is not to provide an authoritative take on
cutting-edge COVID-19 forecasting methods. Instead, our purpose here is to provide a rigorous, quantitative
assessment of the utility that several auxiliary indicators—such as those derived from internet surveys or
medical insurance claims—provide in tasks that involve predicting future trends in confirmed COVID-19
cases. To assess such utility in as simple terms as possible, we center our study in the framework of a basic
autoregressive model (in which COVID cases in the near future are predicted from a linear combination of
COVID cases in the near past), and ask whether the inclusion of an auxiliary indicator as an additional
feature in such a model improves its predictions.

While forecasting carries a rich literature that offers a wide range of techniques, see e.g., [4], we purposely
constrain ourselves to very simple models, avoiding common enhancements such as order selection, correction
of outliers/anomalies in the data, and inclusion of regularization or nonlinearities. That said, analyses of
forecasts submitted to the COVID-19 Forecast Hub [5] by a large community of modelers have shown that
simple, robust models have consistently been among the best-performing over the pandemic [6], including
time series models similar to those we consider in what follows.

In our companion paper, we analyze correlations between various indicators and COVID case rates. These
correlations are natural summaries of the contemporaneous association between an indicator and COVID
cases, but they fall short of delivering a satisfactory answer to the question that motivates the current article:
is the information contained in an indicator demonstrably useful for the prediction tasks we care about? For
such a question, lagged correlations (e.g., measuring the correlation between an indicator and COVID case
rates several days in the future) move us in the right direction, but still do not move us all the way there.
The question about utility for prediction is focused on a much higher standard than simply asking about
correlations; to be useful in forecast or hotspot models, an indicator must provide relevant information that
is not otherwise contained in past values of the case rate series itself. We will assess this in the most direct
way possible: by inspecting the difference in predictive performance of simple autoregressive models trained
with and without access to past values of a particular indicator.

There is another, more subtle issue in evaluating predictive utility that deserves explicit mention, as it will
play a key role in our analysis. Signals computed from surveillance streams will often be subject to latency
and/or revision. For example, a signal based on aggregated medical insurance claims may be available after
just a few days, but it can then be substantially revised over the next several weeks as additional claims are
submitted and/or processed late. Correlations between such a signal and case rates calculated “after the fact”
(i.e., computed retrospectively, using the finalized values of this signal) will not deliver an honest answer to
the question of whether this signal would have been useful in real time. Instead, we build predictive models
using only the data that would have been available as of the prediction date, and compare the ensuing
predictions in terms of accuracy. To do so, we leverage Delphi’s evalcast R package [7], which plugs into
the COVIDcast API’s data versioning system, and facilitates honest backtesting.

Finally, it is worth noting that examining the importance of additional features for prediction is a core
question in inferential statistics and econometrics, with work dating back to at least [8]. Still today, drawing
rigorous inference based on predictions, without (or with lean) assumptions, is an active field of research
from both the applied and theoretical angles; see, e.g., [9–18]. Our take on this problem is in line with much
of this literature; however, in order to avoid making any explicit assumptions, we do not attempt to make
formal significance statements, and instead, broadly examine the stability of our conclusions with respect to
numerous modes of analysis.
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1 Methods

1.1 Signals and Locations

We consider prediction of future COVID-19 case rates or case hotspots (to be defined precisely shortly). By
case rate, we mean the case count per 100,000 people (the standard in epidemiology). We use reported case
data aggregated by JHU CSSE [19], which, like the auxiliary indicators that we use to supplement the basic
autoregressive models, is accessible through the COVIDcast API [1].

The indicators we focus on provide information not generally available from standard public health
reporting. Among the many auxiliary indicators collected in the API, we study the following five:

• Change Healthcare COVID-like illness (CHNG-CLI): The percentage of outpatient visits that are
primarily about COVID-related symptoms, based on de-identified Change Healthcare claims data.

• Change Healthcare COVID (CHNG-COVID): The percentage of outpatient visits with confirmed
COVID-19, based on the same claims data.

• COVID Trends and Impact Survey COVID-like illness in the community (CTIS-CLI-in-community):
The estimated percentage of the population who know someone in their local community who is sick,
based on Delphi’s COVID Trends and Impact Survey, in partnership with Facebook.

• Doctor Visits COVID-like illness (DV-CLI): The same as CHNG-CLI, but computed based on de-
identified medical insurance claims from other health systems partners.

• Google search trends for anosmia and ageusia (Google-AA): A measure of Google search volume for
queries that relate to anosmia or ageusia (loss of smell or taste), based on Google’s COVID-19 Search
Trends data set.

In short, we choose these indicators because, conceptually speaking, they measure aspects of an individual’s
disease progression that would plausibly precede the occurence of (at worst, co-occur with) the report of a
positive COVID-19 test, through standard public health reporting streams.

For more details on the five indicators (including how these are precisely computed from the underlying data
streams) we refer to https://cmu-delphi.github.io/delphi-epidata/api/covidcast signals.html,
which documents all of the signals in the COVIDcast API, and our companion paper on the API and database.
For CTIS in particular, we refer to our companion paper on this survey. For the Google COVID-19 Search
Trends data set, see [20]; see also [21, 22] for a justification of the relevance of anosmia or ageusia to COVID-19
infection.

As for geographic resolution, we consider the prediction of COVID-19 case rates and hotspots aggregated
at the level of an individual hospital referral region (HRR). HRRs correspond to groups of counties in the
United States within the same hospital referral system. The Dartmouth Atlas of Healthcare Policy [23],
defines these 306 regions based on a number of characteristics. They are contiguous regions such that most of
the hospital services for the underlying population are performed by hospitals within the region. Each HRR
also contains at least one city where major procedures (cardiovascular or neurological) are performed. The
smallest HRR has a population of about 125,000. While some are quite large (such as the one containing Los
Angeles, which has more than 10 million people), generally HRRs are much more homogenous in size than
the (approximately) 3200 counties, and they serve as a nice middle ground in between counties and states.

HRRs, by their definition, would be most relevant for forecasting hospital demand. We have chosen to
focus on cases (forecasting and predicting hotspots) at the HRR level because the indicators considered
should be more useful in predicting case activity rather than hospital demand, as the former is intuitively
more contemporaneous to the events that are measured by the given five indicators. Predicting case rates
(and hotspots) at the HRR level is still a reasonable goal in its own right; and moreover, it could be used to
feed predicted case information into downstream hospitalization models.

1.2 Vintage Training Data

In this paper, all models are fit with “vintage” training data. This means that for a given prediction date,
say, September 28, 2020, we train models using data that would have been available to us as of September
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Figure 1: Revision behavior for two indicators in the HRR containing Charlotte, North Carolina. Each
colored line corresponds to the data as reported on a particular date (as of dates varying from September 28
through October 19). The left panel shows the DV-CLI signal, which was regularly revised throughout the
period, though the effects fade as we look further back in time. In contrast, the right panel shows case rates
reported by JHU CSSE (smoothed with a 7-day trailing average), which remain “as reported” on September
28, with a spike towards the end of this period, until a major correction is made on October 19, which brings
this down and affects all prior data as well.

28 (imagine that we can “rewind” the clock to September 28 and query the COVIDcast API to get the
latest data it would have had available at that point in time.) This is possible because of the COVIDcast
API’s comprehensive data versioning system (described in more detail in our companion paper). We also use
the evalcast R package [7], which streamlines the process of training arbitrary prediction models over a
sequence of prediction dates, by constructing the proper sequence of vintage training data sets.

Vintage training data means different things, in practice, for different signals. The three signals based on
medical claims, CHNG-CLI, CHNG-COVID, and DV-CLI, are typically 3-5 days latent, and subject to a
considerable but regular degree of revision or “backfill” after their initial publication date. The survey-based
signal, CTIS-CLI-in-community, is 2 days latent, and rarely undergoes any revision at all. The target variable
itself, reported COVID-19 case rates, is 1 day latent, and exhibits frequent, unpredictable revisions after
intial publication. Compared to the pattern of revisions in the medical claims signals, which are much more
systematic in nature, revisions in case reports can be highly erratic. Big spikes or other anomalies can
occur in the data as reporting backlogs are cleared, changes in case definitions are made, etc. Groups like
JHU CSSE then work tirelessly to correct such anomalies after first publication (e.g., they will attempt to
back-distribute a spike when a reporting backlog is cleared, by working with a local authority to figure out
how this should best be done), which can result in very nontrivial revisions. See Figure 1 for an example.

Lastly, our treatment of the Google-AA signal is different from the rest. Because Google’s team did
not start publishing this signal until early September, 2020, we do not have true vintage data before then.
Furthermore, the latency of the signal was always at least one week through 2020. However, this signal is
never revised after initial publication (confirmed via personal communication with the Google team that
produces this signal) and furthermore the latency of the signal is not an unavoidable property of the data
type, so we simply use finalized signal values, with zero latency, in our analysis.

1.3 Analysis Tasks

To fix notation, let Yℓ,t denote the 7-day trailing average of COVID-19 case incidence rates in location (HRR)
ℓ and at time (day) t. To be clear, this is the number of new daily reported cases per 100,000 people, averaged
over the 7-day period t−6, . . . , t. The first task we consider—forecasting—is to predict Yℓ,t+a for each “ahead”
value a = 7, . . . , 21. The second task—hotspot prediction—is to predict a binary variable defined in terms of
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Table 1: Summary of forecasting and hotspot prediction tasks considered in this paper.

Forecasting Hotspot prediction

Response variable Yℓ,t (7-day trailing average of COVID-
19 case incidence rates, per location ℓ
and time t)

Zℓ,t = 1 (Yℓ,t ≥ 1.25 · Yℓ,t−7) (indica-
tor that Yℓ,t grows by more than 25%
relative to the preceding week)

Geographic resolution Hospital referral region (HRR) Hospital referral region (HRR)
Forecast period June 9–December 31, 2020 June 16–December 31, 2020
Model type Quantile regression Logistic regression
Evaluation metric Weighted interval score (WIS) Area under curve (AUC)

the relative change of Yℓ,t+a (relative to its value one week prior, Yℓ,t+a−7), again for each a = 7, . . . , 21.
Why do we define the response variables via 7-day averaging? The short answer is robustness: averaging

stabilizes the case time series, and accounts for uninteresting artifacts like day-of-the-week effects in the series.
Note that we can also equivalently view this (equivalent up to a constant factor) as predicting the HRR-level
case incidence rate summed over some 7-day period in the future, and predicting a binary variable derived
from this.

In what follows, we cover more details on our two analysis tasks. Table 1 presents a summary.

Dynamic Re-Training For each prediction date t, we use a 21-day trailing window of data to train our
forecast or hotspot prediction models (so, e.g., the trained models will differ from those at prediction date
t− 1). This is done to account for (potential) nonstationarity. For simplicity, the forecasting and hotspot
prediction models are always trained on data across all HRRs (i.e., the coefficients in the models do not
account for location-specific effects).

Prediction Period In our analysis, we let the prediction date t run over each day in between early/mid
June and December 31, 2020. The precise start date differs for forecasting and hotspots prediction; for each
task it was chosen to be the earliest date at which the data needed to train all models was available, which
ends up being (per our setup, with 21 days of training data and lagged values of signals for features, as we will
detail shortly) June 9, 2020 for forecasting, and June 16, 2020 for hotspot prediction. (The bottleneck here is
the CTIS-CLI-in-community signal, which does not exist before early April 2020, when the survey was first
launched). The end date was chosen again with a consideration to align both tasks as best as possible, and
because few hotspots exist post December 31, 2020, due to the general and gradual decline of the pandemic
in 2021.

Forecasting Models Recall Yℓ,t denotes the 7-day trailing average of COVID-19 case incidence rates in
location ℓ and at time t. Separately for each a = 7, . . . , 21, to predict Yℓ,t+a for ahead value a, we consider a
simple probabilistic forecasting model of the form:

Quantileτ (Yℓ,t+a | Yℓ,s, s ≤ t) = αa,τ +
2

∑

j=0

βa,τ
j Yℓ,t−7j . (1)

This model uses current case rates, and the case rates 7 and 14 days ago, in order to predict (the quantiles of)
case rates in the future. We consider a total of 7 quantile levels (chosen in accordance with the county-level
quantile levels suggested by the COVID-19 Forecast Hub),

τ ∈ {0.025, 0.1, 0.25, 0.5, 0.75, 0.9, 0.975}. (2)

We fit (1) using quantile regression [24–26] separately for each τ , using data from all 306 HRRs, and within
each HRR, using the most recent 21 days of training data. This gives us 6,426 training samples for each
quantile regression problem.
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Figure 2: Forecast for the HRR containing New York City from an autoregressive model made on October
15 (vertical line). The fan displays 50%, 80% and 95% intervals while the orange curve shows the median
forecast. The black curve shows “finalized” data, as reported in May 2021.

In addition to this pure autoregressive model, we also consider five probabilistic forecasting models of the
form:

Quantileτ (Yℓ,t+a | Yℓ,s, Xℓ,s, s ≤ t) = αa,τ +
2

∑

j=0

βa,τ
j Yℓ,t−7j +

2
∑

j=0

γa,τ
j Xℓ,t−7j , (3)

where Xℓ,t denotes any one of the five auxiliary indicators—CHNG-CLI, CHNG-COVID, CTIS-CLI-in-
community, DV-CLI, or Google-AA—at location ℓ and time t. Note that we apply the same lags (current
value, along with the values 7 and 14 days ago) for the auxiliary indicators as we do for the case rates.
Training then proceeds just as before: we use the same 7 quantile levels in (2), and fit quantile regression
separately for each level τ , using data from all 306 HRRs and a trailing window of 21 days of training data.

At prediction time, in order to avoid crossing violations (that is, for two levels τ ′ > τ , the predicted
quantile at level τ exceeds the predicted quantile at level τ ′), we apply a simple post-hoc sorting. See Figure 2
for an example forecast.

Hotspot Prediction Models Define the binary indicator:

Zℓ,t = 1
(

Y ∆
ℓ,t ≥ 0.25

)

,

where we use the notation Y ∆
ℓ,t = (Yℓ,t − Yℓ,t−7)/(Yℓ,t−7). In other words, Zℓ,t = 1 if the number of newly

reported cases over the past 7 days has increased by at least 25% compared to the preceding week. When
this occurs, we say location ℓ is a hotspot at time t. Empirically, this rule labels about 27% of location-time
pairs as hotspots, during the prediction period (June 16–December 31, 2020).

We treat hotspot prediction as a binary classification problem and use a setup altogether quite similar to
the forecasting setup described previously. Separately for each a = 7, . . . , 21, to predict Zℓ,t+a, we consider a
simple logistic model:

logit
(

P(Zℓ,t+a = 1 | Yℓ,s, s ≤ t)
)

= αa,τ +
2

∑

j=0

βa,τ
j Y ∆

ℓ,t−7j , (4)

where logit(p) = log(p/(1− p)), the log-odds of p.
In addition to this pure autoregressive model, we also consider five logistic models of the form:

logit
(

P(Zℓ,t+a = 1 | Yℓ,s, Xℓ,s, s ≤ t)
)

= αa,τ +
2

∑

j=0

βa,τ
j Y ∆

ℓ,t−7j +
2

∑

j=0

γa,τ
j X∆

ℓ,t−7j , (5)
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where we use X∆
ℓ,t = (Xℓ,t −Xℓ,t−7)/(Xℓ,t−7), and again Xℓ,t stands for any of the five auxiliary indicators

at location ℓ and time t. We fit the above models, (4), (5), using logistic regression, pooling all 306 HRRs
and using a 21-day trailing window for the training data.

An important detail is that in hotspot prediction we remove all data from training and evaluation where,
on average, fewer than 30 cases (this refers to a count, not a rate) are observed over the preceding 7 days.
This avoids having to make arbitrary calls for a hotspot (or lack thereof) based on small counts.

1.4 Evaluation Metrics

For forecasting, we evaluate the probabilistic forecasts produced by the quantile models in (1) and (3) using
weighted interval score (WIS), a quantile-based scoring rule; see e.g., [27]. WIS is a proper score, which
means that its expectation is minimized by the population quantiles of the target variable. The use of WIS in
COVID-19 forecast scoring is discussed in [28]; WIS is also the main evaluation metric used in the COVID-19
Forecast Hub.

WIS is typically defined for quantile-based forecasts where the quantile levels are symmetric around 0.5.
This is the case for our choice in (2). Let F be a forecaster comprised of predicted quantiles qτ parametrized
by a quantile level τ . In the case of symmetric quantile levels, this is equivalent to a collection of central
prediction intervals (ℓα, uα), parametrized by an exclusion probability α. The WIS of the forecaster F ,
evaluated at the target variable Y , is defined by:

WIS(F, Y ) =
∑

α

{

α(uα − ℓα) + 2 · dist(Y, [ℓα, uα])
}

, (6)

where dist(a, S) is the distance between a point a and set S (the smallest distance between a and an element
of S). Note that, corresponding to (2), the exclusion probabilities are α ∈ {0.05, 0.2, 0.5, 1}, resulting
in 4 terms in the above sum. By straightforward algebra, it is not hard to see WIS has an alternative
representation in terms of the predicted quantiles themselves:

WIS(F, Y ) = 2
∑

τ

φτ (Y − qτ ), (7)

where φτ (x) = τ |x| for x ≥ 0 and φτ (x) = (1− τ)|x| for x < 0, which is often called the “tilted absolute” loss.
While (7) is more general (it can accomodate asymmetric quantile levels), the first form in (6) is typically
preferred in presentation, as the score nicely decouples into a “sharpness” component (first term in each
summand) and an “under/overprediction” component (second term in each summand). But the second form
given in (7) is especially noteworthy in our current study because it reveals WIS to be the same as the
quantile regression loss that we use to train our forecasting models (i.e., we fit by optimizing WIS averaged
over the training data).

For hotspot prediction, we evaluate the probabilistic classifiers produced by the logistic models in (4) and
(5) using the area under the curve (AUC) of their true positive versus false positive rate curve (which is
traced out by varying the discrimination threshold).

The primary aggregation scheme that we will use in model evaluation and comparisons will be to average
WIS per forecaster at ahead value a over all forecast dates t and locations ℓ; and similarly, to compute AUC
per classifier at ahead value a over all forecast dates t and locations ℓ.

1.5 Other Considerations

Missing Data Imputation Over the prediction period, all auxiliary indicators are available (in the proper
vintage sense) for all locations and prediction times, except for the Google-AA signal, which is only observed
for an average of 105 (of 306) HRRs. Such missingness occurs because the COVID-19 search trends data is
constructed using differential privacy methods [29], and a missing signal value means that the level of noise
added in the differential privacy mechanism is high compared to the underyling search count. In other words,
values of the Google-AA signal are clearly not missing at random. It seems most appropriate to impute
missing values by zero, and this is what we do in our analysis.
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Backfill and Nowcasting As described previously, the auxiliary indicators defined in terms of medical
claims (CHNG-CLI, CHNG-COVID, and DV-CLI) undergo a significant and systematic pattern of revision,
or “backfill”, after their initial publication. Given their somewhat statistically-regular backfill profiles, it
would be reasonable to attempt to estimate their finalized values based on vintage data—a problem we
refer to as nowcasting—as a pre-processing step before using them as features in the models in (3) and (5).
Nowcasting is itself a highly nontrivial modeling problem, and we do not attempt it in this paper (it is a topic
of ongoing work in our research group), but we note that nowcasting would likely improve the performance of
the models involving claims-based signals in particular.

Spatial Heterogeneity Some signals have a significant amount of spatial heterogeneity, by which we mean
their values across different geographic locations are not comparable. This is the case for the Google-AA
signal (due to the way in which the underlying search trends time series is self-normalized, see [20]) and the
claims-based signals (due to market-share differences, and/or differences in health-seeking behavior). Such
spatial heterogeneity likely hurts the performance of the predictive models that rely on these signals, because
we train the models on data pooled over all locations. In the current paper, we do not attempt to address
this issue (it is again a topic of ongoing work in our group), and we simply note that location-specific effects
(or pre-processing to remove spatial bias) would likely improve the performance of the models involving
Google-AA and the claims-based indicators.

2 Results

Here, and in what follows, we will use “AR” to refer to the pure autoregressive model both in forecasting,
(1), and in hotspot prediction, (4) (the reference to the prediction task should always be clear from the
context). We will also use the name of an auxiliary indicator—namely “CHNG-CLI”, “CHNG-COVID”,
“CTIS-CLI-in-community”, “DV-CLI”, or “Google-AA”—interchangeably with the model in forecasting, (3),
or hotspot prediction, (5), that uses this particular indicator as a feature (the meaning should be clear from
the context). So, for example, the CHNG-CLI model in forecasting is the one in (3) that sets Xℓ,t to be
the value of the CHNG-CLI indicator at location ℓ and time t. Finally, we use the term “indicator model”
to refer to any one of the ten models of the form (3) or (5) (five from each of the forecasting and hotspot
prediction tasks).

We begin with a summary of the high-level conclusions.

• Stratifying predictions by the ahead value (a = 7, . . . , 21), and aggregating results over the prediction
period (early June through end of December 2020), we find that each of the indicator models generally
gives a boost in predictive accuracy over the AR model, in both the forecasting and hotspot prediction
tasks. The gains in accuracy generally attenuate as the ahead value grows.

• In the same aggregate view, CHNG-COVID and DV-CLI offer the biggest gains in both forecasting
and hotspot prediction. CHNG-CLI is inconsistent: it provides a big gain in hotspot prediction,
but little gain in forecasting (it seems to be hurt by a notable lack of robustness, due to backfill).
CTIS-CLI-in-community and Google-AA each provide decent gains in forecasting and hotspot prediction.
The former’s performance in forecasting is notable in that it clearly improves on AR even at the largest
ahead values.

• In a more detailed analysis of forecasting performance, we find that the indicator models tend to be
better than AR when case rates are flat or decreasing (most notable in CHNG-COVID and CTIS-CLI-
in-community), but they are worse than AR when case rates are increasing (this is most notable in
CHNG-CLI and DV-CLI). More rarely does an indicator model tend to beat AR when case rates are
increasing, but there appears to be some evidence of this for the Google-AA model.

• In this same analysis, when an indicator model performs better than AR in a decreasing period, this
tends to co-occur with instances in which the indicator “leads” case rates (meaning, roughly, on a
short-time scale in a given location, its behavior mimics that of future case rates). On the other hand,
if an an indicator model does better in periods of increase, or worse in periods of increase or decrease,
its performance is not as related to leadingness.
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Figure 3: Main results for both tasks. Left: average WIS for each forecast model, over all forecast dates and
all HRRs, divided by the average WIS achieved by a baseline model (a probabilistic version of the flat-line
forecaster). Right: area under the curve for each hotspot prediction model, calculated over all prediction
dates and all HRRs. Here and in all figures we abbreviate CTIS-CLI-in-community by CTIS-CLIIC.

Finally, to quantify the importance of training and making predictions using proper vintage data, we ran
a parallel set of forecasting and hotspot prediction experiments using finalized data. The results, given in
the supplement, show that training and making predictions on finalized data can result in overly optimistic
estimates of true test-time performance (up to 10% better in terms of average WIS or AUC). Furthermore,
since indicators can have greatly different backfill profiles, the use of finalized data in retrospective evaluations
changes the relative ranking of models. For example, CHNG-CLI and DV-CLI, when trained on finalized
data, perform very similarly in forecasting. This makes sense since they are both claims-based indicators
that are supposedly measuring the same thing. However, DV-CLI outperforms CHNG-CLI on vintage data,
reflecting its has a less severe backfill profile.

Code to reproduce all results (which uses the evalcast R package) can be found at https://github.c
om/cmu-delphi/covidcast-pnas/tree/main/forecast/code.

2.1 Aggregate Results by Ahead Value

Figure 3 (left panel) displays evaluation results for forecasting, stratified by ahead value and averaged over
all HRRs and forecast dates. Shown is the average WIS for each forecast model divided by that from a
baseline model, which is basically a flat-line forecaster (its median forecast for Yℓ,t+a is always Yℓ,t, with
predicted quantiles defined around this based on historical variation). This is the same baseline model as in
the COVID-19 Forecast Hub. Here, we use the baseline model in order to scale mean WIS so that it gets put
on an interpretable, unitless scale. In the figure, we can see that all curves are below 1, which means (smaller
WIS is better) that all of the models, including AR, outperform the baseline on average over the forecasting
period. On the other hand, the models deliver at best an improvement of about 20% in average WIS over the
baseline model, with this gap narrowing to about 10% at the largest ahead values, illustrating the difficulty
of the forecasting problem.

We can also see from the figure that CHNG-COVID and DV-CLI offer the biggest gains over AR at small
ahead values, followed by CTIS-CLI-in-community and Google-AA, with the former providing the biggest
gains at large ahead values. The CHNG-CLI model performs basically the same as AR. This is likely due to
the fact that CHNG-CLI suffers from volatility due to backfill. The evidence for this explanation is twofold:
(1) the CHNG-CLI model benefits from a more robust method of aggregating WIS (geometric mean; shown
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in the supplement); and (2) when we train and make predictions on finalized data, it handily beats AR, on
par with the best-performing models (also shown in the supplement).

Figure 3 (right panel) displays the results for hotspot prediction, again stratified by ahead value and
averaged over all HRRs and prediction dates. We can see many similarities to the forecasting results (now
larger AUC is better). For example, CHNG-COVID and DV-CLI offer the biggest improvement over AR,
and all models, including AR, degrade in performance towards the baseline (in this context, a classifier based
on random guessing, which achieves an AUC of 0.5) as the ahead values grow, illustrating the difficulty of the
hotspot prediction problem. A clear difference, however, is that the CHNG-CLI model performs quite well in
hotspot prediction, close to the best-performing indicator models for many of the ahead values. This may be
because volatility in the CHNG-CLI indicator plays less of a role in the associated logistic model’s predicted
probabilities (in general, a sigmoid function can absorb a lot of the variability in its input).

2.2 Implicit Regularization Hypothesis

One might ask if the benefits we observe in forecasting and hotspot prediction have anything to do with the
actual indicator themselves. A plausible alternative explanation is that the indicators are simply providing
implicit regularization on top of the basic AR model, in the same way any noise variable might, when we
include them as lagged features in (3) and (5).

To test this hypothesis, we reran all of the prediction experiments but with Xℓ,t in the each indicator
models replaced with suitable random noise (bootstrap samples from a signal’s history). The results, shown
and explained more precisely in the supplement, are vastly different (worse) than the original set of results.
In both forecasting and hotspot prediction, the “fake” indicator models offered essentially no improvement
over the pure AR model, which strongly rejects (informally speaking) the implicit regularization hypothesis.

On the topic of regularization, it is also worth noting that the use of ℓ1 regularization (tuned by cross-
validation) in fitting any of the models in (1), (3), (4), or (5) did not generally improve their performance
(experiments not shown). This is likely due to the fact that the number of training samples is large compared
to the number of features (6,426 training samples and only 3–6 features).

2.3 Evaluation in Up, Down, and Flat Periods

The course of the pandemic has played out quite differently across space and time. Aggregating case rates
nationally shows three pronounced waves, but the behavior is more nuanced at the HRR level. Figure 2
is a single example of a forecast in a period of relatively flat case trends, as New York City enters what
would become its second wave. The AR forecaster’s 50% prediction interval contains this upswing, but its
forecasted median is clearly below the finalized case data. Unfortunately, this behavior is fairly typical of all
forecasters: during upswings, the forecasted median tends to fall below the target, while the reverse is true
during downswings.

Figure 4 shows histograms of the differences in WIS of the AR model and each indicator model, where
we stratify these differences by whether the target occurs during a period of increasing cases rates (up),
decreasing case rates (down), or flat case rates (flat). To define the increasing period, we use the same
definition we used for the hotspot task in Table 1. Therefore all hotspots are “up”, while all non-hotspots are
either “flat” or “down”. For the “down” scenario, we simply use the opposite of the hotspot definition: Yℓ,t

decreases by more than 20% relative to the preceding week.
While the performance of all forecasters, including AR, will generally degrade in up periods, different

models exhibit different and interesting patterns. CHNG-CLI, CHNG-COVID, Google-AA, and especially
CTIS-CLI-in-community have large right tails (displaying improvements over AR) during the down periods.
Google-AA and CTIS-CLI-in-community have large right tails during the flat periods. CHNG-CLI and
DV-CLI have large left tails (poor forecasts relative to AR) in flat and up periods. Google-AA is the only
model that outperforms the AR model, on average, over up periods. Overall, the indicators seem to help
more during flat or down periods than up periods, with the exception of Google-AA.

The supplement pursues this analysis further. For example, we examine classification accuracy and
log-likelihood for the hotspot task and find a similar phenomenon: the indicators considerably improve
accuracy or log-likelihood during flat or down periods, with more mixed behavior during up periods when
CHNG-CLI, CHNG-COVID, and DV-CLI, in particular, lead to decreased performance.
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Figure 4: Histogram of the difference in WIS for the AR model and that for each indicator model, stratified
by up, down, or flat period, measured in terms of case trends. Note that larger differences here are better for
each indicator model. The y-axis is on the log scale to emphasize tail behavior.

2.4 Effects of Leading or Lagging Behavior

As described in the methods section, each of the indicators we examine could be said to measure aspects of
disease progression that would precede a positive test. That is, we imagine that these signals should “lead”
cases. It is entirely reasonable to imagine that, prior to an increase of confirmed COVID-19 tests reported by
a public health authority in a particular location, we would see an increase in medical insurance claims for
COVID-related outpatient visits. However, it may well be the case that such behavior is different during
different periods. In fact, we find empirically that the “leadingness” of an indicator (degree to which it leads
case activity) tends to be more pronounced in down or flat periods than in up periods, a plausible explanation
for the decreased performance in up periods noted above.

In the supplement, we show how to define a quantitative score to measure the leadingness of an indicator,
at any time t and any location ℓ, based on cross correlations to case rates over a short time window around
t. The higher this score, the greater it “leads” case activity. Figure 5 displays correlations between the
leadingness score of an indicator and the WIS difference (AR model minus an indicator model), stratified by
whether the target is classified as up, down, or flat. One would naturally expect that the WIS difference
would be positively correlated with leadingness. Somewhat surprisingly, this relationship turns out to be
strongest in down periods and weakest in up periods. In fact, it is very nearly the case that for each indicator,
the strength of correlations only decreases as we move from down to flat to up periods. In the supplement,
we extend this analysis by studying analogous “laggingness” scores, but we do not find as clear patterns.

3 Discussion

Can auxiliary indicators improve COVID-19 forecasting and hotspot prediction models? Our answer, based
on analyzing five auxiliary indicators from the COVIDcast API (defined using from medical insurance claims,
internet-based surveys, and internet search trends) is undoubtedly “yes”. However, there are levels of nuance
to such an answer that must be explained. None of the indicators that we have investigated appear to be
the “silver bullet” that one might have hoped for, revolutionizing the tractability of the prediction problem,
rendering it easy when it was once hard (in the absence of auxiliary information). Rather, the gains in
accuracy from the indicator models (over an autoregressive model based only on past case rates) appear
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Figure 5: Correlation of the difference in WIS with the “leadingness” of the indicator at the target date,
stratified by up, down, or flat period.

to be nontrivial, and consistent across modes of analysis, but modest. In forecasting, the indicator models
are found to be most useful in periods in which case rates are flat or trending down, rather than periods in
which case rates are trending up (as one might hope to see is the benefit provided by a hypothetical “leading
indicator”).

As described previously, it is likely that we could improve the indicator models by using location-specific
effects, as well as using nowcasting techniques to estimate finalized indicator values before we use them as
features (to account for backfill in the claims-based signals in particular). Beyond this, it is certainly possible
that more sophisticated models for forecasting or hotspot prediction would lead to different results, and
possibly even different insights. Natural directions to explore include using multiple indicators in a single
model, allowing for interaction terms, and leveraging HRR demographics or mobility patterns. That said,
we are doubtful that more sophisticated modeling techniques would change the “topline” conclusion—that
auxiliary indicators can provide nontrivial, consistent, but modest gains in forecasting and hotspot prediction.
Whether a more sophisticated model would be able to leverage the indicators in such a way as to change
some of the finer conclusions (e.g., by offering clear improvements in periods in which cases are trending up)
is less clear to us.

We reiterate the importance of using vintage data for rigorous backtesting. Data sources that are relevant
to public health surveillance are often subject to revision, sometimes regularly (such as medical claims data)
and sometimes unpredictably (such as COVID-19 case reports). When analyzing models that are designed to
predict future events, if we train these models and make predictions using finalized data, then we are missing
a big part of the story. Not only will our sense of accuracy be unrealistic, but certain models may degrade by
a greater or lesser extent when they are forced to work with vintage data, so backtesting them with finalized
data may lead us to make modeling decisions that are suboptimal for true test-time performance.

In this paper, we have chosen to consider only very simple forecasting models, while devoting most of
our effort to accounting for as much of the complexity of the underlying data and evaluation as possible. In
fact, our paper is as much about demonstrating how one might address questions about model comparisons
and evaluation in forecasting and hotspot prediction in general, as it is about providing rigorous answers to
such questions in the context of COVID-19 case rates in particular. We hope that others will leverage our
framework, and build on it, so that it can be used to guide work that advances the frontier of predictive
modeling for epidemics and pandemics.
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Supplemental information

A Examining the relative advantage of using finalized rather than

vintage data

The goal of this section is to quantify the effect of not properly accounting for the question of “what was
known when” in performing retrospective evaluations of forecasters. Figures 6 and 7 show what Figures 3
and 4 in the main paper would have looked like if we had simply trained all models using the finalized data
rather than using vintage data. This comparison can be seen more straightforwardly in Figures 8 and 9,
which show the ratio in performance between the vintage and finalized versions. When methods are given
the finalized version of the data rather than the version available at the time that the forecast would have
been made, all methods appear (misleadingly) to have better performance than they would have had if run
prospectively. For example, for forecasting case rates 7-days ahead, the WIS of all methods is at least 8%
larger than what would have been achieved using finalized data. This effect diminishes as the forecasting
horizon increases, reflecting the fact that longer-horizon forecasters rely less heavily on recent data than very
short-horizon forecasters. Crucially, some methods are “helped” more than others by the less scrupulous
retrospective evaluation, underscoring the difficulty of avoiding misleading conclusions when performing
retrospective evaluations of forecasters.

CHNG-CLI (and, to a lesser extent, the other claims-based signals) is the most affected by this distinction,
reflecting the latency in claims-based reporting. This underscores the importance of efforts to provide
“nowcasts” for claims signals (which corresponds to a 0-ahead forecast of what the claims signal’s value will be
once all data has been collected). Looking at the CHNG-CLI and DV-CLI curves in Figure 6, we can see
that they perform very similarly when trained on the finalized data. This is reassuring because they are, in
principle, measuring the same thing (namely, the percentage of outpatient visits that are primarily about
COVID-related symptoms). The substantial difference in their curves in Figure 3 of the main paper must
therefore reflect their having very different backfill profiles.

While using finalized rather than vintage data affects DV-CLI the least for forecasting, it is one of the
most affected methods for the hotspot problem. This is a reminder that the forecasting and hotspot problems
are fundamentally distinct. For example, the hotspot problem does not measure the ability to distinguish
between flat and downward trends.

Even the AR model is affected by this distinction, reflecting the fact that the case rates themselves (i.e.,
the response values) are also subject to revision. The forecasters based on indicators are thus affected both
by revisions to the indicators and by revisions to the case rates. In the case of the Google-AA model, in
which we only used finalized values for the Google-AA indicator, the difference in performance can be wholly
attributed to revisions of case rates.

B Aggregating with geometric mean

In this section, we consider using the geometric mean instead of the arithmetic mean when aggregating the
weighted interval score (WIS) across location-time pairs. There are three reasons why using the geometric
mean may be desirable.

1. WIS is right-skewed, being bounded below by zero and having occasional very large values. Figure 10
illustrates that the densities appear roughly log-Gaussian. The geometric mean is a natural choice in
such a context since the relative ordering of forecasters is determined by the arithmetic mean of the
logarithm of their WIS values.

2. In the main paper, we report the ratio of the mean WIS of a forecaster to the mean WIS of the baseline
forecaster. Another choice could be to take the mean of the ratio of WIS values for the two methods.
This latter choice would penalize a method less for doing poorly where the baseline forecaster also does
poorly. Using instead the geometric mean makes the order of aggregation and scaling immaterial since
the ratio of geometric means is the same as the geometric mean of ratios.
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3. If one imagines that a forecaster’s WIS is composed of multiplicative space-time effects Sℓ,t shared
across all forecasters, i.e. WIS(Fℓ,t,f , Yℓ,t) = Sℓ,tEf,t with Ef,t a forecaster-specific error, then taking
the ratio of two forecasters’ geometric mean WIS values will effectively cancel these space-time effects.

Figure 11 uses the geometric mean for aggregation. Comparing this with Figure 3 of the main paper, we
see that the main conclusions are largely unchanged; however, CHNG-CLI now appears better than AR. This
behavior would be expected if CHNG-CLI’s poor performance is attributable to a relatively small number of
large errors (as opposed to a large number of moderate errors). Indeed, Figure 5 of the main paper further
corroborates this, in which we see the heaviest left tails occuring for CHNG-CLI.

C Bootstrap results

As explained in Section 2.B. of the main paper, a (somewhat cynical) hypothesis for why we see benefits in
forecasting and hotspot prediction is that the indicators are not actually providing useful information but they
are instead acting as a sort of “implicit regularization,” leading to shrinkage on the autoregressive coefficients
and therefore to less volatile predictions. To investigate this hypothesis, we consider fitting “noise features”
that in truth should have zero coefficients. Recall (from the main paper) that at each forecast date, we train
a model on 6,426 location-time pairs. Indicator models are based on six features, corresponding to the three
autoregressive terms and the three lagged indicator values. To form noise indicator features, we replace their
values with those from a randomly chosen time-space pair (while keeping the autoregressive features fixed). In
particular, at each location ℓ and time t, for the forecasting task we replace the triplet (Xℓ,t, Xℓ,t−7, Xℓ,t−14)
in Eq. (3) of the main paper with the triplet (Xℓ∗,t∗ , Xℓ∗,t∗−7, Xℓ∗,t∗−14), where (ℓ∗, t∗) is a location-time
pair sampled with replacement from the 6,426 location-time pairs. Likewise in the hotspot prediction task,
we replace the triplet (X∆

ℓ,t, X
∆
ℓ,t−7, X

∆
ℓ,t−14) in Eq. (5) of the main paper with (X∆

ℓ∗,t∗ , X
∆
ℓ∗,t∗−7, X

∆
ℓ∗,t∗−14).

Figures 12–14 show the results. No method exhibits a noticeable performance gain over the AR method,
leading us to dismiss the implicit regularization hypothesis.

D Upswings and Downswings

In this section we provide extra details about the upswing / flat / downswing analysis described in the main
text. Figure 15 shows the overall results, examining the average difference WIS(AR)−WIS(F ) in period.
Figure 16 shows the same information for the hotspot task. On average, during downswings and flat periods,
the indicator-assisted models have lower classification error and higher log likelihood than the AR model.
For hotspots, both Google-AA and CTIS-CLIIC perform better than the AR model during upswings, in
contrast to the forecasting task, where only Google-AA improves. For a related analysis, Figure 17 shows
histograms of the Spearman correlation (Spearman’s ρ, a rank-based measure of association) between the
WIS(F )/WIS(AR) and the magnitude of the swing. Again we see that case rate increases are positively
related to diminished performance of the indicator models.

One hypothesis for diminished relative performance during upswings is that the AR model tends to
overpredict downswings and underpredict upswings. Adding indicators appears to help avoid this behavior on
the downswing but not as much on upswings. Figure 18 shows the correlation between between WIS(AR)−
WIS(F ) and the difference of their median forecasts. During downswings, this correlation is large, implying
that improved relative performance of F is related to making lower forecasts than the AR model. The
opposite is true during upswings. This is largely to be expected. However, the relationship attenuates in flat
periods and during upswings. That is, when performance is better in those cases, it may be due to other
factors than simply making predictions in the correct direction, for example, narrower confidence intervals.

E Leadingness and laggingness

In Section 2.D of the main text, we discuss the extent to which the indicators are leading or lagging case rates
during different periods. To define the amount of leadingness or laggingness at location ℓ, we use the cross
correlation function (CCF) between the two time series. The CCFℓ(a) of an indicator Xℓ and case rates Yℓ is
defined as their Pearson correlation where Xℓ has been aligned with the values of Yℓ that occurred a days
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earlier. Thus, for any a > 0, CCFℓ(a) > 0 indicates that Yℓ,t is moving together with Xℓ,t+a. In this case we
say that Xℓ is lagging Yℓ. For a < 0, CCFℓ(a) > 0 means that Yℓ,t is positively correlated with Xℓ,t−a, so we
say that Xℓ leads Yℓ.

Figure 19 shows the standardized signals for the HRR containing Charlotte, North Carolina, from August
1, 2020 until the end of September. These are the same signals shown in Figure 1 in the manuscript but using
finalized data. To define “leadingness” we compute CCFℓ(a) (as implemented with the R function ccf()) for
each a ∈ {−15, . . . , 15} using the 56 days leading up to the target date. This is the same amount of data
used to train the forecasters: 21 days of training data, 21 days to get the response at a = 21, and 14 days for
the longest lagged value. The orange dashed horizontal line represents the 95% significance threshold for
correlations based on 56 observations. Any correlations larger in magnitude than this value are considered
statistically significant under the null hypothesis of no relationship. We define leadingness to be the sum
of the significant correlations that are leading (those above the dashed line with a < 0) while laggingness
is the same but for a > 0. In the figure, there are three significant correlations on the “leading” side (at
a = −5,−4,−3), so leadingness will be the sum of those values while laggingness is 0: on September 28 in
Charlotte, DV-CLI is leading cases leading but not lagging.

Figure 20 shows the correlation between laggingness and the difference in indicator WIS and AR WIS.
Unlike leadingness (Figure 5 in the manuscript) there is no obvious relationship that holds consistently across
indicators. This is heartening as laggingness should not aid forecasting performance. On the other hand, if
an indicator is more lagging than it is leading, this may suggest diminished performance. Figure 21 shows
the correlation of the difference in leadingness and laggingness with the difference in WIS. The pattern here
is largely similar to the pattern in leadingness described in the manuscript: the relationship is strongest in
down periods and weakest in up periods with the strength diminishing as we move from down to flat to up
for all indicators.

In calculating the CCF and the associated leadingness and laggingness scores, we have used the finalized
data, and we look at the behavior at the target date of the forecast. That is we are using the same data
to evaluate predictive accuracy as to determine leadingness and laggingness. It should be noted that the
leadingness of the indicator at the time the model is trained may also be important. Thus, we could calculate
separate leadingness and laggingness scores for the trained model and for the evaluation data and examine
their combination in some way. We do not pursue this combination further and leave this investigation for
future work.

F Examining data in 2021

In this section, we investigate the sensitivity of the results to the period over which we train and evaluate the
models. In the main paper, we end all evaluation on December 31, 2020. Figures 22–24 show how the results
would differ if we extended this analysis through March 31, 2021. Comparing Figure 22 to Figure 3 of the
main paper, one sees that as ahead increases most methods now improve relative to the baseline forecaster.
When compared to other methods, CHNG-CLI appears much better than it had previously; however, all
forecasters other than CHNG-COVID and DV-CLI are performing less well relative to the baseline than
before. These changes are likely due to the differing nature of the pandemic in 2021, with flat and downward
trends much more common than upward trajectories. Indeed, the nature of the hotspot prediction problem
is quite different in this period. With a 21-day training window, it is common for there to be many fewer
hotspots in training.
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Figure 6: Forecasting performance using finalized data. Compare to Figure 3 in the manuscript.

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.22.21259346doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.22.21259346
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.50

0.55

0.60

0.65

10 15 20

Days ahead

A
U

C

AR CHNG−CLI CHNG−COVID CTIS−CLIIC DV−CLI Google−AA

Figure 7: Hotspot prediction performance using finalized data. Compare to Figure 4 in the manuscript.
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Figure 8: Relative forecast WIS with vintage compared to finalized data. Using finalized data leads to overly
optimistic performance.
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Figure 9: Relative AUC with vintage compared to finalized data. Using finalized data leads to overly
optimistic hotspot performance.
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Figure 10: Weighted interval score appears to more closely resemble a log-Gaussian distribution.
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Figure 11: Relative forecast performance using vintage data and summarizing with the more robust geometric
mean.
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Figure 12: Forecast performance when indicators are replaced with samples from their empirical distribution.
Performance is largely similar to the AR model.
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Figure 13: Forecast performance as measured with the geometric mean when indicators are replaced with
samples from their empirical distribution. Performance is largely similar to the AR model.

26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.22.21259346doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.22.21259346
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.500

0.525

0.550

0.575

0.600

10 15 20

Days ahead

A
U

C

AR CHNG−CLI CHNG−COVID CTIS−CLIIC DV−CLI Google−AA

Figure 14: Hotspot prediction performance when indicators are replaced with samples from their empirical
distribution. Performance is largely similar to the AR model.
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Figure 15: Average difference between the WIS of the AR model and the WIS of the other forecasters. The
indicator-assisted forecasters do best during down and flat periods.
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Figure 16: Classification and loglikelihood separated into periods of upswing, downswing, and flat cases. Like
the analysis of the forecasting task in the main paper (see Figure 7), performance is better during down and
flat periods.
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Figure 17: Histograms of the Spearman correlation between the ratio of AR to AR WIS with the percent
change in smoothed case rates relative to 7 days earlier.
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Figure 18: Correlation of the difference in WIS with the difference in median predictions for the AR model
relative to the indicator-assisted forecaster. In down periods, improvements in forecast risk are highlycorrelated
with lower median predictions. The opposite is true in up periods. This suggests, as one might expect that
improved performance of the indicator-assisted model is attributable to being closer to the truth then the
AR model. This conclusion is stronger in down periods then in up periods.
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Figure 19: Illustration of the cross-correlation function between DV-CLI and cases. The left panel shows
the standardized signals over the period from August 1 to September 28 (as of May 15, 2021). The right
panel shows CCFℓ(a) for different values of a as vertical blue bars. The orange dashed lines indicate the 95%
significance threshold. By our leadingness/laggingness metric, DV-CLI is leading (but notlagging) cases over
this period.
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Figure 20: Correlation of the difference in WIS with the laggingness of the indicator at the target date,
stratified by up, down, or flat period. Compare to Figure 5 in the manuscript.
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Figure 21: Correlation of the difference between leadingness and laggingness with the difference in WIS. The
relationship is essentially the same as described in the manuscript and shown in Figure 5.
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Figure 22: Forecast performance over all periods. Performance largely improves for all forecasters with the
inclusion of data in 2021.
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Figure 23: Forcast performance over all periods aggregaged with the geometric mean. Again, the inclusion of
data in 2021 leads to improved performance.
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Figure 24: Area under the curve for hotspot predictions including data in 2021. Performance degrades relative
to the period in 2020. However, there are far fewer hotspots during this period as case rates declined in much
of the country.
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