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1 Introduction

In 1975 Hietarinta [1] constructed (graded) Lie algebras which are a higher-spin generaliza-

tion of the conventional Poincaré superalgebras. Instead of spinorial supersymmetry gen-

erators associated with spin- 12 , these algebras include (spinor-)tensor generators associated

with (half-)integer higher-spin representations of the Lorentz group. As in the supersym-

metry case, (anti-)commutators of these generators close on the generator of space-time

translations. The D-dimensional Hietarinta algebras have the following generic structure

{Qa1...anα , Qb1...bmβ } = fa1...an,b1...bm,cαβ Pc ,

[Sa1...ap , Sb1...bq ] = fa1...an,b1...bm,cPc ,

[Q,P ] = 0 , [S, P ] = 0 , [Q,S] = 0 , (1.1)

where a, b, c = 0, 1 . . . , D − 1 are vector indices, α, β are spinor indices, Qa1...anα are

fermionic tensor-spinor generators, Sa1...ap are bosonic tensor generators and Pc is the trans-

lation generator. The generators transform under certain representations of the Lorentz

group S = SO(1, D − 1). The structure constants fa1...an,b1...bm,cαβ and fa1...an,b1...bm,c are

SO(1, D − 1) invariant and constructed with the use of the Minkowski metric, Levi-Civita

tensor and gamma-matrices.

The algebras (1.1) are finite-dimensional higher-spin algebras. This distinguishes

them from the more familiar infinite-dimensional higher-spin algebras in which the (anti)-

commutators of higher-spin generators close on generators carrying yet higher spins.
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For building models with spontaneously broken symmetries of this kind Hietarinta

used the Volkov-Akulov construction of Lagrangians with non-linearly realized supersym-

metry [2, 3]. The case of a D = 4 spin-32 superalgebra and its non-linear realizations

was independently considered in [4] (see also [5, 6]) and further exploited e.g. in [7] and

references therein. In four-dimensional space-time, consistency issues of a gravitational

coupling of a massless spin- 52 field, which might be regarded as a gauge field of the local

spin-32 supersymmetry, were studied in [8–11].

In three space-time dimensions, however, Aragone and Deser [12] succeeded in con-

structing a consistent ‘hypergravity’ model which is invariant under local symmetry trans-

formations associated with a spin-(n + 1
2) superalgebra (n = 0, 1, . . .) and describes in-

teracting non-propagating graviton and a spin-(n + 3
2) gauge field.1 Much more recently

this model was extended to an AdS3 background including an additional spin-4 field by

Zinoviev [13] who also constructed its higher-spin generalizations. Different aspects of

higher-spin superalgebras of this kind in D ≥ 3 and associated models were also considered

in [14–17]. It may be of interest to study the effects of spontaneous symmetry breaking in

these models, which is one of the motivations of this paper.

More general motivation is related to the fact that, as is well-known, the construction

of interacting higher-spin theories in space-time dimensions higher than three is a highly

non-trivial problem.2 This issue also regards models based on the higher-spin algebras

of [1]. In [44] it was shown (for the spin- 32 case in D = 4) that these algebras do not

have non-trivial linear unitary representations. Yet, one may still ask the question whether

the higher-spin Goldstone field constructions based on the non-linear realizations of these

algebras produce physically consistent interacting models. A priori, such a possibility is

not excluded, since non-linearly realized symmetry may act only on positive-norm states

while the negative-norm states of corresponding linear multiplets are cut off.

To the best of our knowledge the physical properties and the consistency of the Gold-

stone models associated with this type of higher-spin algebras have not yet been consid-

ered in the literature (even for the simplest cases of spin-1 and spin- 32), and this is the

purpose of our paper. We will study this problem in three-dimensional space-time for

Goldstone fields of spin-1 and spin- 32 . As we will see, these simplest models already exhibit

particular, interesting features. The leading term in the action of the spin-1 Goldstone

model is the Abelian Chern-Simons Lagrangian whose gauge symmetry is broken by a

quartic term. As a result, the model has a propagating degree of freedom which, in a

decoupling limit, is a quartic Galileon scalar field. The Hamiltonian of this model is not

bounded from below signalling the presence of instabilities. At the same time, somewhat

surprisingly, the vector-spinor Goldstino model, which is a non-linear generalization of the

three-dimensional Rarita-Schwinger Lagrangian, does possess a non-linearly extended local

symmetry of the Rarita-Schwinger Lagrangian. Hence, it does not have propagating de-

1Strictly speaking, as is well known, in D = 3 massless representations of the Poincaré group are spin-

less. However, as is often adopted in higher-spin literature for any space-time dimension, we loosely call

symmetric tensor fields Aa1...as of rank s as integer spin-s fields and symmetric-tensor spinor fields Ψα
a1...as

as half-integer spin s+ 1
2

fields.
2For a review of various aspects of higher-spin field theory and references see e.g. [18–43].
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grees of freedom. Moreover, as we will see, the non-linear spin- 32 goldstino action reduces

to the free Rarita-Schwinger action by a non-linear field redefinition. We thus find that the

free Rarita-Schwinger action is invariant under a hidden non-linearly realized rigid super-

symmetry generated by fermionic vector-spinor operators and that the Rarita-Schwinger

field is the goldstino field associated with the spontaneous breaking of this symmetry.

The paper is organized as follows. In section 2 we will review the Volkov-Akulov con-

struction of the Lagrangian for a goldstino field associated with the spontaneous breaking

of the conventional N = 1 supersymmetry, whose Poincaré superalgebra in D = 3 has the

following form:

[Mab ,Mcd] = i(ηbcMad − ηacMbd − ηbdMac + ηadMbc) ,

[Mab , Pc] = i(ηbc Pa − ηac Pb) ,
[Pa, Pb] = 0 , (1.2)

[Mab , Qα] = − i

2
(Γab)α

β Qβ ,

{Qα , Qβ} = 2 (ΓaC−1)αβ Pa ,

[Qα , Pa] = 0 , (1.3)

whereMab (a, b = 0, 1, 2) is the generator of the Lorentz group SO(1, 2), Pa is the translation

generator and Qα (α = 1, 2) is the Majorana spinor generator of the supersymmetry

transformations. We use the “mostly plus” convention for the Minkowski metric and the

real Majorana representation for the gamma-matrices (see the appendix for more details).

As an instructive exercise, we will explicitly check that the higher-order terms in

the Volkov-Akulov Lagrangian give a positive-definite contribution to the Hamiltonian,

thus demonstrating the fact that the non-linear Volkov-Akulov goldstino model does not

have ghosts.

In section 3 we will apply the Volkov-Akulov procedure to the construction of a model

describing a spin-1 goldstone field associated with spontaneous breaking of a spin-1 coun-

terpart of the N = 1 superalgebra (1.3). Spin-1 algebra is generated by Poincaré genera-

tors (1.2) and a bosonic vector operator Sa satisfying the following commutation relations:

[Mab , Sc] = i(ηbc Sa − ηac Sb) , (1.4)

[Sa, Sb] = 2i εabcPc , [Sa, Pb] = 0 . (1.5)

Note in passing, that the algebra (1.5) can be regarded as an Inonu-Wigner contraction of

the so(2, 2)-algebra.

The Goldstone field associated with Sa is a vector field Aa(x). As we will see, the

Volkov-Akulov-type model for this field is described by an action whose quadratic part is

the standard Abelian Chern-Simons action. The latter is invariant under the gauge trans-

formations Aa(x) → Aa(x) + ∂aλ(x) which make the Chern-Simons field non-dynamical,

as is of course well known. We will study whether the complete non-linear action for the

Goldstone vector field still possesses (a non-linear generalization of) this gauge symmetry

and find that this is not the case. To this end, we will carry out the Dirac analysis of
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constrained Hamiltonian systems (see e.g. [45, 46]). We will show that for generic classical

field configurations the non-linear model under consideration does not have first-class con-

straints associated with local gauge symmetries, but only second-class ones. As a result, it

contains one Stückelberg-like scalar propagating degree of freedom whose Lagrangian, in a

decoupling limit, turns out to be the same as the quartic Galileon Lagrangian [47] but with a

missing quadratic kinetic term. The Hamiltonian of this model is unbounded from below.

Hence fluctuations around certain zero-energy backgrounds may have a negative energy

and lead to instabilities. These instabilities are not of the (higher-derivative) Ostrogradski

type, since the higher-order Galileon Lagrangians are quadratic in time derivatives. Note,

in passing, that due to their peculiar properties, Galileon models have been intensively

studied in the theories of modified gravity and cosmology. For a review see e.g. [48–51]

and the references therein.

In section 4 we will consider the case of a spin- 32 Goldstone field model associated with

the spin-32 superalgebra [1, 4, 5] whose most general form in D = 3 is

[Mab , Qcα] = i(ηbcQaα − ηacQbα)− i

2
(Γab)α

β Qcβ , (1.6)

{Qaα, Qbβ} = 2 aCαβ ε
abc Pc + bΓ

(a
αβP

b) + c ηab Γcαβ Pc , [Qaα, Pb] = 0 , (1.7)

where a, b and c are arbitrary real parameters. One of these parameters can always be set

to a given number by re-scaling the fermionic generators Qaα or the momentum Pa.

Note that, in general, Qaα is transformed under a reducible representation of the Lorentz

group which splits into the irreducible parts as follows

Qaα = Q̂aα +
1

3
(ΓaQ)α , (1.8)

where Qα is a Majorana-spinor generator and Q̂aα is gamma-traceless (ΓaQ̂
a = 0).

Depending on the choice of the parameters a, b and c, the superalgebra (1.7) can be

reduced to simpler superalgebras. Three specific cases are the following ones.

When a = − 5
12 , b = 1

3 and c = −2
3 , the only non-trivial anti-commutator in (1.7)

is between the gamma-traceless Q̂aα, while the spin- 12 generators Qα anti-commute with

themselves and with Q̂aα. This superalgebra was exploited in [15].

If instead, b = 4 a and c = − 2 a, only the spin- 12 generators Qα have a non-trivial

commutator, as in (1.3), while the gamma-traceless generators Q̂aα anti-commute with

themselves and with Qα and hence decouple. Therefore, in this case, the superalgebra (1.7)

reduces to the conventional N = 1 superalgebra.

The third case is when b = c = 0 and e.g. a = 1. Then the algebra (1.7) reduces to

{Qaα, Qbβ} = 2Cαβ ε
abcPc , [Qaα, Pb] = 0 . (1.9)

In this paper we will consider the Volkov-Akulov-like model associated with the spin- 32
superalgebra of the latter type, since the quadratic part of its non-linear Lagrangian coin-

cides with the Rarita-Schwinger (or Chern-Simons-like) Lagrangian for a massless spinor-

vector field χaα. The gamma-traceless case can be associated with the gauge-fixed Rarita-

Schwinger action in which Γaχ
a = 0, while for other (inequivalent) choices of parameters
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(except those corresponding to the conventional supersymmetry), the spin- 32 superalge-

bra does not seem to produce physically consistent models even in the free (quadratic)

approximation because of the absence of gauge symmetry.

We will show that, in contrast to the spin-1 case, higher-order contributions to the

spin-32 goldstino action do not break the gauge symmetry of its quadratic Rarita-Schwinger

part but only require a non-linear modification of the gauge variation of the spin- 32 field.

Moreover, the non-linear action reduces to the free Rarita-Schwinger action by an invertible

non-linear field redefinition, which means that the Rarita-Schwinger action itself is non-

manifestly invariant under the non-linearly realized spin- 32 supersymmetry (1.9).

In the Conclusion we will briefly discuss possible extensions of our results. In particular,

we will present an action for a 3d gravity model of two spin-2 gauge fields interacting via

a Lorentz spin connection, which is invariant under the local symmetries generated by the

algebra (1.4) and (1.5).

2 Volkov-Akulov model of the spin-1/2 goldstino

The Volkov-Akulov construction [2, 3] of the action for a real Majorana-spinor goldstino

χα(x) associated with the spontaneous breaking of supersymmetry (1.3) uses, as a building

block, a one-form,3,4

Ea = dxa + if−2 χα(x) Γaαβ dχ
β(x) = dxb(δab + if−2 χΓa ∂bχ) ≡ dxbEab , (2.1)

which is invariant under the following supersymmetry variations of xa and χα(x) generated

by the algebra (1.3)

x′a = xa − i f−2 εΓa χ , χ′α(x′) = χα(x) + εα , (2.2)

where εα is a constant spinor parameter, f is a supersymmetry breaking parameter of

mass-dimension m
3
2 and χα has the D = 3 canonical dimension of m. The infinitesimal

transformation of the form of the goldstino field χα(x),

δχα(x) = εα + i f−2
(
εΓa χ(x)

)
∂aχ

α(x) , (2.3)

shows that it transforms non-linearly under supersymmetry. The commutator of two varia-

tions (2.3) closes on the translations off the mass shell, i.e. without the use of the equations

of motion.

[δ2 , δ1]χ
α = 2 i f−2 (ε1 Γa ε2) ∂aχ

α . (2.4)

The supersymmetry invariant Volkov-Akulov action in D = 3 is

S =
f2

6

∫
Ea ∧ Eb ∧ Ec εabc = −f2

∫
d3x detEab , (2.5)

3For a recent review of the different aspects and realizations of the Volkov-Akulov model and its coupling

to supergravity, see [52, 53] and the references therein.
4As a shorthand notation, in what follows, we define the contraction of the spinors with a single gamma-

matrix as χΓa ψ ≡ χα Γaαβ ψ
β = −χα Γa βα ψβ . For other rules regarding the handling of the spinor indices

see the appendix.
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or explicitly

S1/2 =

∫
d3x

(
−f2 − iχΓa ∂aχ+

f−2

2
εabc (χχ) ∂aχΓb ∂cχ

)
, (2.6)

where χχ ≡ χαCαβ χβ ≡ χα χα .

The goldstino equation of motion is

i Γaαβ ∂aχ
β =

3f−2

4
χα ε

abc ∂aχΓb ∂cχ−
f−2

2
χγ Γaγα ∂aχΓb ∂bχ. (2.7)

In what follows we will skip the constant term in the action, which however becomes

important when the goldstino couples to gravity, since it gives a positive contribution to

the cosmological constant.

2.1 Hamiltonian analysis

Let us perform the Hamiltonian analysis of this model by determining the form of the

Hamiltonian and counting the number of physical degrees of freedom. To this end we split

the D = 3 space-time indices into time and space indices a = (0, i), defining ε0ij ≡ εij and

writing the Lagrangian in the following form:

L1/2 = i ∂0χΓ0χ− iχΓi ∂iχ −
f−2

2
εij χχ

(
∂iχΓ0 ∂jχ− 2 ∂0χΓi ∂jχ

)
. (2.8)

The conjugate momentum is

pα =
δL

δ∂0χα
= i Γ0

αβ χ
β + f−2 Γiαβ ∂jχ

β(χχ) (2.9)

and the canonical Hamiltonian density is

H1/2 = ∂0χ
α pα − L1/2 = iχΓi ∂iχ +

f−2

2
εij χχ∂iχΓ0 ∂jχ . (2.10)

The canonical anti-commuting Poisson brackets between χα and pβ are

{χα(t,x), pβ(t,y)} = δβα δ(x− y). (2.11)

The expression for the momentum (2.9) tells us that it is completely expressed in terms

of χ and its spatial derivatives. Hence, the theory has two constraints,

Fα = pα − i Γ0
αβ χ

β − f−2 εij Γiαβ ∂jχ
β(χχ) = 0 , (2.12)

which are of the second class in the classification by Dirac [45, 46], since their equal-time

Poisson brackets do not vanish:

{Fα(t,x), Fβ(t,y)} = 2
(
− i Γ0

αβ + f−2 εij
(

Γiαβ (χ∂jχ) + 2 ∂jχ
ρ χ(αΓβ)ρi

))
δ(x− y),

where x and y stand for the spatial coordinates xi and yi.

– 6 –
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This implies that the goldstino has two independent degrees of freedom in the Hamilto-

nian phase space (one coordinate and one momentum), and correspondingly a single degree

of freedom in the configuration space, i.e. the same as the free Majorana fermion in D = 3

on the mass-shell.

Let us now evaluate the on-shell value of the quartic-order term in the Hamilto-

nian (2.10). To this end, we rewrite this term using gamma-matrix identities, modulo

a total derivative, in the following form:

f−2

2
εij χχ∂iχΓ0 ∂jχ =

f−2

2
χχ∂iχΓi Γj ∂jχ−

f−2

4
∂i(χχ) ∂i(χχ) (2.13)

Now note that the equations of motion (2.7) imply that

Γi ∂iχ = −Γ0 ∂0χ+O (χ∂χ∂χ) . (2.14)

Substituting this expression into (2.13) we get the on-shell value of the Hamiltonian density

H1/2 = iχΓi ∂iχ +
f−2

4
∂i(iχχ) ∂i(iχχ) +

f−2

4
∂0(iχχ) ∂0(iχχ) (2.15)

in which the quadratic term is the standard free Hamiltonian of a massless Majorana

fermion and the quartic terms are manifestly non-negative, since (i χαχα) is a real (nilpo-

tent) scalar. We have thus verified a well known fact that the higher-order terms in the

Volkov-Akulov goldstino model do not bring about unphysical ghost degrees of freedom.

3 Vector Goldstone model

We now move to the Volkov-Akulov construction of a Goldstone model describing the

spontaneous breaking of the rigid symmetry associated with the algebra (1.5). In this case

the invariant one-form is

Ea = dxa + f−2 εabcAb(x) dAc(x) = dxm(δam + f−2 εabcAb(x) ∂mAc(x)) ≡ dxmEam , (3.1)

where Aa(x) is a vector Goldstone which under (1.5) transforms as follows:

x′
a

= xa − f−2 εabc sbAc(x) , A′a(x
′) = Aa(x) + sa , (3.2)

where sa is a constant vector parameter. The infinitesimal transformation of the form of

the goldstone field Aa(x),

δAa(x) = sa + f−2 εdbc
(
sbAc(x)

)
∂dAa(x) , (3.3)

shows that it transforms non-linearly under the symmetry. The commutator of two varia-

tions closes on the translation of Aa in accordance with the structure of the algebra (1.5),

[δ2 , δ1]Aa(x) = 2 f−2 εdbc (s1b s
2
c) ∂dAa(x) . (3.4)

– 7 –
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3.1 Action and equations of motion

We construct the action for Aa(x) in the same way as in section 2, substituting into (2.5) the

one-form (3.1). We thus get (subtracting the constant term and modulo a total derivative),

S1 = −f2
∫

d3x (detEad − 1)

=

∫
d3x

(
εabcAa ∂bAc −

f−2

2
εabcεdef AaAd ∂eAb ∂fAc

)
. (3.5)

Note that the quadratic term in (3.5) is the Abelian Chern-Simons action and that the

sixth-order term in Aa (and its derivatives) vanishes.

The equations of motion of Aa(x) which follow from this action have the following form

εabc ∂bAc = f−2 εabcεdef Ad ∂eAb ∂fAc . (3.6)

When f−2 = 0, the action and the equations of motion reduce to those of the Chern-Simons

theory. In this case the model is invariant under the following gauge transformation of the

vector field

A′a = Aa + ∂aλ(x), (3.7)

and the equations of motion tell us that Aa(x) does not have local physical degrees of

freedom. The presence of the gauge symmetry manifests itself in the fact that the Chern-

Simons field equations satisfy the Bianchi identity

∂a(ε
abc ∂bAc) ≡ 0. (3.8)

When f−2 6= 0, taking the divergence of the non-linear equation (3.6) we find that, for

consistency,

εabcεdef ∂a(Ad ∂eAb ∂fAc) = 0 ,

but this is not an identity. A possible generalization of the Bianchi identity might be as

follows. The equations (3.6) can be expressed in the following form:

εabcDbAc = 0 , (3.9)

where

Db = (E−1)db ∂d +
1

2E
∂d

(
E (E−1)db

)
, (3.10)

(E−1)db is the matrix inverse of Eab defined in (3.1) and E := detEab . One might hope

that the operator Da replaces the partial derivative in the sought after generalization of

the Bianchi identity (3.8), but it turns out to not be the case, i.e. εabcDaDbAc is not

identically zero.

If the equations of motion do not satisfy a Bianchi identity (which for generic systems

with local symmetries is also known as a Noether identity), then the non-linear system

under consideration is not invariant under a non-linear generalization of the gauge trans-

formation (3.7) and hence contains propagating degrees of freedom. As a further indication

that this is indeed the case let us note that the solution of equations (3.6) can be studied

– 8 –
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order-by-order in f−2 and that it includes a scalar degree of freedom, which is not a pure

gauge in the absence of the local symmetry. Indeed, at the zeroth order in f−2, the solution

of (3.6) is A
(0)
a = ∂aϕ. To order f−2 we have

Aa = ∂aϕ+ f−2A(1)
a +O(f−4) . (3.11)

Plugging this into (3.6) we find the expression for the field-strength of A
(1)
a in terms of the

derivatives of ϕ:

εabc ∂bA
(1)
c = εabcεdef ∂dϕ∂e∂bϕ∂f∂cϕ . (3.12)

Upon taking the divergence of the left and right hand sides of (3.12)), we get,

−1

6
εabcεdef ∂a∂dϕ∂e∂bϕ∂f∂cϕ = det(∂a∂

bϕ) (3.13)

= (2ϕ)3 − 32ϕ∂a∂
bϕ∂b∂

aϕ+ 2 ∂a∂
bϕ∂b∂

cϕ∂c∂
aϕ = 0 .

The latter can be regarded as a higher-order equation of motion of ϕ. Note that it is of the

second-order in time derivative. This indicates that the model has a scalar propagating

degree of freedom. This degree of freedom is of Stückelberg type whose equation of mo-

tion (3.13) can be obtained in a proper decoupling limit f →∞ of a gauge-invariant action

having the same form as (3.5) but in which Aa is replaced with Âa = Aa − f
1
2∂aϕ̂, the

latter being invariant under the field variations δAa = ∂aλ and δϕ̂ = f−
1
2λ, and f

1
2 ϕ̂ = ϕ.

In the decoupling limit the Lagrangian reduces to

L(Âa)|f→∞ = εabcAa ∂bAc −
1

2
εabcεdef ∂aϕ̂ ∂dϕ̂ ∂e∂bϕ̂ ∂f∂cϕ̂ . (3.14)

The field ϕ̂ is of mass dimension M−
3
4 , which is not canonical. We can introduce the scalar

field with the canonical mass dimension M
1
2 by rescaling ϕ̂→M−

5
4 ϕ̂. This results in the

appearance of the coupling constant M−5 in the Lagrangian.

Upon integrating by parts, we can bring the scalar part of this Lagrangian to the

following form

L(ϕ̂) =
M−5

2
ϕ̂ εabcεdef ∂a∂dϕ̂ ∂e∂bϕ̂ ∂f∂cϕ̂

= − 3M−5ϕ̂ det(∂a∂
bϕ̂)

= −M
−5

2
ϕ̂
(
(2ϕ̂)3 − 32ϕ̂ ∂a∂

bϕ̂ ∂b∂
aϕ̂+ 2 ∂a∂

bϕ̂ ∂b∂
cϕ̂ ∂c∂

aϕ̂)
)
. (3.15)

Curiously, the form (3.15) of the higher-order scalar Lagrangian is the same as the quartic

term in the Galileon Lagrangian [47] and a corresponding term in a (beyond) Horndeski

tensor-scalar theory of gravity [54, 55]. The Lagrangian is invariant (modulo a total deriva-

tive) under the Galileon symmetry transformations ϕ̂→ ϕ̂+ c+ cax
a, where c and ca are

constant parameters.

The equation of motion of ϕ̂ which follows from this Lagrangian is eq. (3.13). Simplest

non-trivial solutions of this equation are the static fields

∂tϕ̂(t, xi) = 0, (3.16)
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and plain-wave-like solutions

ϕ̂ = eipax
a
φ(p) + e−ipax

a
φ∗(p), (3.17)

where pa is an arbitrary time-like, space-like or light-like momentum. It is a priori not

subject to the mass-shell condition pap
a −m2 = 0 since the Lagrangian does not contain

the quadratic kinetic term L2 = − 1
2 (∂aϕ̂∂

aϕ̂ + m2ϕ̂2). Hence, there is no corresponding

term in the equation of motion. So, this higher-order model contains tachyons, unless they

are excluded by imposing appropriate mass-shell conditions on ϕ̂.

To prove that ϕ̂ is the only propagating mode in this model and to further study its

dynamical properties we now move to the Hamiltonian analysis.

3.2 Hamiltonian analysis of the vector Goldstone model

Splitting the space-time indices, we rewrite the action (3.5) in the following form

S1 =

∫
d3x εij (2A0 ∂iAj +Aj ∂0Ai) (3.18)

+f−2
∫

d3x εijεkl
(
AjAk(∂iAl ∂0A0 − ∂lA0 ∂0Ai)

+A0Ak ∂0Ai ∂lAj −A2
0 ∂lAj ∂kAi

)
.

Note that, as in the fermionic case, the action is of the first order in time derivative. Hence,

the canonical momenta pa = δL
δ(∂0Aa)

are expressed in terms of the components of Aa and

their spatial derivatives. Thus we get three primary constraints:

Ci = pi − εijAj + f−2εijεkl(Aj Ak ∂lA0 −A0Ak ∂lAj) = 0 , (3.19)

C0 = p0 − f−2 εijεklAj Ak ∂iAl = p0 − f−2 εijεklAj Ak ∂lAi = 0 . (3.20)

The canonical (equal-time) Poisson brackets of Aa and pb are

[Aa(t,x), pb(t,y)] = δba δ(x− y), (a = 0, i) . (3.21)

We find that the Poisson brackets of Ci do not vanish on the constraint surface

[Ci(t,x), Cj(t,y)] = − 2 εij
(

1− 2 f−2 εklAk ∂lA0(x)
)
δ(x− y) , (3.22)

and

[Ci(t,x), C0(t,y)] = −4 f−2 εijεklAk ∂lAj δ(x− y) . (3.23)

Constraint (3.20) can be modified as following to make it commute with Ci :

Ĉ0 = C0 − 2 f−2εklAk ∂lAi
1− 2 f−2 εklAk ∂lA0

Ci . (3.24)

Therefore, the constraints Ci are of the second class according to the classification by

Dirac. They are not associated with gauge symmetries of the model. We now turn to the

identification of secondary constraints. To this end, following Dirac formalism, we construct
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the Hamiltonian which includes the canonical Hamiltonian and the primary constraints

multiplied by Lagrange multipliers,

HT =

∫
d2y (Hc + uiC

i + u0 Ĉ
0) , (3.25)

where

Hc = paAa − L1 = − 2A0 ε
ij ∂iAj + f−2 εijεkl (A0)

2 ∂iAk ∂jAl . (3.26)

The consistency (i.e. time-independence) of the constraints requires that the Poisson brack-

ets of the constraints with the Hamiltonian (3.25) vanish. For the constraints Ci this re-

quirement fixes the value of the Lagrange multipliers ui(x), while the requirement of the

vanishing of the Poisson bracket of HT with Ĉ0 produces the secondary constraint

[Ĉ0, HT ] = 0

⇒ B = εij ∂iAj − f−2A0 ε
ijεkl ∂kAi ∂lAj − 2 f−2εijεklAj ∂lAi ∂kA0 = 0 . (3.27)

The Poisson bracket of B with Ci is

[B(x), Ci(y)] = − εij ∂xjδ(x− y) + 6 f−2 εijεkl ∂kA0(t,x) ∂lAj(t,x) δ(x− y) (3.28)

+2 f−2 εijεkl ∂xl

(
(A0(t,x) ∂kAj(t,x)−Aj(t,x) ∂kA0(t,x)) δ(x− y)

)
.

We can make this Poisson bracket vanish by modifying the constraint B (3.27) as follows

B̂ = B − 6 f−2 εkl ∂kA0 ∂lAj Ĉ
j + ∂jĈ

j − 2f−2εkl∂l

(
(A0 ∂kAj −Aj∂kA0) Ĉ

j

)
, (3.29)

where

Ĉj =
Cj

2 (1− 2 f−2εklAk ∂lA0)
, [Ĉj(t,x), Ci(t,y)] = εij δ(x− y) . (3.30)

Thus

[B̂, Ci] = 0 . (3.31)

However, B has (in general) a non-vanishing Poisson bracket with C0

[B(x), C0(y)] = −f−2εijεkl ∂kAi ∂lAj δ(x− y) − 2f−2εijεklAj ∂lAi ∂xkδ(x− y) . (3.32)

If we take the linear combination of the constraints B and C0, namely B1 = 1
2 (B + C0)

and B2 = 1
2 (B − C0), the Poisson bracket simplifies to

[B1(x), B2(y)] = f−2εijεkl ∂kAi ∂lAj δ(x− y). (3.33)

The Poisson bracket (3.33) vanishes when f−2 = 0, i.e. in the case of free Chern-Simons

theory. Then the constraints C0 and B (or equivalently B1 and B2) are of the first class.

They generate the local symmetry of the Chern-Simons action, which implies that the CS

vector field does not have propagating degrees of freedom. Indeed, in the Hamiltonian

formulation Aa and its conjugate momenta pa have 3+3=6 components. These are related
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to each other by the second-class constraints (3.19) which remove two degrees of freedom.

The two first class constraints, remove two degrees of freedom each, i.e. 4, and hence there

is no physical degree of freedom left. Note that in this case the Hamiltonian (3.25) is zero

on the constraint surface, which also points at the absence of propagating modes.

In the non-linear case in which f−2 6= 0, the Poisson bracket (3.33) is non-zero for

a generic field Aa, therefore the constraints C0 and B become of the second-class and

remove only two degrees of freedom. One can also check that the non-linear model does

not have tertiary constraints, i.e. that the Poisson brackets of the primary and the secondary

constraints with the Hamiltonian (3.25) vanish provided the Lagrange multipliers ui and u0
are appropriate functions of Aa and its derivatives. We are thus left with two Hamiltonian

degrees of freedom contained in Aa and pa, which correspond to a single degree of freedom

in the Lagrangian formulation. This is the scalar mode discussed at the end of section 3.1.

To elucidate the physical properties of this mode, let us look at the form of the Hamil-

tonian, eqs. (3.25) and (3.26), in the non-linear case. We see that the Hamiltonian den-

sity (3.26) does not vanish on the constraint surface anymore. Modulo the constraint (3.27)

and up to a total derivative, it has the following form:

Hc = − 3 f−2 (A0)
2 εijεkl ∂iAk ∂jAl ≡ − 6 f−2 (A0)

2 det ∂iAj . (3.34)

Note that this Hamiltonian density is non-zero for the perturbative solution (3.11)–(3.13),

and it is not bounded from below for generic classical values of the field Aa, since det ∂iAj
is not positive definite. In the decoupling limit (3.14) it reduces to the Hamiltonian density

for the Stückelberg field ϕ̂(x)

Hϕ̂ = −
p2ϕ̂

6 det ∂i∂jϕ̂
, pϕ̂ = − 6 (det ∂i∂jϕ̂) ∂0ϕ̂ . (3.35)

Equation (3.35) is the three-dimensional counterpart of the quartic Galileon term in the

Hamiltonian of the generic D = 4 Galileon theory derived in [56, 57].

Let us look at the value of this Hamiltonian for fluctuations around a simple static

solution ϕ̂0 = 1
2 x

ixi, pϕ̂ = 0 (whose Hamiltonian, and hence energy, is zero)

ϕ̂ = ϕ̂0 + δφ. (3.36)

Then, to the second order in δφ we have

Hδφ = −
p2δφ
6

= − 6 δφ̇2, (3.37)

which is negative.

Note that if we changed the sign of the initial Lagrangian in (3.5) (which a priori is

equally admissible, since the Chern-Simons term may have any sign), we would get the

Hamiltonian with the plus sign in (3.34) and (3.35). Then the quadratic Hamiltonian

density of the fluctuations around the classical solution above would be positive. But

if instead, we consider fluctuations around zero-energy static solutions, e.g. of the form

ϕ̂0 = eaix
i
b+ c.c. (where ai and b are complex constants), their Hamiltonian density would

be negative.
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To summarize, the vector Goldstone model describing the spontaneous breaking of the

rigid symmetry generated by the algebra (1.5) does not maintain the local gauge symmetry

of the quadratic Chern-Simons action. Due to the presence of the non-linear terms in the

action there is a propagating scalar degree of freedom whose Hamiltonian is not bounded

from below. This, in general, makes this model classically unstable, even though the

Lagrangian is linear in the time derivative of Aa(x).

4 Spin-3/2 goldstino model

In the spin-3/2 case the action for a Goldstone field χαa (x) associated with the spontaneous

breaking of spin- 32 supersymmetry generated by (1.9) is constructed with the use of the

one-form

Ea = dxdE a
d = dxd (δad + if−2 εabc χb ∂dχc) , (4.1)

which is invariant under the following variations of xa and χαa (x)

x′
a

= xa − i f−2 εabc ζαb χαc , χ′
α
a (x′) = χαa (x) + ζαa ,

δχαa (x) = ζαa + i f−2εdbc
(
ζb χc(x)

)
∂dχ

α
a (x) , (4.2)

where ζαa is a constant parameter. Note that, as for all the other cases, the commutator of

two variations (4.2) closes on the translations off the mass shell, i.e. without the use of the

equations of motion:

[δ2, δ1]χ
α
a = ξd ∂dχ

α
a , ξd = 2 i f−2 εdbc ζ1b ζ

2
c . (4.3)

The spin-3/2 goldstino action has the following form

S3/2 = −f2
∫
d3x (detEad − 1)

=

∫
d3x

(
i εabc χa ∂bχc +

f−2

2
εabcεdfg

(
(χa ∂bχc) (χd ∂fχg)− (χb ∂dχc) (χf ∂aχg)

)
+

i f−4

6
εa

′b′c′ (εabcεdef − εabfεdec) (χc ∂a′χf ) (χa ∂b′χb) (χd ∂c′χe)

)
.

(4.4)

and the equations of motion have the form similar to (3.9)

εabcDbχc = 0 . (4.5)

We see that the quadratic term in the action (4.4) is the action for a D = 3 (Rarita-

Schwinger) spin- 32 free massless field which is invariant under conventional (linearized)

local supersymmetry variations δχαa = ∂aε
α(x). Let us figure out if in contrast to the spin-

1 case, the spin-3/2 goldstino action can be invariant under a non-linear generalization

of this symmetry. Again, let us first look at what happens with the model if we use the

Stückelberg trick and take a limit f → ∞. To this end we replace in the action (4.4) the

field χa with its gauge-invariant counterpart χ̂a = χa + f
2
3∂aψ, where ψ is the Stückelberg
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spinor field and the normalization with the factor f2/3 is chosen to perform a certain limit

f → ∞ in the action. By construction χ̂a is invariant under the gauge transformations

δχa = ∂aε(x), δψ = −f−
2
3 ε(x) which can be used to completely eliminate the latter. On

the other hand, sending f →∞ we obtain the following limit of the model in which however

χa and ψ do not decouple from each other

Sf→∞ =

∫
d3x

(
i εabc χa ∂bχc + 2 εabcεdfg(χa ∂d∂cψ) (∂fψ ∂b∂gψ)− 1

3
Tr(M3)

)
, (4.6)

where Ma
d = i εabc ∂bψ ∂d∂cψ.

Note that in contrast to the vector-field case in which in the decoupling limit the

Lagrangian for the Stückelberg scalar field is that of the quartic Galileon, see eq. (3.15),

in the present case the quartic term

εabcεdfg (∂bψ ∂d∂cψ) (∂fψ ∂a∂gψ) = ∂b

(
εabcεdfg(ψ ∂d∂cψ) (∂fψ ∂a∂gψ)

)
is a total derivative, since

εabcεdfg(∂c∂dψ
α) (∂b∂fψ ∂a∂gψ) ≡ 0 (4.7)

due to the anti-commutativity of ψ and the total symmetry of this expression in the ex-

change of the pairs of the indices cd, bf and ag. This term can thus be discarded, and

there is no decoupling limit of the spin-3/2 action similar to that of the vector-field model.

The triviality of this term also implies that the quartic term in the action (4.4) vanishes

(modulo a total derivative) on the solution of the free Rarita-Schwinger field equation.

Notice also that the action (4.6) is invariant under the gauge transformation δχa = ∂aλ(x),

δψ = 0 due to the same identity (4.7).

The equation of motion of χa, which follows from (4.6), is

εabc ∂bχ
α
c = i εabc εdfg ∂d∂cψ

α (∂fψ ∂b∂gψ) . (4.8)

Using the identity

εabc εdfg ∂d∂cψ
α (∂fψ ∂b∂gψ) ≡ 1

2
εabcεdfg (∂f∂cψ ∂b∂gψ) ∂dψ

α

≡ − 1

3
εabc εdfg ∂b (∂dψ

α (∂fψ ∂c∂gψ)) (4.9)

we find that the general solution of (4.8) is

χαc = ∂cε
α − i

3
εdfg ∂dψ

α (∂fψ ∂c∂gψ) . (4.10)

This implies that, modulo the pure gauge degree of freedom, the field χa is completely

determined in terms of derivatives of ψ. As can be verified, the equations of motion of ψ

which follow from (4.6) are identically satisfied, and hence ψ is completely arbitrary in this

limit. Moreover, action (4.6) can be recast into the Chern-Simons form as following:

Sf→∞ = i

∫
d3x εabc

(
χαa +

i

3
εdfg ∂dψ

α (∂fψ ∂a∂gψ)

)
∂b

(
χcα +

i

3
εpqr ∂pψα (∂qψ ∂c∂rψ)

)
.

(4.11)
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This action turns out to be invariant under the following gauge symmetry transformation

δψ = ε(x),

δχαa = ∂aλ
α(x)− i

3
εdfg

(
∂dε

α (∂fψ ∂a∂gψ) + ∂dψ
α (∂f ε ∂a∂gψ) + ∂dψ

α (∂fψ ∂a∂gε)
)

≡ ∂a

(
λα(x)− i

3
εdfg ∂dψ

α (∂fψ ∂gε)

)
− i εdfg (∂dε ∂a∂fψ) ∂gψ

α , (4.12)

where λα(x) and εα(x) are independent parameters. Hence, ψ is a pure gauge.

Note also that the above analysis actually prompts us the form of the perturbative

solution of the full non-linear equation of motion (4.5) up to the order f−2. It is obtained

from (4.10) by re-scaling ψ → f−
2
3ψ and taking ε = ψ:

χαa = ∂aψ
α − if−2

3
εdfg∂dψ

α (∂fψ∂a∂gψ) +O(f−4) . (4.13)

Moreover, the non-linear symmetry in this limit and the form of the action (4.11)

prompt us that the full action (4.4) can be written as following:

S3/2 = i

∫
d3x εabc

(
χαa +

if−2

3
εdfgχαd (χf∂aχg)

)
∂b

(
χcα +

if−2

3
εpqrχpα (χq∂cχr)

)
. (4.14)

Indeed, (4.14) and (4.4) are equal to each other modulo a total derivative due to the

following identities:

εabc εdfg(χc χd)(∂bχf ∂aχg) = −2εabc εdfg (χb ∂cχd)(χf ∂aχg),

εabc εdfg εpqr (χf ∂aχg)(χd χp)(∂bχq ∂cχr) = 2 εabc εdfg εpqr (χf ∂aχg)(χd ∂bχp)(χq ∂cχr) .

The action (4.14) reduces to the free Rarita-Schwinger action

SRS = i

∫
d3x εabc χ̂a ∂bχ̂c (4.15)

upon the following field redefinition

χ̂αa = χαa +
if−2

3
εdfg χαd (χf ∂aχg). (4.16)

This equation is invertible, and using an iteration procedure one can find an explicit ex-

pression for χa as a polynomial in χ̂a and ∂bχ̂a, which stops at most at the sixth order in

χ̂, because of the nilpotency of the latter. Thus up to the order f−4, we get,

χαa = χ̂αa −
if−2

3
εdfg χ̂αd (χ̂f ∂aχ̂g) (4.17)

− f
−4

3
εdfg εpqr

(
χ̂αg (χ̂q ∂dχ̂r)(χ̂p ∂aχ̂f ) +

1

3
∂a

(
χ̂αd (χ̂f χ̂p)(χ̂q ∂gχ̂r))

)
+O(f−6) .

Action (4.14) (and (4.4)) is invariant under the following gauge transformation:

δχ̂αa = ∂aε
α = δχαa +

if−2

3
εdfg ∂a

(
χαd (χf δχg)

)
+ i f−2 εdfg (δχd ∂aχf )χαg , (4.18)
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from which by the same iteration procedure one can get the gauge variation of χa:

δχαa = ∂a

(
εα − if−2

3
εdfg χαd (χf ∂gε)

)
− if−2 εdfg (∂dε ∂aχf )χαg +O(f−4) . (4.19)

It is instructive to notice that the commutator of two transformations (4.19) is exactly zero

(to all orders)

[δε1 , δε2 ]χαa ≡ 0 . (4.20)

By construction, the action (4.4) and hence (4.15) are also invariant under the rigid spin-

3/2 supersymmetry variations of the goldstino χa (4.2) with the corresponding variations

of χ̂a derived from (4.16) being of the following form

δχ̂αa = ζαa + i f−2 εdbc (ζb χ̂c) ∂dχ̂
α
a

+
if−2

3
εdbc

(
(χ̂b ∂aχ̂c) ζ

α
d + (ζb ∂aχ̂c)χ̂

α
d

)
+O(f−4) ,

[δ2, δ1] χ̂
α
a ≡ ξd ∂dχ̂

α
a , ξd = 2 i f−2 εdbc ζ1b ζ

2
c . (4.21)

We have thus found that the free Rarita-Schwinger action (4.15) is non-manifestly invariant

under the rigid spin-3/2 supersymmetry with the Rarita-Schwinger field being its goldstino

transforming non-linearly under the symmetry as in (4.21).

5 Conclusion and outlook

We have found that the simplest examples of spontaneous breaking of symmetries intro-

duced by Hietarinta [1] and the corresponding Goldstone models are specific non-linear

generalizations of the Chern-Simons and Rarita-Schwinger Lagrangians.

In the vector algebra case, the spontaneous breaking of the rigid symmetry leads to

the breaking of the gauge symmetry of the Abelian Chern-Simons action. As a result, the

Chern-Simons Goldstone propagates a scalar mode which turns out to be a Galileon field

that appears in the theories of modified gravity. In this respect it would be of interest

to consider the coupling of the Chern-Simons Goldstone to a 3d gravity model which is

invariant under the local symmetry associated with the algebra (1.5). As we mentioned

in the Introduction, the algebra (1.5) is a contraction of so(2, 2) = sl(2,R) ⊕ sl(2,R) on

which the Chern-Simons description of the conventional 3d gravity is based [58, 59]. But

the full algebra also includes the Lorentz generators (1.4). Therefore, our 3d gravity model

will contain two spin-2 gauge fields, the conventional gravity dreibein ea(x) = dxmeam(x)

associated with Pa and a dreibein fa(x) = dxmfam(x) associated with Sa, as well as the spin

connection ωa(x) = dxmωam(x) associated with the Lorentz generators Ma = 1
2εabcM

bc. An

action for these (a priori) independent fields, which is invariant under the local symme-

tries (1.4) and (1.5), has the following form

S =

∫ (
ea ∧Ra +

1

2
fa ∧Dfa

)
, (5.1)
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where Ra = dωa+ 1
2ε
abcωb∧ωc is the curvature and Dfa = dfa+εabcω

b∧f c is the covariant

derivative associated with the local Lorentz transformations. The local symmetry variations

of the fields are

δea = Dξa(x) + εabcebλc(x) + εabcfbsc(x),

δfa = Dsa(x) + εabcfbλc(x), δωa = Dλa(x), (5.2)

where ξa(x), sa(x) and λa(x) are the parameters associated with the generators Pa, Sa and

Ma, respectively. It is easy to see, by analysing the equations of motion, that all the gauge

fields in this model are non-dynamical.5

What kind of 3d massive gravity or bi-gravity will one obtain when the Goldstone

Aa(x) is coupled to (5.1) and generates a Higgs effect? Will it have a relation to one of the

three-dimensional gravity models considered in [60–63]? We will address these questions

in a separate work.

In contrast to the vector Chern-Simons case, in the spin-3/2 goldstino model, upon

a non-linear field redefinition, the free Rarita-Schwinger action itself turns out to be non-

manifestly invariant under the rigid spin-3/2 supersymmetry (1.9) which is non-linearly

realized on the variations of the Rarita-Schwinger goldstino (4.21). In the presence of

the couplings of the spin-3/2 goldstino to other fields, the non-linear field redefinition

may no longer remove the non-linear terms and the two forms of the spin-3/2 goldstino

models may not be equivalent anymore. In this respect, it would be of interest to couple

the Rarita-Schwinger goldstino to other matter and gauge fields such as (super)gravity

and Hypergravity with spin-2 and spin-5/2 gauge fields and to study the properties of

these models.

Another interesting problem is to consider a four-dimensional Rarita-Schwinger gold-

stino model associated with the following algebra:

{Qaα, Qbβ} = 2 εabcd (Γ5 Γc)αβ Pd (α, β = 1, . . . , 4), (a, b, . . . = 0, 1, 2, 3), (5.3)

to figure out whether also in this case the non-linear Lagrangian is related to the free Rarita-

Schwinger Lagrangian upon a non-linear field redefinition and see whether the non-linearly

realized symmetry (5.3) may fit into the formulation of N = 1, D = 4 supergravity as a

non-linear realization of two complex finite-dimensional supergroups considered in [64–66].

One can also look at the generalizations of the construction considered in this paper

for studying higher-spin Goldstone models.
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A Useful identities

Identities involving Levi-Civita tensors

(i, j, k, l) ∈ {1 , 2} ; (a, b, c, d, e, f) ∈ {0 , 1 , 2}

εijεik = δjk,

εijεkl = 2 δi[k δ
j
l] = δik δ

j
l − δ

i
l δ
j
k,

εabcεabd = − 2 δcd,

εabcεade = − 2 δb[d δ
c
e]

εabcεdef = − 3 ! δa[d δ
b
e δ

c
f ]

Charge conjugation matrix identities and rules for raising-lowering spinor indices

C−1αβ = Cβα = −Cαβ ,

χα = Cαβ χ
β , χβ = Cαβ χα.

Γ-matrix identities

{Γa ,Γb} = 2 ηab,

Γa Γb Γc = εabc + ηab Γc + ηbc Γa − ηac Γb,

Γa Γb = εabc Γc + ηab, εabc Γa Γb = − 2 Γc.

The determinant of a 3× 3 matrix Eam = δam +Ma
m

detE = det(1 +M) = 1 + TrM +
1

2

[
(TrM)2 − Tr(M2)

]
+

1

6

[
(TrM)3 − 3 TrM Tr(M2) + 2 Tr(M3)

]
(A.1)
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[14] C. Bunster, M. Henneaux, S. Hörtner and A. Leonard, Supersymmetric electric-magnetic

duality of hypergravity, Phys. Rev. D 90 (2014) 045029 [arXiv:1406.3952] [INSPIRE].

[15] O. Fuentealba, J. Matulich and R. Troncoso, Extension of the Poincaré group with
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