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Abstract

Background Sister chromatid exchange (SCE) is a widely

used sensitive cytogenetic biomarker of exposure to

genotoxic and cancerogenic agents. Results of human

monitoring studies and cytogenetic damage have revealed

that biological effects of genotoxic exposures are influ-

enced by confounding factors related to life-style. Vege-

table and fruit consumption may play a role, but available

results are not consistent. The purpose of the study was to

investigate the effect of consumption of raw and cooked

vegetables and fruits on SCE frequency.

Methods A total of 62 participants included colorectal

cancer (CRC) patients, hospital-based controls and healthy

laboratory workers. SCE frequency was assessed in blood

lymphocytes. Frequency of vegetable and fruit consump-

tion was gathered by structured semi-quantitative food

frequency questionnaire.

Results SCE frequency was lowest among hospital-based

controls (4.4 ± 1.1), a bit higher in CRC patients

(4.5 ± 1.0) and highest among laboratory workers

(7.4 ± 1.2) (p \ 0.05). Multivariable linear regression

showed a significant inverse effect (b = -0.20) of raw

vegetable consumption, but not so for intake of cooked

vegetables and fruits.

Conclusions The results of the study have shown the

beneficial effect of consumption of raw vegetables on

disrupted replication of DNA measured by SCE frequency,

implying protection against genotoxic agents. Further

effort is required to verify the role of cooked vegetables

and fruits.

Keywords Biomarker � Sister chromatid exchange �
Colorectal cancer � Controls � Raw and cooked vegetables �
Fruits

Background

There is a general consensus that cancers develop as a

consequence of an accumulation of DNA damage and a

subsequent change in function of oncogenes and tumor

suppressor genes. The DNA damage depends on type,

concentration, and duration of exposure to carcinogens,

and on effectiveness of cellular defense (e.g., antioxidants)

as well as metabolic detoxification and repair mechanisms

[1]. After exposure to genotoxic agents, DNA may present

sister chromatid exchange (SCE).

SCE is a process whereby, during DNA replication, two

sister chromatids break and rejoin with one another,

physically exchanging regions of the parental strands in the

duplicated chromosomes. This process is considered to be

conservative and error-free, since no information is gen-

erally altered during reciprocal interchange by homologous

recombination.

SCE is assessed and scored after the second S phase in

the presence of the thymidine analog 5-bromodeoxyuridine

(BrdU) [2]. The SCE assay is one of various methods in

genetic toxicology and human population cytogenetic

monitoring, being an indicator of disrupted replication or

wrong chromatid segregation, and is frequently used as a

sensitive cytogenetic biomarker of exposure to chemical
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genotoxic agents [3]. It is also considered as a sensitive

measure of individual susceptibility to the effects of mu-

tagens and also has been suggested as a possible indicator

of an increased cancer risk [4].

SCEs appear as the consequence of so-called suscepti-

bility, which is the effect of both the effectiveness of DNA

repair mechanisms and the genotoxic effect of mutagens.

The most common mechanism of genotoxicity is the gen-

eration of free radicals. Reactive oxygen species (ROS)

may lead to formation of hydroxyl radicals, which, being

highly destructive, result in direct damage to the DNA [5]

in the form of strand breaks (single or double), oxidized

purines and/or pyrimidines, as well as alkali labile sites [6],

and these oxidative modifications have been observed in

several conditions including cancer, cardiovascular disease

and other age-related changes [7]. Several mechanisms

have evolved that protect against effects of ROS. These

include (1) enzymatic and non-enzymatic mechanisms that

prevent formation of radicals, (2) pathways responsible for

removal of radicals before damage occurs and (3) elimi-

nation of consequences of oxidative damage by either

repair or elimination of damaged molecules, which all

together prevent mutations [8].

It has been demonstrated that diet, especially plant

components, has antioxidant properties. Diet rich in anti-

oxidant nutrients may reduce the risk of several cancers

[9]. However, in spite of extensive investigation of an

effect of diet, especially of vegetables and fruits in the

development of cancer, they are currently considered only

as possibly or probably preventive [9]. Results are some-

what inconsistent, as a consequence of different study

designs used and different end points considered [9–18].

Overall, a majority of case–control, some cohort and only a

few intervention studies have supported a positive effect

[9]. Reports from basic experimental research investigating

the protective effect of dietary components on the DNA are

also heterogeneous. There are studies showing beneficial

effect of extracts from broccoli [10], dietary polyphenols

[11] and a variety of dietary micronutrients [12]. Con-

trarily, there are also recent investigations showing no

effect of consumption of vegetables and plant oil [13],

brassica vegetables [14], vitamin C [15] and some other

dietary components [16–18].

Nevertheless, fruits and vegetables are dietary compo-

nents rich in vitamins and phytochemicals. Both are

potentially protective and have shown effects by inhibition

of DNA damage, cellular injury and degeneration [19, 20].

All in all, if fruits and vegetables are protective against

DNA damage, this should be observed in vivo among

different groups of individuals as a dose-dependent rela-

tionship between level of consumption and frequency of

DNA damage or of endpoints related to DNA damage, such

as SCEs.

Purpose

The purpose of the study was to assess the association

between consumption of vegetables and fruits and the

frequency of SCEs across individuals diagnosed with

colorectal cancer and cancer-free controls.

Materials and methods

The cross-sectional investigation was carried out in

2011–2013 as a part of a larger case–control study. The

design of the study has been described elsewhere [21, 22].

In brief, participants were individuals diagnosed with

colorectal cancer (n = 22), some other acute chronic

conditions (n = 16) and healthy laboratory workers

(n = 24). Cases were patients newly diagnosed with spo-

radic (only) histologically confirmed adenocarcinomas of

colorectal cancer treated at the I Chair of General Surgery

and Department of Gastroenterological Surgery, Jagiello-

nian University Medical College, Krakow, Poland. In the

second group, there were patients admitted to the Univer-

sity Hospital, Krakow, Poland, due to other cancer-unre-

lated conditions, and in the third-laboratory workers. After

written consent had been obtained, participants were asked

about basic characteristics and dietary habits including

their average consumption of raw and cooked vegetables

and fruits.

Dietary questionnaire

Dietary habits were assessed by a semi-quantitative food

frequency questionnaire (SFFQ) which had been developed

in cooperation with the German Cancer Research Centre in

Potsdam, where an introductory part of the European

Prospective Investigation into Cancer and Nutrition (EPIC-

Potsdam) project had been performed. In total, 148-dietary

items were included in questions about consumption of

cereals, dairy products, bread, type and cuts of meat and

fish, fresh fruits (summer/winter time), salads and fresh and

cooked vegetables, rice or pasta, soups, sweets, baked

goods, drinks and others. For each food or beverage item, a

commonly consumed portion size was specified by stan-

dardized photographs. Next, respondents were asked to

provide information about frequency of consumption. For

the research, information about usual (habitual) consump-

tion over the period of 1 year by calendar seasons was

gathered by trained interviewers. Patient cases were asked

about their dietary patterns prior to the onset of gastroin-

testinal symptoms (if present) or prior to the beginning of

the diagnosis process. The validity and reproducibility of

the questionnaire was assessed and published [23]. Ques-

tions aimed to assess habitual consumption of vegetables
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and fruits have been provided in the ‘‘Appendix’’. In the

analysis, an average number of servings were analyzed.

The size of a serving was standardized to the value of 80 g

of eatable parts of fruits or vegetables.

For the subgroup of 62 individuals, blood samples were

taken for an analysis of SCEs.

The study was conducted in accordance with the ethical

principles of the Declaration of Helsinki and was approved

by the Bioethical Committee of Jagiellonian University

(number KBET/115/B/2011).

Sister chromatid exchange assay

Blood samples were taken from all enrolled individuals and

quickly transported to the laboratory unit. Lymphocytes

were separated within an hour and cultured. All samples

were incubated at 37 �C in RPMI 1640 medium with 20 %

fetal calf serum, antibiotics and 0.075 mM BrdU. Then,

lymphocytes were stimulated by phytohaemagglutinin

(PHA) and cultured for 72 h. Two hours before the end of

culturing, 0.1 ll/ml of colcemid solution (to stop dividing

cells in metaphase) was added. Next cells were prepared

following the standard procedure [24]. Slides were coded

blindly. Finally, 50 well-spread second metaphases were

analyzed for every participant.

Proliferation rate index was assessed from a distribution

of cells scored in the first (M1), second (M2) and third (M3)

division according to the following standard formula:

PRI = (M1 ? 2 9 M2 ? 3 9 M3)/(M1 ? M2 ? M3). In

order to determine PRI, a minimum of 100 consecutive

metaphase cells per patient were evaluated. The number of

cell cycles performed by each cell was determined, con-

sidering that when cells completed only one cell cycle (M1)

both chromatids are labeled and all the chromosomes are

uniformly strained. After second division (M2), DNA of

one chromatid is labeled in every chromosome, showing a

characteristic sister chromatid differentiation pattern. After

three cell cycles (M3), approximately half of the chromo-

somes in a cell possess harlequin staining.

Statistical analysis

Basic characteristics were presented as means and standard

deviations, medians and interquartile ranges. Differences

were tested by one-way ANOVA (analysis of variance) for

normally distributed and by Kruskal–Wallis test for skewed

variables. Categorized variables were tested by the chi-

square test, or in a case of expected values of \5, by the

Fisher’s exact test. For the comparison of SCEs across

groups of vegetable and fruit consumption, the groups have

been created by median-equal cutoffs. The fit to the normal

distribution has been tested by the Shapiro–Wilk test, and,

as the distributions fitted the normal distribution, the t test

has been used. Linear regression was used to test the effect

of consumption of vegetables and fruits on the SCE count.

There were three main linear models investigated. First, a

simple univariable model used to test the general pattern

between dependent (SCE) and independent (vegetables or

fruits) variables. Next, age and sex were used as covariates

to verify the presence of relationship considering these two

personal characteristic as main confounding variables; and

finally, in the third model, we additionally used the diag-

nosis of colorectal cancer to account for cancer/non-cancer

genetic susceptibility and vitamin supplementation (yes/

no) as the SCE frequency might depend also on the anti-

oxidative effect of some vitamins. Finally, all relevant

variables were put together in one model. All analyses

were performed using the statistical software package

Stata/IC 11.2 for Windows, Stata Corp LP. A p value

below 0.05 was considered statistically significant.

Results

In total, 62 individuals were recruited and investigated in

the study. There were three groups of individuals: 22

colorectal cancer patients, and in total 40 controls,

including 16 hospital patients admitted due to acute con-

ditions and 24 apparently healthy laboratory workers. The

first two groups were part of a larger case–control study

[21, 22] for which a subsample was randomly chosen for

the SCE evaluation. Subsequently, a group of controls were

enlarged by available blood samples of healthy laboratory

staff.

Basic characteristics of the study participants are pre-

sented in Table 1. Groups varied significantly according to

age (laboratory workers were younger), consumption of

raw vegetables (highest amount among hospital-based

controls, lowest in laboratory staff), vitamin supplementa-

tion (highest among laboratory staff, lowest among hospital

controls).

Considering the average SCE frequency per cell, the

highest was observed among laboratory workers

(7.4 ± 1.2), next among CRC patients (4.5 ± 1.0) and the

lowest in hospital-based controls (4.4 ± 1.1). Differences

between laboratory workers and the two remaining groups

were statistically significant. Otherwise, proliferation rate

index (PRI) was significantly lowest in the group of labo-

ratory staff (2.0 ± 0.4) as compared to that in the two other

groups, and highest among CRC patients (2.4 ± 0.4)

(Table 1).

As the main purpose of the investigation was to assess

the role of vegetables and fruits, a linear regression model

was use to assess the association between the aforemen-

tioned dietary components and SCE frequency. Vegetables

were investigated as raw and cooked separately, and it was
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observed that consumption of raw vegetables was associ-

ated with a significant decrease in SCE frequency in either

univariable (b = -0.21) or multivariable model (b =

-0.14). Consumption of neither cooked vegetables nor

fruits had a statistically significant effect on the SCE count

(Table 2).

Additionally, the effect of raw vegetable consump-

tion on the SCE frequency was also observed in the

fully adjusted model, i.e., adjusted for cooked vegeta-

bles, fruits, vitamin supplementation, age, sex and a

diagnosis of CRC; as a result, the observed regression

coefficient was bSCE = -0.17 (p = 0.009; R2
model =

0.64; pmodel \ 0.0001) and, when the PRI count

was added bSCE = -0.20 (p = 0.016; R2
model = 0.71;

pmodel \ 0.0001).

Finally, some comparisons across different levels of fruit

and vegetable consumption (above and below median values)

have been performed. These who consumed higher levels of

raw vegetables presented lower levels of SCEs; however,

differences were not statistically significant (Table 3).

Table 1 Basic characteristics

of study participants

CRC colorectal cancer, HBC
hospital-based controls, LS
laboratory staff, SCE sister
chromatid exchange, PRI
proliferation rate index, df degrees
of freedom, Chi chi-square test, KW
Kruskal–Wallis test, A one-way
anova, F Fisher’s exact test

* One-way ANOVA, CRC versus
LS p = 0.064; HBC versus LS
p = 0.052

** One-way ANOVA, CRC versus
LS p \ 0.001; HBC versus LS
p \ 0.001

*** One-way ANOVA, CRC versus
LS p = 0.002; HBC versus LS
p = 0.026

CRC patients
(n = 22)

Hospital-based
controls (n = 16)

Laboratory staff
(n = 24)

p

Age

Mean (SD) 57.9 (10.1) 58.8 (12.6) 39.8 (12.7) p* \ 0.001

Median (Q1–Q3) 60.0 (49.0–66.0) 63.5 (52.5–67.5) 34.5 (28.0–52.5)

Sex [n, (%)]

Males 9 (40.9 %) 8 (50.0 %) 8 (33.3 %) df = 2

Females 13 (59.1 %) 8 (50.0 %) 16 (66.7 %) pchi = 0.573

Raw vegetable consumption (servings/week)

Mean (SD) 6.6 (2.4) 6.9 (3.0) 5.0 (2.0) p* = 0.023

Median (Q1–Q3) 7.0 (5.1–8.2) 6.1 (5.4–8.6) 5.0 (3.0–7.0)

Cooked vegetable consumption (servings/week)

Mean (SD) 3.7 (1.1) 3.3 (1.1) 4.0 (1.9) pKW = 0.525

Median (Q1–Q3) 3.8 (2.7–4.6) 3.3 (2.5–4.0) 3.5 (2.0–5.0)

Fruit consumption (servings/week)

Mean (SD) 8.0 (4.1) 9.3 (6.5) 9.4 (5.6) pA = 0.629

Median (Q1–Q3) 8.3 (4.5–9.9) 7.6 (5.5–11.9) 7.5 (5.0–15.0)

Vitamin supplementation [n, (%)] 3 (13.6 %) 0 10 (41.7 %) pF = 0.004

Smoker [n, (%)]

No 15 (68.2 %) 10 (62.5 %) 19 (79.2 %) df = 2

Yes 7 (31.8 %) 6 (37.5 %) 5 (20.8 %) pchi = 0.491

SCE

Mean (SD) 4.45 (0.99) 4.40 (1.11) 7.39 (1.23) p** \ 0.001

Median (Q1–Q3) 4.53 (3.48–5.13) 4.46 (3.72–5.16) 7.21 (6.59–8.32)

PRI n = 20 n = 10 n = 24

Mean (SD) 2.38 (0.42) 2.36 (0.31) 1.95 (0.40) p*** = 0.001

Median (Q1–Q3) 2.52 (1.99–2.67) 2.46 (2.29–2.54) 2.00 (1.62–2.25)

Table 2 Relationship between vegetable and fruit consumption and SCE frequency

Consumption (servings/week) b1 p1
R2

model 1
b2 p2

R2
model 2

b3 p3
R2

model 3

Raw vegetables -0.21 0.019 0.09 -0.22 0.003 0.45 -0.14 0.025 0.60

Cooked vegetables 0.21 0.192 0.03 0.20 0.119 0.38 0.20 0.060 0.59

Fruits -0.003 0.941 0.000 0.001 0.976 0.36 0.01 0.694 0.56

Linear regression for the whole sample of n = 62

1—Univariable model: b1—regression coefficient in univariable model, p1 the p value for the univariable model, R2
model 1—the coefficient of

determination of the univariable model

2—Multivariable linear regression, adjusted for age and sex: b2—regression coefficient in the model, p2—the p value for the model, R2
model 2—the

coefficient of determination of the model

3—Multivariable linear regression, adjusted for the covariates from the model 2 and vitamin supplementation, and the diagnosis of CRC: b3—

regression coefficient in the model, p3—the p value for the model, R2
model 3—the coefficient of determination of the model
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Table 3 SCE count across groups of consumption (the cutoffs between low and high are medians)

Level of raw vegetable consumption

Low \5.89 servings/week High C5.89 servings/week p

All groups together (n = 62)

SCEs (n = 31) (n = 31)

Mean (SD) 5.91 (1.77) 5.23 (1.84) 0.073

Median (Q1–Q3) 5.46 (4.28–7.45) 5.00 (3.50–6.60)

CRC patients (n = 22)

SCEs (n = 9) (n = 13)

Mean (SD) 4.56 (0.88) 4.38 (1.08) 0.348

Median (Q1–Q3) 4.84 (3.91–5.23) 4.41 (3.48–4.97)

Hospital-based controls (n = 16)

SCEs (n = 8) (n = 8)

Mean (SD) 4.60 (0.99) 4.21 (1.26) 0.252

Median (Q1–Q3) 4.24 (3.98–4.99) 4.83 (2.96–5.24)

Laboratory staff (n = 24)

SCEs (n = 14) (n = 10)

Mean (SD) 7.53 (1.01) 7.18 (1.51) 0.246

Median (Q1–Q3) 7.51 (6.67–8.15) 6.79 (5.97–8.89)

Level of cooked vegetable consumption

Low \3.68 servings/week High C3.68 servings/week p

All groups together (n = 62)

SCEs (n = 31) (n = 31)

Mean (SD) 5.60 (1.59) 5.55 (2.05) 0.463

Median (Q1–Q3) 5.21 (4.28–6.93) 5.19 (3.91–6.85)

CRC patients (n = 22)

SCEs (n = 10) (n = 12)

Mean (SD) 4.40 (0.79) 4.50 (1.16) 0.407

Median (Q1–Q3) 4.57 (3.50–4.97) 4.43 (3.44–5.21)

Hospital-based controls (n = 16)

SCEs (n = 9) (n = 7)

Mean (SD) 4.70 (0.96) 4.03 (1.24) 0.121

Median (Q1–Q3) 4.28 (4.16–5.21) 4.65 (2.75–5.11)

Laboratory staff (n = 24)

SCEs (n = 12) (n = 12)

Mean (SD) 7.27 (0.83) 7.50 (1.56) 0.332

Median (Q1–Q3) 7.21 (6.64–7.72) 7.47 (6.28–8.81)

Level of fruit consumption

Low \7.90 servings/week High C7.90 servings/week p

All groups together (n = 62)

SCEs (n = 31) (n = 31)

Mean (SD) 5.70 (2.05) 5.45 (1.58) 0.292

Median (Q1–Q3) 5.19 (4.28–7.45) 5.23 (4.20–6.67)

CRC patients (n = 22)

SCEs (n = 10) (n = 12)

Mean (SD) 4.16 (0.83) 4.70 (1.07) 0.106

Median (Q1–Q3) 4.10 (3.48–4.84) 4.77 (3.91–5.18)
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Discussion

Our study showed a protective effect of raw vegetables

measured by the frequency of SCEs. The effect was

observed, when different individuals were considered as

being a healthy person, or a non-cancer patient requiring

hospitalization or a colorectal cancer patient. Across all

these individuals, an increase in consumption of raw veg-

etables was associated with a decrease in the frequency of

SCEs in blood lymphocytes. The negative relationship was

rather stable, as it was observed even after adjustment for

several covariates.

SCEs are used to measure individual effects of expo-

sure to mutagens. Vegetables are a source of many bio-

logical compounds that are considered to be protective

against DNA damage. Oxidative stress in a cell leads to

the DNA oxidation, which is finally controlled by the

repair of the DNA. The availability of antioxidants (e.g.,

antioxidative vitamins) can decrease the level of oxidative

stress and finally decrease the frequency of DNA damage

[25]. One of the vitamins with antioxidative properties is

vitamin A (carotenoids) [26]. The effect of vitamin A was

observed in animal studies, which showed an inhibition of

SCE frequencies induced by some carcinogens [27, 28].

In vivo investigations have shown that retinoids decrease

genotoxicity, metabolic activation and bindings to the

DNA of many carcinogens such as aflatoxin B [29], N-

nitrosamines [30] and dimethylbenz[a]anthracene [31].

There are also other compounds that may be responsible

for the protective effect of vegetables such as vitamin C

[32] or isothiocyanates [33] found in cruciferous vegeta-

bles. Although some studies failed to prove the protective

effect of some dietary items such as vitamin C [8], this

does not contradict our results. The purpose of our

investigation was to assess the effect of vegetables as a

whole, and we think that the protective effect of raw

vegetables is related to the content of all beneficial dietary

nutrients.

Our study failed to demonstrate any protective effect of

cooked vegetables and fruits. There are some possible

explanations. Firstly, in cooked vegetables, the content of

vitamins and microelements is lowered after preparation

[34]. Additionally, the range of consumption of cooked

vegetables was very low in our study (Fig. 1). Finally,

cooked vegetables may present a different dietary spectrum

to raw vegetables, and thus, they may not be directly related

to the decrease in SCE frequency. Regarding consumption of

fruits, the effect was very weak, and statistically insignifi-

cant. At the moment, we cannot distinguish if this is an effect

of a small sample size or, in fact, there is no relationship

between number of fruit servings and the SCE frequency.

In our study, we did not observe a higher SCE frequency

in CRC patients when compared to the two other that in

control groups. In fact, the group of laboratory workers

presented a higher SCE count. The finding with CRC

patients is not surprising; as we analyzed blood lympho-

cytes for SCE frequency, and because we recruited for the

study only sporadic CRC cases, their cancer risk was

expected to be related mainly to the local tissue-related

chromosomal instability and therefore was not observed at

the level of the whole organisms. Similar results showing no

differences between cancer cases and healthy controls were

published before [35–37]. However, it is worth mentioning

that study results are not consistent [38, 39] in this area.

In our study, the PRI was higher among colorectal

cancer patients as compared to healthy laboratory workers,

and also hospital-based controls presented higher PRI than

the group of laboratory workers. The PHA-induced mitotic

index in blood lymphocytes is a surrogate representing

immune function and a potential of cell proliferation. Cell

proliferation is associated with the pathogenesis of cancer

[40] as it provides opportunities for genetic mutations. The

proliferation of immune cells is a physiological process

also observed in the presence of inflammation which was

more likely to be observed among hospital-based controls.

The differences in the PRIs between groups in our study

Table 3 continued

Level of fruit consumption

Low \7.90 servings/week High C7.90 servings/week p

Hospital-based controls (n = 16)

SCEs (n = 8) (n = 8)

Mean (SD) 4.53 (1.42) 4.28 (0.76) 0.330

Median (Q1–Q3) 4.95 (3.51–5.16) 4.18 (3.72–4.96)

Laboratory staff (n = 24)

SCEs (n = 13) (n = 11)

Mean (SD) 7.61 (1.40) 7.12 (0.98) 0.169

Median (Q1–Q3) 8.10 (6.59–8.73) 6.96 (6.60–7.58)
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provide information about proliferative potentials across

groups and the lowest value observed in the ‘‘healthy

laboratory workers’’ group suggests that they were indeed

healthy at a time of investigation.

Regarding the group of laboratory workers, the partici-

pants in this group were of two different professions. There

were analytical chemists (six people) described under dis-

cussion as ‘‘people who were continuously exposed to

several chemicals’’. As they were recruited voluntarily,

there was a possibility that they perceived themselves as

exposed to some risks and that is why they wanted to

participate. The remaining 15 were also voluntarily

recruited workers of the nuclear physics institute—appar-

ently healthy with no signs or symptoms of a disease, but

because of the nature of their work (some of them worked

in laboratory units preparing slides of biological samples,

and some others might be exposed to radiation as the

exposure was present in some areas of the aforementioned

institute)—they all together were named ‘‘laboratory

workers’’. Thus, there were very likely people who had

been exposed to several risks, and therefore, they were

considered as a separate group. Although it was not pos-

sible to measure chemical compound exposure at the

workplace of these individuals, other studies reported that

an increased count of SCE frequency was observed after

occupational exposure to formaldehyde [41, 42], benzene

[43] and polycyclic aromatic hydrocarbons [44], as well as

among interventional cardiology laboratory workers [45]

and among nurses handling cytostatic drugs [46].

Possible limitations of the study

The presented study has also some limitations. One is its

relatively small sample size across subgroups, and as a

consequence any analysis performed in subgroups which

were smaller than 40 individuals failed to show significant

results.

Vegetables as well as fruits are very heterogeneous

groups, with different amount of macro and micronutrients

across items within the group. Thus, it is very difficult to

answer which particular dietary components are responsi-

ble for the effect of raw vegetables. This is a point for

discussion. We know that the size of the serving was

standardized to achieve a kind of comparability in the

content (‘‘the amount of foods that provide a comparable

amount of key nutrients from that food group’’) between

different types of fruits and vegetables [47, 48]; however,

the use of a serving concept is a kind of a trade-off between

the possibility to link a particular dietary component with a

biological outcome and the necessity to create some

guidelines regarding dietary habits recommended for a

population. Thus, our study considered the possibility of

the effect of a particular group of dietary items (recom-

mended fruits and vegetables), but (due to relatively small

sample size) we were not able to assess the effects of

micronutrients (i.e., vitamins).

Secondly, there were studies showing higher frequency

of SCE among smokers, as compared to non-smokers [49,

50], some with [50] and some without [49] correlation with

a number of cigarettes smoked daily. In our study, smokers

have a slightly higher SCE frequency as compared to non-

Fig. 1 Consumption of vegetables and fruits and SCE frequency

(linear regression with 95 % confidence intervals)
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smokers (means 5.7 vs. 5.5; medians: 5.2 vs. 5.1,

p = 0.698), but this difference was not significant. There

was also no difference in smoking frequency in CRC cases

and hospital-based controls. Thus, we think that a distort-

ing effect of smoking in the observed relationship between

raw vegetables and SCE frequency in our study is rather

unlikely. The high variability of vegetable consumption

prevents us from investigating the role of vegetable sub-

groups. Moreover, diet may be also a source of heterocy-

clic amines. They are found in grilled fish and grilled meat,

in juice from heated meat, and in stewed meat heated for a

prolonged time [51]. As they are potentially mutagenic, the

level of DNA damage depending on the level of exposure

should be relatively low in our study, as only about 2 out of

38 of participants (for whom this information was avail-

able) consumed grilled meat on average more frequently

than once per week.

The results of our study support the beneficial effect of

consumption of a higher number of servings of raw vege-

tables; however, a problem may arise with regard to

translating this information into practice. The SFFQ sup-

ported by standardized photographs of portion sizes was

used to assess the size of a portion usually consumed.

Results were recalculated into number of servings stan-

dardized to equal 80 g of eatable parts of vegetables (the

same was for fruits). The calibration study, however, per-

formed to assess the real level of consumption has shown

that there is relatively high variability between the real size

and the reported size of vegetables and fruits, and for the

SFFQs prepared for the EPIC study (our questionnaire has

been prepared with them), the real size of the serving of

vegetables has been 72 g on average [52]. Nevertheless,

even if the real size of a serving might be debatable, we

believe that our study has shown the beneficial effect

related to the number of servings of raw vegetables.

In summary, the results of our study performed across

individuals with different characteristics have shown an

inverse effect of consumption of raw vegetables on the

damage of the DNA measured by SCE frequency. Thus,

our study supports—on the cytogenetic level—epidemiol-

ogic investigations showing the beneficial role of raw

vegetables. Further effort is required to determine the role

of cooked vegetables and fruits.
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