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Can Bohmian mechanics be made relativistic?

Detlef Dürr∗, Sheldon Goldstein†, Travis Norsen‡,
Ward Struyve§, and Nino Zangh̀ı¶

December 30, 2013

Abstract

In relativistic space-time, Bohmian theories can be formulated by introducing a
privileged foliation of space-time. The introduction of such a foliation – as extra
absolute space-time structure – would seem to imply a clear violation of Lorentz
invariance, and thus a conflict with fundamental relativity. Here, we consider the
possibility that, instead of positing it as extra structure, the required foliation
could be covariantly determined by the wave function. We argue that this allows
for the formulation of Bohmian theories that seem to qualify as fundamentally
Lorentz invariant. We conclude with some discussion of whether or not they
might also qualify as fundamentally relativistic.

1 Introduction

Bohmian mechanics, also known as the de Broglie-Bohm pilot-wave theory, is a ver-
sion of quantum mechanics in which the notions of observation, measurement, and the
macroscopic world play no fundamental role [1–4]. For the case of an N -particle universe
of spinless non-relativistic particles, the theory posits a universal wave function obeying
the usual Schrödinger wave equation

i~
∂Ψt

∂t
= −

N∑

k=1

~2

2mk

∇2
kΨt + VΨt (1)
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as well as particles with definite positions evolving according to the guidance formula

dXk(t)

dt
=

~

mk

Im
Ψ∗

t∇kΨt

Ψ∗
tΨt

∣∣
X1(t),X2(t),...,XN (t)

. (2)

Here Ψt, the universal wave function, is a complex-valued function on the 3N -dimensional
configuration space of the N particles. (For particles with spin, one need only consider
Ψt as instead being the appropriate N -particle spinor, obeying instead of Equation (1)
the appropriate wave equation, and then interpret the numerator and denominator of
the right hand side of Equation (2) as involving the appropriate spinor inner products.)

One common objection to Bohmian mechanics is that it is incompatible with, and
cannot be made compatible with, relativity. Of course, the theory sketched above is
a version of non-relativistic quantum mechanics, so one expects incompatibility with
relativity. The point, though, is that the non-relativistic theory contains a certain
feature (suggesting incompatibility with relativity) that persists even when, for example,
Equation (1) is replaced with a relativistic wave equation (such as the Dirac equation):
the guidance formula, Equation (2), has, at any time, the velocity of each particle being
defined in terms of the wave function and its spatial derivatives evaluated at the actual

configuration point of the entire N-particle system at that time. The velocity of a given
particle thus depends, in general, on the instantaneous positions of all the other particles.

Bohmian mechanics is, therefore, a non-local theory in a precise sense articulated
especially by Bell. Indeed, the non-locality just described is precisely the manifestation,
in this theory, of the sort of non-locality Bell proved must be present in any theory
sharing the empirical predictions of ordinary quantum theory [5, 6].

Unlike certain other “quantum theories without observers” (for example, those for
which outcome independence but not parameter independence is violated)1, however,
the Bohmian type of non-locality has seemed particularly difficult to reconcile with fun-
damental relativity. Leaving aside the trivial case of a single particle, the usual guidance
formula for Bohmian theories involving appropriately relativistic wave equations for Ψ
requires something like a privileged Lorentz frame or family of simultaneity surfaces.

Many proponents of Bohmian ideas have thus become resigned to the notion that
relativistic Bohmian theories will be relativistic only at the relatively superficial level
of empirical predictions: the theories will make relativistically good predictions (includ-
ing, for example, the correct kind of prediction for the Michelson-Morley experiment)
but will involve something like a hidden, empirically undetectable, notion of absolute
simultaneity. Such theories, it is usually conceded, are relativistic only in the sense that
the Lorentz-Fitzgerald ether theory (considered here as an interpretation of classical
electrodynamics) is relativistic – namely, they are not relativistic, not in a serious or
fundamental sense.

The aim of the present paper is to question this perspective by suggesting a rather
general strategy for making Bohmian theories compatible with fundamental relativity.
In Bohmian theories the dynamics of the particles (or fields) is defined in terms of struc-
tures extracted from the wave function. The strategy proposed here involves extracting

1For some results concerning relativistic collapse theories see [7, 8].
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from the wave function also a foliation of space-time into space-like hypersurfaces, which
foliation is used to define a Bohmian dynamics in a manner similar to the way equal-
time hyperplanes are used to define the usual Bohmian dynamics. We show how this
extraction can itself be Lorentz invariant in an appropriate sense, and argue that vir-
tually any relativistic quantum theory, Bohmian or otherwise, will thus already contain
a special space-time foliation, buried in the structure of the wave function. This makes
it difficult to imagine how one could question the “seriously relativistic” character of
the Bohmian theories to be described, without simultaneously denying that any theory
in which something like a universal wave function plays a fundamental role can be a
candidate for serious compatibility with relativity.

Bohmian formulations that employ a foliation extracted from the wave function
(which were considered before in [9, 10]) reproduce the standard quantum predictions
(as we will explain in section 6). A variety of alternative approaches yield a covariant
Bohmian dynamics but seem to disagree with the standard quantum predictions. Here
is a brief overview. First, one can employ a foliation that may depend also on the actual
configuration [9, 11, 12]. Second, rather than using a foliation, there also have been at-
tempts to use only the relativistic light-cone structure instead [13, 14]. Finally, there are
approaches that do not make use of surfaces but instead introduce a “synchronization”
of particle trajectories [15–18]. For more details, see [19].

The argument is developed as follows in the subsequent sections of the paper. In
Section 2 we briefly review the formulation of Bohmian theories in relativistic space-
time, giving simple examples involving both particles and fields. Section 3 describes
the construction of geometrical structures in space-time using the tools available from
quantum field theories, while Section 4 discusses the meaning of serious or fundamental
Lorentz invariance and articulates in particular what it would mean for a foliation to
be extracted from the wave function in a relativistically covariant manner. Section 5
sketches a possible way to generalize one of the suggestions made in Section 3 which
does not require a foliation, while Section 6 takes up the question of the relationship
between the statistical predictions of the theories proposed here to those of ordinary
relativistic quantum theories. Finally, in Section 7, we reflect on the question posed in
the paper’s title.

2 Bohmian theories in relativistic space-time

In the case of a single particle (N = 1), the non-relativistic Bohmian theory sketched
in the introduction is a local theory: the configuration space is isomorphic to physical
space, and the guidance formula, Eq. (2), can thus be understood as determining the
particle’s velocity (at each instant) in terms of the structure of the wave function around
the location of the particle. In the more general case (N > 1) however – and here
assuming the general case of a non-factorizable, entangled wave function – the non-
locality of the theory (necessary for its ability to correctly predict violations of Bell’s
inequality) becomes manifest: each particle’s velocity is (at each instant) defined in
terms of the structure of the wave function around the actual configuration point of

3



the whole N -particle system. The motion of each particle therefore depends on the
instantaneous positions of all the other (distant) particles. This non-locality is the root
of the difficulty involved in reconciling Bohmian approaches to quantum theory with
serious, fundamental Lorentz invariance.

To further explain the difficulty, and to explain the general structure of Bohmian the-
ories in the context of relativistic space-time, let us consider the generalization of (non-
relativistic) Bohmian mechanics to relativistic particles and to quantum fields obeying
a relativistic wave equation.

Let us start by outlining the general structure of a Bohmian formulation for N
particles in Minkowski space-time M . A possible history of the particles arising from
their motion corresponds to an N -path X = (X1, . . . , XN), where Xk = Xk(s) is the
space-time trajectory of the kth particle. The law of motion for the particles, which
defines the dynamically allowed N -paths, is expressed in terms of a wave function Ψ and
a foliation F of space-time into space-like hypersurfaces (not necessarily hyperplanes).

The role of the foliation is to provide the notion of a configuration to be inserted in an
evolution equation like (2). Such a configuration is given by the crossings (XΣ

1 , ..., X
Σ
N)

by the space-time paths of the particles of any leaf Σ of the foliation. The evolution law
can be formulated by demanding that the (unit) tangent vector ẊΣ

k to the trajectory
of the kth particle at the point through which it crosses Σ be parallel to a vector vF ,Ψ

k

depending on the configuration on Σ, as well as on the wave function Ψ and possibly
the foliation F . The law can then be written in the form

ẊΣ
k ∝ vF ,Ψ

k (XΣ
1 , ..., X

Σ
N) , (3)

where vF ,Ψ
k is a function onMN . (In fact it would be sufficient if vF ,Ψ

k were defined only
for N -tuples of space-time points on a common leaf of the foliation). “∝” means pro-
portional to, with a positive (perhaps x-dependent) proportionality constant. Different
such proportionality “constants” will merely correspond to different parameterizations
of the same trajectories.

As an example, we consider free (positive-energy) Dirac particles. It is convenient to
use the multi-time wave function Ψ = Ψ(x1, ..., xN ), where the xk ∈ M are space-time
points, and which takes values in the N -particle spin space (C4)⊗N [10]. It satisfies the
N Dirac equations2

iγµk∂k,µΨ−mkΨ = 0 (4)

for k = 1, ..., N (where as usual the summation convention over µ is assumed). Here,
γµk = I ⊗· · ·⊗ I ⊗ γµ⊗ I ⊗· · ·⊗ I with the Dirac matrix γµ at the k-th of the N places.

The velocity fields vF ,Ψ
k that appear in the dynamical equation (3) for the particles

are [
vF ,Ψ
k

]µk

(x1, . . . , xN ) = Jµ1...µN (x1, . . . , xN)n
F

µ1
(x1) . . . n̂F

µk
(xk) . . . n

F

µN
(xN ), (5)

where ̂ indicates that the term should be omitted, nF is the unit future-directed normal
vector field to the foliation F and

Jµ1...µN (x1, . . . , xN ) = Ψ(x1, . . . , xN )γ
µ1

1 . . . γµN

N Ψ(x1, . . . , xN ). (6)

2From now on, we assume ~ = c = 1.
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Note that although we have written down a theory of free particles, their motions will
still be coupled if the wave function is entangled. The theory thus includes precisely (but
only) the sort of “interactions” that make it so difficult to reconcile Bohmian mechanics
with fundamental relativity.

In the special case of a single particle, the wave function satisfies the Dirac equation
and the particle law reduces to

dX(s)

ds
∝ vΨ(X(s)) = J(X(s)) = Ψ(X(s))γΨ(X(s)). (7)

So in this case the law does not depend on the foliation and is fully Lorentz invariant.
There also exist Bohmian theories with an actual field configuration ϕ(x) on space-

time instead of particle positions (at least for bosonic quantum fields [20]). As in the case
of particles, the evolution equation of the field in a relativistic version should depend on
the wave function Ψ and foliation F [9, 12]. It should be of the form

dϕ(x)

dτ
= FF ,Ψ(x, ϕ|Σx

), (8)

where dϕ/dτ is the directional derivative at x along the normal to the leaf Σx of the
foliation that contains x, i.e., dϕ/dτ = nF · ∂ϕ. ϕ|Σx

is the restriction of the field
configuration to the hypersurface Σx.

For example, for a real massless scalar field ϕ(x), we have

FF ,Ψ = Im

(
1

ΨΣx

δΨΣx

δϕΣx
(x)

) ∣∣∣
ϕ|Σx

, (9)

where for each space-like hypersurface Σ the wave function ΨΣ is a functional ΨΣ(ϕΣ)
of fields ϕΣ on Σ. The wave functional can be defined as 〈ϕΣ|Ψ〉, where |Ψ〉 is the state
vector in the Heisenberg picture and where |ϕΣ〉 is defined by ϕ(x)|ϕΣ〉 = ϕΣ(x)|ϕΣ〉,
for points x on Σ, with ϕ(x) the Heisenberg field operator. (Since the field operators
commute at space-like separated points, |ϕΣ〉 is well-defined as the simultaneous eigen-
state of the field operator at different points on Σ.) δ/δϕΣ is the functional derivative

(which for a functional G is defined by
∫
Σ
dσ δG(ϕΣ)

δϕΣ

f = d
dǫ
G(ϕΣ + ǫf)

∣∣
ǫ=0

). Similarly as

in the case of (entangled) Dirac particles, the field evolution will depend on the choice
of foliation.

The point of sketching the two examples above was to indicate the general structure
of the Bohmian versions of relativistic quantum theories. In general, such theories will
involve, in addition to the usual quantum mechanical wave function of the appropriate
sort, two pieces of additional structure: the “local beables” or “primitive ontology”
(which, in the above examples, were the actual configuration of N particles and the
scalar field, respectively3) and a foliation of space-time.

3Particle and field configurations do not exhaust the possibilities for primitive ontology in Bohmian

theories. Other sorts of objects, like strings, may be considered in this role, and more complex theories

may combine several of the elements already mentioned. It should also be emphasized that a Bohmian

version of (what is usually called) a relativistic field theory need not use field configurations as the

local beables. It is possible, for example, to consider a field theory with particle positions as the local

beables [21, 22].
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It has been suggested that such a theory – involving such a privileged foliation of
space-time – might nevertheless be considered a candidate for “serious” compatibility
with fundamental relativity if the foliation is not simply posited as a novel piece of
absolute space-time structure, but is instead regarded as a dynamical object, itself
obeying a Lorentz invariant law. Examples of such a law are ∂νnµ = 0 [10] or ∂νnµ −
∂µnν = 0 [19], where n is the future-directed normal vector field to the foliation. (For
the first example it means that the leaves of the foliation are hyperplanes, for the second
it means that the time-like distance from a point on a leaf to another leaf is constant
along the leaf.) Such models, though, seem to have a strong un-relativistic flavor even if
they are in some sense fundamentally Lorentz invariant. The Lorentz invariance seems,
somehow, unserious.

A different idea, which can perhaps be taken more seriously as providing genuinely
relativistic theories, is to extract the needed foliation F of space-time from the wave
function itself

Ψ→ F = F (Ψ) (10)

instead of positing it as new structure. In this case, the velocity field of Equation (3)
becomes vF ,Ψ

k = vΨk (and similarly for F of Equation (8)). This is the idea we will
develop in subsequent sections.

3 Geometrical structures on space-time and quan-

tum field theory

Given that the familiar representation of the wave function Ψ lives on configuration space
(or a field space) it is not immediately clear how it can provide a geometrical structure
on space-time itself, in particular the foliation F = F (Ψ). So the first question we
must address is: How can one extract geometrical structures on space-time from the
wave function? Here we develop the thought that, as soon as one considers quantum
field theory, natural possibilities suggest themselves.

Conventional formulations of quantum field theory (QFT) are in terms of fields
operators φ(x) transforming covariantly under the action of the Poincaré group,

U(a,A)φ(x)U
−1
(a,A) = D−1

A φ(Ax+ a) , (11)

where a is a translation and A is a Lorentz transformation; (a, A) 7→ U(a,A) is a unitary
(projective) representation of the Poincaré group on the Hilbert space H of quantum
states (generated by polynomials of the fields acting on the vacuum state |0〉); D is
a projective representation of the Lorentz group, e.g., for a Dirac field, DA are 4×4
matrices suitably expressed by means of the gamma matrices.

Thus, however abstract the wave function might be, the standard local Heisenberg
field operators of QFT can be used to define structures in space-time. For example,
with jµ(x), sµν(x) and tµν(x) respectively the charge current, spin tensor and energy-
momentum tensor operator, one can define the following tensorial objects for a wave

6



function Ψ:

Jµ(x) = 〈Ψ|jµ(x)|Ψ〉, Sµν(x) = 〈Ψ|sµν(x)|Ψ〉, T µν(x) = 〈Ψ|tµν(x)|Ψ〉 . (12)

In the case of the free Dirac field ψ(x), we have4

jµ(x) =: ψ̄(x)γµψ(x) :, sµν(x) =: ψ̄(x)
i

2
[γµ, γν ]ψ(x) :,

tµν(x) =: ψ̄(x)
i

2

(←→
∂µγν +

←→
∂ν γµ

)
ψ(x) :, (13)

where
←→
∂µ = 1

2

(←−
∂µ +

−→
∂µ

)
. Such formulas for geometrical (tensor) fields are of course

naturally covariant.
A QFT tensor that is a vector field, such as Jµ above, is already very close to what

one needs to define a foliation of space-time, namely the foliation that is orthogonal to
the vector field. Of course, to have a foliation of space-time into space-like hypersurfaces,
the vector should be time-like – a property indeed possessed by Jµ in the case of Dirac
QFT. However, the foliation will not be well-defined unless the vector field is integrable
[23] – a property not necessarily possessed by Jµ. One may take its integrable part
[10], but this may then no longer be time-like. So some massaging may be necessary to
extract a foliation in this way. We will not take up the needed massaging here. Instead
we will explore, in Section 5, an alternative – and more general – way to formulate
a Bohmian dynamics which employs instead of a foliation, merely a time-like vector
field, which may not be integrable. In addition, in the next section we will consider an
unproblematic and simple way of defining a foliation in terms of the energy-momentum
tensor T µν .

Apart from geometrical structures of the type just considered, which are structures
on space-time, we also have geometrical structures on the Cartesian product of N copies
of space-time. Considering again the free Dirac QFT, an example is the tensor

Jµ1...µN (x1, . . . , xN ) = 〈Ψ| :
1

N !
ψ̄(x1)γ

µ1ψ(x1) . . . ψ̄(xN)γ
µNψ(xN) : |Ψ〉. (14)

This tensor defines, via (3) and (5), the dynamics of the Dirac particles since it is the
same as the one given in (6) with multi-time wave function given by

Ψ(x1, . . . , xN) =
1√
N !
〈0|ψ(x1) . . . ψ(xN )|Ψ〉. (15)

(As the Dirac field operator ψ(x) satisfies the free Dirac equation, it is immediately clear
that (15) satisfies the equations (4).)

4The colons denote normal ordering (i.e., annihilation operators that appear in the plane wave

expansion of the field operators are moved to the right and every reordering induces a change of sign,

due to the anti-commuting character of the Dirac fields). We further set aside possible issues that may

arise in making these tensors well-defined in the context of theories with interactions.
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4 Lorentz invariance

The next question we want to address is that of the Lorentz invariance of a Bohmian
theory constructed along the lines sketched above.

In general, a physical theory posits some dynamical objects and some law(s) govern-
ing their behavior. For a given slate of posited objects, there will be a set X of their
kinematically possible histories. The law can then be understood as the subset L ⊂X

of histories which are dynamically allowed by the theory. The invariance of a theory
under a certain symmetry group means that the set L is invariant under the action
of the group. For example, for the theory of the classical massless Klein-Gordon field,
X contains the smooth functions φ(x) on space-time and the subset L contains those
functions that satisfy ∂µ∂

µφ = 0.
A Bohmian theory generally includes in its ontology both a wave function Ψ and

some objects – the local beables or the primitive ontology – which could for example
correspond to particles or fields. The wave function Ψ satisfies an appropriate wave
equation, while the local beables obey a guidance equation involving Ψ. We shall denote
by X a kinematically possible history of the local beables.

Under a group G of space-time transformations (such as the Lorentz or Poincaré
groups) X will transform according to X ′ = ΛgX , where Λg is the natural action of an
element g ∈ G on X . The wave function will transform according to an appropriate
representation Ug of G: Ψ′ = UgΨ. The invariance of the theory then means that

(X ′,Ψ′) ∈ L ⇐⇒ (X,Ψ) ∈ L . (16)

Alternatively, writing L Ψ for the set of possible histories X for a given Ψ, then the
invariance of the theory under the group G means that

X ′ ∈ L
Ψ′ ⇐⇒ X ∈ L

Ψ. (17)

Or equivalently, the diagram
Ψ −−−→ L Ψ

Ug

y
yΛg

Ψ′ −−−→ L Ψ′

(18)

is commutative.
If the set L Ψ is characterized in terms of geometrical structures on space-time, as

we have seen above (for example, for one Dirac particle, the trajectories X are integral
curves of the vector field Ψ(x)γΨ(x)), i.e. if

L
Ψ ←→ ( . . . ,ΓΨ, . . .︸ ︷︷ ︸

various structures

) (19)

we have a similar statement for each of the structures

Ψ −−−→ ΓΨ

Ug

y
yΛg

Ψ′ −−−→ ΓΨ′

(20)

8



where Λg is the natural action of g on the geometrical structures.5 We then say that ΓΨ

is covariant.
Examples of covariant geometrical structures are given by the tensors (12). Consider,

for example, the vector field JΨ in the case of Dirac QFT. The natural action Λg on J
Ψ

is
(ΛgJ

Ψ)(x) = Lg

[
JΨ(g−1x)

]
, (21)

where Lg is the natural action of g on vectors at g−1x (i.e., in the tangent space at g−1x).
On the other hand, from the basic transformation laws (11) of the quantum fields and
the covariance property of the gamma matrices,

D−1
g γDg = Lgγ , (22)

one obtains

Lg

[
JΨ(g−1x)

]
= 〈Ψ| : ψ̄(g−1x)Lgγψ(g

−1x)) : |Ψ〉 = JUgΨ ,

which establishes the covariance of JΨ. The covariance of the other tensors in (12)
follows similarly.

For our purposes, the most relevant geometrical structure is the foliation FΨ. Its
covariance is expressed by the commutative diagram

Ψ −−−→ FΨ

Ug

y
yΛg

Ψ′ −−−→ FΨ′

.

(23)

Here the natural action Λg on the foliation is the action of g on any leaf Σ of the
foliation. We then say that the extraction F (Ψ) of the foliation from the wave function
is covariant. If F is directly defined in terms of other covariant structures, it will itself
be covariant. This will be the case when F is defined by a covariant vector field, such
as JΨ given by (12) when it is integrable and time-like.

5The commutative diagram must hold when ΓΨ is uniquely determined by L Ψ. But if different

ΓΨs, say ΓΨ
1

and ΓΨ
2
, both correspond to the same L Ψ, so that we may write ΓΨ

1
∼ ΓΨ

2
and regard

them as equivalent, then instead of

ΛgΓ
Ψ = ΓΨ

′

(equation to obtain (20)), we need only require

ΛgΓ
Ψ ∼ ΓΨ

′

,

i.e., that the two structures define the same law. In this case, of course, we have the commutative

diagram for the equivalence classes of the ΓΨ. For example, one could imagine a Bohmian theory for

one particle where the velocity field vΨ transforms as Λgv
Ψ = αvΨ

′

, where α is a non-zero constant.

While the velocity field hence does not transform covariantly, the Bohmian guidance law dX(τ)/dτ ∝
vΨ(X(τ)) remains covariant.

9



As another example, which is applicable to any relativistic quantum field theory,
consider the total 4-momentum

P µ =

∫

S

dσν(x)〈Ψ|tµν(x)|Ψ〉, (24)

where tµν(x) is the energy-momentum tensor in the Heisenberg picture and S is an
arbitrary space-like hypersurface. By Stokes’ theorem and the conservation equation

∂µt
µν(x) = 0, (25)

the four-vector P µ does not depend on the choice of the hypersurface S, so it defines
a constant vector field on space-time [24]. This vector field is generically future-causal.
(For the ground state, which is Lorentz invariant, it will be zero. For massless particles
it might be light-like. But we set aside such unrealistic special cases.) As such, it
generically defines a foliation, of hyperplanes orthogonal to it. The reference frame in
which these hyperplanes correspond to equal-time hyperplanes is the frame in which the
total three-momentum vanishes.

Finally, considering the Bohmian guidance law for Dirac particles, we see that the
velocity field given in (5) involves as geometrical structures only the multi-tensor J given
in (14), which is covariant, and a foliation F . For a covariant choice of foliation, such
as the one determined by the vector field (24), the guidance law is covariant.

5 Generalization of the Bohmian particle dynamics

A main objection to theories such as Bohmian mechanics is that they must inevitably
conflict with Lorentz invariance because of their strong non-locality. In this section
we point out that, even when it does not define a foliation, the most familiar kind
of space-time structure in quantum field theory – a vector field on space-time – may
afford a reconciliation deemed widely impossible. For this it is entirely unnecessary
that the exact quantum predictions emerge. It is enough that nonlocal effects arise in a
completely covariant way.

We thus sketch here a possible relativistic generalization of the Bohmian dynamics
that does not require a foliation, but merely a time-like vector field, and which reduces
to the one with a foliation in the case the vector field is integrable. We only discuss
this generalization for the case of a particle ontology. It is unclear whether it can be
extended to a field ontology.

With n a unit time-like vector field, the generalized law of motion reads, following
(3),

Ẋk(x) ∝ vn,Ψk (XΣx

1 , ..., XΣx

N ) . (26)

Here Σx is the surface through x determined by the vector field n in the manner described
below. As usual, Ẋk(x) is the tangent vector to the kth particle’s worldline at the point
x and vn,Ψ is a function on the Cartesian product of N copies of space-time. The
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configuration (XΣx

1 , ..., XΣx

N ) at which the velocity field is evaluated is the collection of
crossings by the particle world lines of the surface Σx.

Σx is the surface that is swept out by the curves through x whose tangent vector at
each point is normal to n at that point and which are otherwise as straight as possible, so
that their tangent vector only changes in the direction of n. Explicitly, in Hamiltonian
form, the curves that generate the surface Σx satisfy the equations

ẋµ = vµ, v̇µ = −nµvνvκ∂κnν (27)

and have initial conditions x(0) = x and v(0) · n(x(0)) = 0 (i.e. the initial velocity is
orthogonal to n). The dynamics then guarantees that the velocity remains orthogonal
to n, i.e. that v(τ) · n(x(τ)) = 0. (The dynamics (27) is the minimal modification of
“free motion” in phase space that is compatible with the constraint v · n = 0.)

The surface Σx itself need not be normal to n. It also need not be space-like. Only
when n is integrable must the surface Σx be normal to n and in that case Σx is just one
of the leaves of the foliation determined by n. The Bohmian dynamics then reduces to
the one given before in (3).

It is important to note that, unless n is integrable, the surfaces Σx do not form a
foliation. Namely, while x ∈ Σy ⇔ y ∈ Σx, the surfaces Σx and Σy will generically be
different. (This further implies that the relation x ∼ y ⇔ x ∈ Σy, which is reflective
and symmetric, fails to be transitive when n is not integrable, and hence is not an
equivalence relation.)

While this dynamics is a generalization of our earlier one in terms of a foliation,
there is one drawback compared to that formulation. Namely, the relationship between
its predictions and those of standard quantum theory is difficult to discern. This is an
issue we turn to in the next section.

6 Quantum equilibrium

Non-relativistic Bohmian mechanics as outlined in the introduction reproduces the stan-
dard quantum predictions provided that the particle distribution for an ensemble of sys-
tems with the same wave function Ψ(x) is given by |Ψ(x)|2. This distribution is called
the quantum equilibrium distribution. It satisfies the special property of equivariance: if
the distribution is given by |Ψ(x, t0)|2 at a certain time t0, then the Bohmian dynamics
implies that the distribution is given by |Ψ(x, t)|2 at all other times t.

In relativistic space-time, when the Bohmian dynamics is formulated using a foliation
F , there is again a distinguished distribution ρΨ (a generalized “|Ψ|2” distribution)
which plays the role of an equilibrium distribution and which is equivariant (i.e., has the
same form as a functional of Ψ) along the leaves of the foliation. Since this distribution
corresponds to the usual quantum distribution, the theory reproduces the standard
quantum predictions [10]. For example, in the case of the Bohm-Dirac theory, on any
leaf Σ of F , ρΨ corresponds to the distribution on ΣN given by

ρΨ(x1, . . . , xN) = Jµ1...µN (x1, . . . , xN )n
F

µ1
(x1) . . . n

F

µN
(xN ). (28)
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This is the distribution of the N points of intersection of the world lines of the N
particles with Σ.

However, it has been shown that quantum non-locality implies that quantum equi-
librium can not hold in every reference frame, or with respect to every foliation [15].
That is, even though we may assume equilibrium along the leaves of the foliation that
was used in formulating the Bohmian dynamics, the implied distribution along a space-
like hypersurface Σ that is not a leaf of the foliation may depend not only on Ψ, but
also – and in a complicated way – on the relationship between Σ and the foliation. It
may therefore be different from the usual quantum distribution. Nevertheless, as dis-
cussed in detail in [10, 15], this will not change the fact that the theory will reproduce
the standard quantum predictions, assuming quantum equilibrium along the leaves of
the foliation. (This is closely related to Bell’s remark that “the laws of physics in any
one reference frame account for all physical phenomena, including the observations of
moving observers” [25, p. 77].)

In the case of our generalized Bohmian dynamics of section 5, unless n is integrable
and determines a foliation, there is no distinguished distribution (or at least not an
obvious one) that may play the role of an equivariant equilibrium distribution. (Re-
call that the surfaces Σx that are used to formulate this generalized dynamics do not
determine a foliation). In particular, there seems to be no reason to have the usual
quantum distribution along the leaves of any foliation. As such, it seems unlikely that
its predictions agree with those of standard quantum theory. (This is also true for the
models in [11–18] that were mentioned in the introduction. These theories do not em-
ploy a distinguished foliation and hence it is hard to even begin a statistical analysis. In
theories such as proposed in [11, 12], the foliation depends on the actual configuration
and different initial configurations will generically determine different foliations. Hence
it is not clear how to compute the statistical predictions for ensembles of systems with
the same initial wave function but different initial configurations of the local beables.)
When n is integrable, however, the dynamics reduces to the one in terms of a foliation,
and a distribution like (28) is equivariant along the leaves of that foliation. The theory
then reproduces the standard quantum predictions.

7 Discussion

We have developed here the idea that the privileged space-time foliations (that have
long been recognized as a crucial ingredient in Bohmian theories) might not need to be
separately posited as additional space-time structure, but might instead be extracted
from the objects already present in the theory – in particular, from the wave function
Ψ. As explained in Section 4, there is a natural sense in which this extraction can
be understood as respecting the appropriate space-time symmetries, so that a theory
formulated in this way should be regarded as fundamentally Lorentz invariant.

Several distinct possibilities for extracting a foliation from the wave function (and
one possibility for getting along without such a foliation) have been suggested. Further
exploring these possibilities is a natural subject for future work. At present, rather than
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lobby for any one particular such possibility, we wish to merely stress that several quite
workable options exist – indeed, as explained especially in Section 3, there would seem
to be a plethora of rather obvious candidates as soon as one considers quantum field
theories.

Everything in the type of theory proposed here – the dynamical law for Ψ, the rule
for defining F = F (Ψ), and the guidance equation(s) for the local beables – is fully
Lorentz covariant and thus seemingly entirely compatible with the space-time structure
being exclusively Minkowskian. Is such a theory then fundamentally – and/or seriously
– relativistic?

This is not an easy question to answer, because it is not at all clear what, exactly,
fundamental/serious compatibility with relativity does, or should, require. Lorentz in-
variance is clearly one necessary requirement. But it is easy to imagine that someone
might dismiss – as clearly incompatible with relativity – the type of theory proposed
here, simply on the grounds that it involves a dynamically privileged foliation. Frankly,
it would be hard to disagree with this sentiment. But on the other hand, one of the im-
portant implications of our proposal is that foliations can be extracted from Ψ and will
therefore in a sense be present in any kind of quantum theory, Bohmian or otherwise.
So if the mere presence of a foliation renders a theory un-relativistic, it seems hopeless
that a viable relativistic theory could ever be constructed.

Other at-least-semi-reasonable criteria can be imagined. For example, some might
feel that good relativistic theories should respect relativistic local causality, or should
posit exclusively local beables, or should exhibit some kind of relativity principle for sub-
systems. Some of these have in fact been shown to be incompatible with experiment, and
we are not, at present, prepared to take any strong position on their appropriateness,
or that of other possible criteria. Thus we are not in fact able to answer the question
posed in this paper’s title. We stress however that these criteria revolve around aspects
of locality that are largely incompatible with quantum mechanics. Thus if Bohmian
mechanics indeed cannot be made relativistic, it seems likely that quantum mechanics
can’t either.
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[3] D. Dürr and S. Teufel, Bohmian Mechanics, Springer-Verlag, Berlin (2009).
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