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Abstract Impedance modulation has been suggested as a
means to suppress the effects of internal ‘noise’on movement
kinematics. We investigated this hypothesis in a neuro-mus-
culo-skeletal model. A prerequisite is that the muscle model
produces realistic force variability. We found that standard
Hill-type models do not predict realistic force variability in
response to variability in stimulation. In contrast, a combined
motor-unit pool model and a pool of parallel Hill-type motor
units did produce realistic force variability as a function of
target force, largely independent of how the force was trans-
duced to the tendon. To test the main hypothesis, two ver-
sions of the latter model were simulated as an antagonistic
muscle pair, controlling the position of a frictionless hinge
joint, with a distal segment having realistic inertia relative to
the muscle strength. Increasing the impedance through co-
activation resulted in less kinematic variability, except for
the lowest levels of co-activation. Model behavior in this
region was affected by the noise amplitude and the inertial
properties of the model. Our simulations support the idea that
muscular co-activation is in principle an effective strategy to
meet accuracy demands.

1 Introduction

Human motor behavior is variable yet efficient. The variabil-
ity is an inevitable consequence of the stochastic nature of
neuromuscular processes. On the output side this is mani-
fest in the variability of motor unit spiking behavior (e.g.
Matthews 1996), isometric force (e.g. Jones et al. 2002), and
movement kinematics (e.g. Scholz et al. 2000; Tseng et al.
2003).

Optimal control models have been used to study the rela-
tion between variability and task performance. Models of the
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noisy neuromotor system accurately replicate experimental
data of saccades and arm movements when endpoint vari-
ance is minimized (Harris and Wolpert 1998; Hamilton and
Wolpert 2002). When feedback is added, phenomena like
task-constrained variability, goal-directed corrections and mo-
tor synergies emerge naturally from stochastic optimal con-
trol models (Todorov and Jordan 2002). A shortcoming of
these models is that they are driven by pure force and mo-
ment actuators and thus ignore the impedance characteristics
of the muscles (Osu et al. 2004).

Impedance modulation has been proposed as a means to
reduce the contribution of force fluctuations to kinematic var-
iability (Van Galen and De Jong 1995). This extra degree of
freedom, which, in theory, can be controlled by co-activation
of muscles (Osu and Gomi 1999), is supposed to act as a
low-pass filter between the force fluctuations and movement
kinematics. Burdet et al. (2001) measured hand path error
and impedance of point-to-point movements before, during
and after the exposure to a negative elastic force field per-
pendicular to the movement direction. To overcome the tra-
jectory instability due to the force field, subjects increased
the mechanical impedance of the arm. Interestingly, after
removal of the force field the hand path error was smaller
than in the trials prior to the exposure to the force field.
Also the variability of jaw movements seems to be influenced
by impedance modulations (Shiller et al. 2002). Studies on
muscular co-activation have provided more direct evidence
for impedance modulation in response to increased accu-
racy demands. Both in single-joint (Osu et al. 2004) and
multi-joint (Laursen et al. 1998; Gribble et al. 2003; Visser
et al. 2004) movements co-activation increases with accuracy
demands.

The role of joint impedance to resist unpredictable exter-
nal force perturbations has been investigated in both static
(e.g. Perreault et al. 1999) and dynamic (e.g. Burdet et al.
2001; Franklin et al. 2003) tasks. On mechanical grounds it
is obvious that excursions from the planned trajectory will
decrease with increased impedance (Wagner and Blickhan
2003). For internal force fluctuations the role of impedance
modulation is less straightforward because both muscular
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Fig. 1 Block diagram showing the flow of calculations in the lumped muscle models. The functions f1 through f5 are explained in the text. The
integral signs indicate integration with respect to time. External inputs are the stimulation (stim) and the origin-insertion length (loi). γ̇ : calcium
concentration change; γ : calcium concentration; q: active state; vce: contractile element velocity; lce: contractile element length; lse: tendon length;
F : muscle force. Two regimes of stimulus variability were simulated: continuous lumped model (CLM) and discrete lumped model (DLM)

force fluctuations (Jones et al. 2002; Christou et al. 2002)
and joint impedance (Osu and Gomi 1999) increase linearly
with muscular contraction levels. This creates the paradoxi-
cal situation that, on the one hand, the muscles are the source
of the force fluctuations while on the other hand they could
help suppress their effects by modifying joint impedance.

The goal of this paper is to elucidate the relations among
force variability, impedance modulation and kinematic var-
iability by examining how these relations might be imple-
mented in a neuro-musculo-skeletal model. To anticipate, we
show that standard Hill-type muscle models are inappropriate
to simulate realistic force variability and that a more detailed
description of muscular behavior and control is needed. In
Sect. 3, this results in a model with multiple motor units,
whose contraction dynamics are described by Hill-type mus-
cle equations, and a motor unit pool as the control mecha-
nism. Finally, we show that co-activation of muscles of the
latter type does not necessarily result in larger kinematic var-
iation in spite of increases in the force variability of the indi-
vidual muscles.

2 Force variability in a standard Hill-type muscle model

2.1 Model and simulation

Our first goal was to obtain a formulation of a dynamic neuro-
muscular model that produces realistic isometric force var-
iability. In most large scale musculo-skeletal models, mus-
cle behavior is described by length-force and velocity-force
equations (e.g. Pandy et al. 1990; Van Soest and Bobbert
1993). The characteristics of the individual fibers and motor
units are lumped together in a single contractile element (CE)
connected to a series elastic element (SE). These lumped
models have proved suitable for deterministic simulations
of maximal jumping (e.g. Pandy et al. 1990; Van Soest and
Bobbert 1993) and ballistic arm movements (e.g. Welter and
Bobbert 2002). In addition, they have been instrumental in
showing that intrinsic muscle properties may compensate for
errors in motor planning and small variations in initial con-
ditions (Van Soest and Bobbert 1993; Wagner and Blickhan
2003; Van der Burg et al. 2005).

The question is whether these lumped models are also
suitable to simulate realistic force variability. To answer this
question, we examined the behavior of a model with excita-
tion–activation–contraction dynamics as described in
Van Soest and Bobbert (1993) and Ridderikhoff et al. (2004).

We compared this with the experimental finding that isomet-
ric force variability, as indexed by its standard deviation (SD),
increases monotonically with the mean (Christou et al. 2002;
Jones et al. 2002; Taylor et al. 2003).

The flow of calculations is depicted in Fig. 1. Input to
the model is the stimulation of the muscle (stim), a num-
ber between 0 and 1 representing both recruitment and rate
coding. The calcium concentration (γ ) is related to stim by
first order dynamics (f1) with a time constant τ of 89 ms.
The active state q was calculated from γ through a nonlinear
equation (f2), which also depends on CE length. Function
f3 represents the force-velocity and force-length relations.
Contractile element velocity (vce) was calculated from CE
length (lce), force and active state. Integration of vce resulted
in the new lce, from which, in combination with the origin-
insertion length (loi), the tendon length (lse) was calculated
(f4). Finally, the muscle force was calculated from current
SE length (f5), modeled as a quadratic spring; see Table 1
and Ridderikhoff et al. (2004) for parameter values.

In order to create force variability, Gaussian distributed
noise was introduced at the input stage of the model. The
SD of this noise increased linearly with the mean value of
stim, with a gain of 0.1. In other words, the noise had a
constant coefficient of variation (CV) of 0.1. Two regimes
were simulated: in the first regime, a new value for stim was
drawn from the Gaussian distribution every millisecond. An
Euler–Maruyama integration scheme, suitable for studying
stochastic differential equations, with a stepsize of 1 ms was
used in the simulations. We refer to this model as the Contin-
uous Lumped Model (CLM). In the second regime, the stim
value was kept constant over an interval based on the instan-
taneous firing rate. In this case the forward simulations were
performed with a normal Euler integration scheme, again
with a stepsize of 1 ms. This model will be referred to as
the Discrete Lumped Model (DLM). We studied the output

Table 1 Muscle parameters

Parameter Description Value

Fmax Maximum total isometric force [N] 2000
lce,opt Optimum fiber length [m] 0.136
lse,slack Tendon slack length [m] 0.170
a Muscle moment arm [m] 0.03
I Segment inertia [Nms2/rad] 0.1

All other parameters are either mentioned in the text or are the same as
in Ridderikhoff et al. (2004)
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Fig. 2 The propagation of noise for increasing average levels of stim
in the CLM (left column) and the DLM (right column). Note the scale
differences in γ , q and F . See text for model descriptions

variables γ , q and F and their variability for different val-
ues of stim. Time series of 15 s were simulated to quantify
(force) variability.

2.2 Simulation results and discussion

Figure 2 shows how noise on stim propagates through the
muscle model with increasing mean levels of stim for both
the continuous (left) and the discrete (right) case. Every dot
represents the mean and standard deviation of a 15 s simula-
tion. The amplitude of the noise on stim was the same in both

models, whereas the DLM also contained noise in the timing.
In the CLM every mean and SD is based on 15e3 drawings
from a Gaussian distribution, whereas the number of draw-
ings in the discrete model is approximately 30 times lower.
This accounts for the larger variance in the simulation results
of the DLM. The next row of Fig. 2 shows the variability
in the calcium concentration. The curve for the continuous
model is again linear, whereas that for the discrete model
clearly is not. This difference is due to the frequency content
of the time series. In the continuous case the frequency con-
tent is independent of stim, whereas in the discrete case the
frequency content increases with higher stim. The first order
dynamics between stim and γ acts as a low pass filter and as
a result the graph of µγ against σγ is less than linear. In the
conversion from γ to q the monotonic relation of mean and
standard deviation disappears and changes into a parabolic
one. This parabolic relation persists in the force. In contrast,
the standard deviation of the force has been shown experi-
mentally to increase monotonically with mean force (Jones
et al. 2002; Christou et al. 2002).

Although we can already conclude that the model is inad-
equate to answer our main question, it is informative to exam-
ine which properties of the model render it inadequate for this
purpose. The force variability is mainly modulated by the fil-
tering properties of the excitation (stim) to activation (q)
coupling. Figure 3 shows the sigmoid relation between stim
and q (solid line) and explains how constant CV variation on
stim is heavily attenuated through this relation.

The present results suggest that the filtering properties
of the lumped Hill model do not allow modeling of realis-
tic variability in muscular force output. The formulation is a
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Fig. 3 Schematic representation of the noise suppression properties of
the CLM. The solid curve represents the steady state relation between
stim and active state (q). The bands show the transfer of constant CV
stimulus variability to active state variability. The dashed line represents
q ·dq/dstim, which is the susceptibility of q to constant CV input noise
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Fig. 4 Block diagram showing the flow of calculations in the multiple fibre muscle models. The functions g1 through g3 are explained in the text;
g3 comprises the flow diagram of Fig. 1. Two regimes were simulated: with independent tendons (ITM) and with dependent tendons (DTM) of
the motor units. E: excitatory drive; ISI : interspike interval of m.u.; ISI : Gaussian distributed interspike intervals; stimmu (t): stimulus of m.u.;
Fmu: m.u. forces; Fwm: total force

description of average behavior of all motor units, leaving the
processes underlying force variability unaddressed. Whereas
the merits of this modeling approach in deterministic simu-
lations are undisputed, it falls short as a basis for studying
motor variability.

3 Force variability in a motor-unit pool model

3.1 Model and simulation

The organization of the motor-unit (MU) pool has been men-
tioned as the main source of isometric force variability (Jones
et al. 2002). In the preceding model, the properties of the MU
pool were lumped together in stim. Since this did not lead
to a satisfactory result, the organization of the MU pool was
modeled explicitly .

Figure 4 depicts the flow of calculations of the MU pool
model. The motor-neuron pool, controlling the motor units,
was inspired by the model presented by Fuglevand et al.
(1993). Muscular force is modulated by two processes: the
number of active motor units (recruitment) and the firing rate
of these units (rate coding). In the original formulation, the
outputs of the motor neuron pool were the time instances
of the discharges. Upon discharge an MU twitch occurred.
In our formulation, the motor neuron pool codes the value
of stimmu and the time that this value remains constant. An
MU is recruited when the excitatory drive (Epool) exceeds the
recruitment threshold (RTE). The RTEs of the different units
are expressed as an exponential

RTE(mu) = emu(ln RR)/n (1)

where mu is the index of the motor neuron, RR the recruit-
ment range and n the number of motor units. In our simula-
tions RR = 30 and n = 60 were used. Upon recruitment the
motor neuron starts firing at its minimum firing rate (MFR)
of 5 pps. The firing rate increases linearly with the excitatory
drive. The gain (g) of this relation is 1.5. The firing rate
increases until it saturates at 100 pps. Thus, the firing rate
response of a motor neuron to a constant excitatory drive is:

FRmu = g · [Epool − RTEmu] + MFR Epool ≥ RTEmu (2)

The inverse of the firing rate is the interspike interval
(ISImu = 1/FRmu). These calculations take place in box g1

of Fig. 4. Fluctuations in the ISI due to membrane noise have
a Gaussian distribution with a nearly constant CV (Matthews
1996). For our simulations we chose a CV of 0.2 (Adam et al.
1998). The ISI distributions were concatenated to time series
of the spiking events of the different MUs. From the ISI we
also calculated the normalized firing frequency, which was
kept constant within the corresponding interspike interval
(g2; stimmu(t)). The stimulation of a single MU (stimmu) is
now a representation of its firing rate only.

The maximal isometric force of each MU increased expo-
nentially with the MU number (mu):

Fmax,mu = c · emu·ln(RF)/n (3)

where RF is the range of forces in the pool. In our model
the last recruited MU had a maximal force of 30 times the
maximal force of the first recruited unit. The parameter c was
chosen such that the maximal isometric force of the whole
muscle was 2000 N.

Two models of the contraction dynamics were formu-
lated (g3). In the first model every MU, i.e. a lumped cluster
of fibers, is described by the equations of the model in Sect. 2.
The motor units act independently of one another except for
their loi, resulting in a distribution of lce and lse. We refer
to this model as the independent tendon model (ITM). The
second model represents the other extreme of interdepen-
dency. All contractile elements attach to the same tendon
and all have the same lce and vce. We refer to this model as
the dependent tendon model (DTM). For this model there is
no analytic solution for vce as a function of Fce and q. In
the ITM, Fce equals Fse. In the DTM, we only know that
the sum of all Fce equals Fse. An iterative minimization of
(
∑nMU

1 Fce(vce) − Fse)
2 at every time step of the simulation

was used to find the solution; see Table 1 for the contraction
model parameters.

Output variables we looked at were: stim, γ , q and F
of the individual motor units and their variability for differ-
ent values of Epool. The main output parameter was the total
force of the muscle (Fwm). All calculations were based on
15 s time series, which were obtained by Euler integration of
the model equations with a timestep of 1 ms.

3.2 Simulation results and discussion

Figure 5 shows how SD of total muscle force increases with
increasing average simulated whole muscle force, for
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Fig. 5 Force variability, expressed as the SD (σ ), as a function of the
average force (µ). Continuous line for the ITM and dashed line for the
DTM. The origin-insertion length (loi) was 0.75 · loi,opt

loi = 0.75 · loi,opt. The results for loi = 0.95 · loi,opt were sim-
ilar. The force variability increases with the average force.
The variability was between 1 and 10% of the average force.
This is in accordance with the experimental values of 2–10%
(Adam et al. 1998; Laidlaw et al. 2000; Jones et al. 2002;
Taylor et al. 2003). In the literature there is no consensus
about the shape of force variability curves. All studies report
a monotonically increasing SD with mean force, but the exact
relation is either sigmoid (Slifkin and Newell 1999; Chris-
tou et al. 2002), linear (Jones et al. 2002) or less than linear
(decreasing CV, (Laidlaw et al. 2000)).

Figure 6 shows how increasing Epool affects the behavior
of the individual motor units. Essentially, the behavior of the
individual units is the same as the behavior of the DLM. For
clarity only motor units 1, 20, 35 and 50 are shown, at an
loi of 0.75 · loi,opt. For stim, γ and q the ITM and DTM do
not differ markedly and we will discuss them together. In the
µstim-curves we recognize Eq. 2 with different RTE for the
units and a gain of 1.5.Although the model was constructed to
saturate at 1, the stochastic model saturates at a lower value.
One can understand this from cutting off the Gauss distribu-
tion when approaching the saturation value of 1. This also
accounts for the drop and saturation in the σstim curves. The
second row presents the calcium concentration γ . First order
dynamics link γ and stim. Therefore µγ reacts exactly the
same to Epool as µstim. Increasing Epool results in a shift of
the main frequency of stim. The low-pass filtering properties
of the excitation dynamics now suppress the variability of γ
(See also Sect. 2). The third row presents the active state q.
The relation between Epool and q is sigmoid and therefore σq

drops after µq exceeds 0.5.
From the forces depicted in the fourth row we observe

that the largest contribution to the force comes from the last

recruited units. More importantly, also the force variability
is mainly determined by the last recruited MUs. The relative
contribution of every MU to the total force and the total force
variability is determined by the number of MUs (nmu), the
range of MU forces (RF) and the recruitment range (RR) in
Eqs. 1, 2, and 3. The values used in this study are within
the physiologic range and changes only mildly alter model
behavior.

Furthermore, several differences between the ITM and
DTM come to the fore. In the ITM, µF of the individual
units saturates, whereas in the DTM the force reaches a peak
and then slightly decreases. In the ITM, the lce of the MUs is
fixed after having reached maximum activation. In the DTM,
the lce is not only determined by the activation of the unit
itself, but also by the activation of the surrounding units.
This is reflected as a higher variability of the DTM in the low
force range and a lower variability in the high force range
compared to the ITM (Fig. 5).

In conclusion, both the ITM and the DTM exhibit realis-
tic force variability. The models are at the extremes of motor
unit interdependency and will be used in addressing the issue
of kinematic stability.

4 Kinematic stability of the motor-unit pool model

4.1 Model and simulation

In order to investigate the relation between force variabil-
ity, co-activation, impedance and kinematic variability, two
neuro-musculo-skeletal models were constructed with respec-
tively the ITM and DTM as actuators (see Fig. 7). The planar
skeletal model comprised an inertia, connected to the sta-
tionary world by means of a frictionless hinge joint. Two
antagonistic muscles modeled as in Sect. 3 were connected
to the inertia. In addition to the forces, the neuro-muscular
models also provide the model with stiffness and damping
resulting from their length-force and velocity-force relations.
No passive stiffness and damping were included. The only
objective was to show that co-activation can in principle be
an effective strategy to reduce kinematic variability. With no
particular joint in mind, the model was symmetric and the
moment arms of the muscles were constant; see Table 1 for
the values used. The parameters of the muscles and the inertia
are in the range of those known for the lower arm.

The model was simulated at an equilibrium angle of 0
(symmetric case) and 10 (asymmetric case) degrees. The lat-
ter value was chosen to investigate the effects of asymmetric
muscle length and activation. Again, time series of 15 s were
simulated with an Euler integration scheme. Output parame-
ters were the joint angle and the forces of the individual mus-
cles. Co-activation level was expressed as the Epool value of
the most active muscle.

Additional simulations were performed to reveal the
impedance characteristics of the models. The model was per-
turbed by a simulated external torque pulse of 1 Nm. The
impedance was estimated by calculating dM/dϕ over the
first 10 ms after perturbation onset.
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Fig. 6 The influence of ISI variability of motor units 1, 20, 35, and 50 on individual motor-unit behavior in the ITM (columns 1 and 2) and the
DTM (columns 3 and 4). loi was 0.75 · loi,opt . Average behavior (columns 1 and 3) and variability (column 2 and 4) of the individual motor units
are presented as a function of Epool for the excitation (stim), the calcium concentration (γ ), the active state (q) and the force (F ). See main text
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4.2 Simulation results and discussion

Figure 8 shows the kinematic variability, expressed as the SD
of the joint angle, as a function of the co-activation level, in
the symmetric case for both the ITM and DTM. Both mod-
els show a peak in the kinematic variability, irrespective of
model asymmetry (not shown in the figure). These peaks are
a consequence of two competing factors: force variability
and impedance. Figure 9 illustrates the results of simulations
of an external perturbation. The left panel shows how the
impedance changes with the co-activation level. The force
variability increase with co-activation is similar to that in the
isometric contractions (Sect. 3, Fig. 5). Without impedance,
the increasing force variability would bring about ever larger

kinematic fluctuations, as is visible at low co-activation lev-
els in Fig. 8. The increasing impedance due to co-activation
attenuates this effect and eventually decreases the kinematic
variability although the force variability still increases.

The above explanation implies that increasing the iner-
tia of the system would shift the peak kinematic variabil-
ity to higher co-activation values. Furthermore, introducing
more force variability, for instance by introducing noise in
Epool, would shift the peak kinematic variability to lower val-
ues of co-activation and eventually lead to a monotonically
decreasing kinematic variability as a function of co-activa-
tion. The ITM was put to the test for both manipulations of
the model (see Fig. 10) and our expectations were indeed
confirmed. The effect of a 10-fold inertia increase was only



Can co-activation reduce kinematic variability? A simulation study 379

Fig. 7 Block diagram showing the flow of calculations for the kinematic stability simulations. The stimmu come from the alpha motor neuron
pools of the individual muscles as described in Sect. 3. The function g3 comprises the block diagram of Fig. 1 and calculates the individual m.u.
forces (Fmu), given the origin-insertion length (loi). Summation results in the whole muscle forces (Fwm), the net of which moment results in an
angular acceleration of the inertia (g4, inputs I (inertia) and a (moment arms)), leading to an angular displacement (ϕ). This angular displacement
creates a negative feedback loop via the loi of the individual muscles

diminutive, suggesting that the model is rather insensitive to
inertia changes. On the other hand, the addition of noise in
Epool changes the overall properties of the model and results
in a monotonic decrease of kinematic variability with co-acti-
vation level.

Based on isometric force variability, we were unable to
distinguish between the ITM and the DTM. As regards the
kinematic variability there is a marked difference between
both models. Especially in the low co-activation range, the
DTM shows less kinematic variability than the ITM. The
force variability of the two models was not markedly differ-
ent, suggesting that impedance is the key factor. Nevertheless,
from the co-activation versus impedance curves (left panel
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Fig. 8 Kinematic variability as a function of co-activation level for the
symmetric model. Continuous lines for the ITM and dashed lines for
the DTM. The kinematic variability is expressed as the SD of the joint
angle

Fig. 9) no clear distinction can be made. When we look at
the relative impedance (right panel Fig. 9) we see that DTM
is much stiffer than the ITM, especially at low co-activation
levels. This accounts for the differences in the kinematic vari-
ability between the ITM and the DTM. In reality the mechan-
ical interaction between MUs will be somewhere in between
the two models.

How the modulation of muscular co-activation affects
kinematic variability depends, according to our model, par-
ticularly on the central and peripheral noise levels in the
neural system and the mechanical interactions of individ-
ual MUs within a muscle and the mechanical interactions
between muscles.

5 General discussion and conclusions

Our first concern in the present study was to build a model
of muscular contraction, and thus force generation that pro-
duces realistic force variability. Prior attempts to simulate
force variability were all based on motor unit pool models
in combination with twitch forces (Van Galen and De Jong
1995; Jones et al. 2002; Taylor et al. 2003). These models
revealed that the architecture of the MU pool plays a key role
in force variability. We came to the same conclusion: The
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DTM (dashed) obtained from simulations of an external perturbation
to the inertia. Right: Relative stiffness (KITM/KDTM)
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Fig. 10 Excitation (Epool) variability and inertia manipulations in the
ITM. Excitation variability was enhanced by introducing signal depen-
dent noise (CV=0.2) in Epool (dashed line, CV = 0.2). The dotted line
represents results for a model without noise on Epool and an inertia 10
times that in the standard model. The solid line represents the standard
model

discrete nature of force generation and the MU pool archi-
tecture are essential ingredients to generate force variability.
However, contrary to previous efforts, we included a contrac-
tion model. In this approach, the force is not only a function
of the stimulation but also of muscle length and contraction
velocity. With regard to force variability, this addition does
not significantly affect the results, but the extended model
allowed us to study the effects of force fluctuations on kine-
matic variability.

The relation between variability and motor control has
recently been extensively studied in the field of computa-
tional motor control (Harris and Wolpert 1998; Hamilton and
Wolpert 2002; Todorov and Jordan 2002). Continuous sto-
chastic optimal control strategies resulted in model behavior
that resembled experimental findings. Although these mod-
els provide clues about what the neural system is controlling,
our results reveal some important shortcomings. First, the
discrete nature of information processing influences the var-
iability characteristics of the forces. Second, as was demon-
strated here, these models lack antagonistic muscle function.
Antagonistic muscles might act as a mechanical filter in that
they may suppress, through co-activation, the effects of force
variability on kinematic variability.

Combining a MU-pool model with a model of muscular
contraction dynamics is a means to incorporate impedance
into the model. The importance of adding contraction dynam-
ics to the motor-unit pool model is manifest in the relation be-
tween force variability and kinematic variability. Net moment

changes due to force fluctuations of the individual muscles
are attenuated and eventually suppressed by the intrinsic sta-
bilizing properties (impedance) of the antagonistic muscles.
In reality, reflex components also contribute to joint dynam-
ics in postural tasks. Reflexes contribute to the movements of
the lower extremities in gait (e.g. Mazzaro et al. 2005). For
the upper extremity such contributions are unlikely because
external perturbing contact forces are absent. In the upper
extremity, reflexes are likely required to overcome drift from
the desired trajectory or position, which in a limited number
of simulations occurred. Further research into the function
of (noisy) spindle and Golgi-tendon feedback loops during,
externally, unperturbed movements is needed. For now we
want to stress that MU activation is the final common path of
both central and peripheral inputs and determines force and
moment fluctuations.

In the literature it has been suggested that kinematic vari-
ability decreases monotonically with co-activation
(Van Galen and De Jong 1995). Especially in the low co-acti-
vation range, our model is sensitive to the choice of param-
eters in model simulations of this hypothesis. However, our
simulations started at zero levels of activation. This is unreal-
istic given the presence of gravity. As a result humans seldom
act in the lowest co-activation range of our model. Moreover,
when noise was added to the central commands a monotonic
relation emerged, implying that in practice a monotonic rela-
tion between co-contraction and kinematic variability for the
lower co-contraction range can be expected. Only very re-
cently has our assumption of constant CV over the range
of interspike intervals been refuted (Moritz et al. 2005). The
CV was found to decrease exponentially over the force range.
Implementation of this fact in the model will probably also
direct the model to monotonically decrease kinematic var-
iability with co-activation. At high co-activation levels, the
kinematic variability of our model stabilizes. In reality, syn-
chronization might occur at high co-activation levels, possi-
bly leading to an increase in force variability, which becomes
apparent as tremor (i.e. kinematic variability in a specific fre-
quency band (e.g. McAuley et al. 1997)).

The ITM and DTM represent two extreme cases of inter-
dependency of the MUs, and thus of muscle impedance. In
reality, the interdependency of the MUs will fall in between
the ITM and DTM. Differences in kinematic variability be-
tween the ITM and DTM are only prominent at low levels
of stimulation. This is, however, the working range for most
tasks in daily life. But, as we stated before, model behavior is
also influenced by several other (neural) factors in this region
and a deliberate classification of their importance cannot be
made at the moment.

This study underscores that the strategy of the neural sys-
tem to control the effects of force variability on kinematic var-
iability strongly depends on neural noise levels and sources,
muscular architecture and skeletal properties. As such, it
represents a first step in understanding how energetic and
accuracy constraints might interfere within the motor control
system.
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