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Can Crop Insurance Premiums be Reliably Estimated? 

 

By far the most popular risk management tool used by U.S. crop producers is crop insurance. In 2008, 

the U.S. crop insurance program insured more than 270 million acres, representing more than $89 

billion in value, with total premium of over $9 billion. This level of coverage has largely been obtained 

due to greatly increased premium subsidies that encourage producers to purchase higher coverage 

levels (Glauber, 2004). Not unexpectedly, there has been a corresponding increase in expected annual 

costs of delivering the program to over $3 billion, compared to just one-third of that cost in 1990 

(Glauber, 2004; Worth, 2008).  

 In light of its role as a major safety-net for crop producers and the cost of delivering this 

program, significant research efforts have been conducted to improve premium rating procedures and 

the actuarial performance of the program (Glauber, 2004). Premium rating procedures that more 

accurately reflect producer risks mitigate adverse selection and moral hazard problems. More accurate 

rating will also assure that the program meets the risk management needs of producers at a reasonable 

cost to the nation’s taxpayers.  

 Despite the improvement in the program’s aggregate actuarial performance (i.e. relative to the 

performance in the 1980s and 1990s), there is still a common perception that the program may not be 

properly rated because there are large regional disparities in loss experience across crops and regions 

(Glauber, 2004, Babcock, 2008). For the 1981-2003 period, for example, the Midwest in general have 

received less indemnities than premiums paid (i.e. loss ratio = indemnity/premium < 1), relative to the 

Great Plains and the Southeast (loss ratio > 1.5). The regional disparities in loss performance suggest 

program benefits are not being equitably distributed (i.e. Midwest farmers are paying more into the 

program than they have received benefits in return). The most common reasons put forward for the 
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regional inequities in loss performance are political influences and systematic misratings (Glauber, 

2004; Goodwin and Vado, 2007; Babcock, 2008).  

Although an extensive and highly relevant body work on crop insurance programs and rating 

has been published in the agricultural economics literature, to date, the question of how accurately can 

actual crop insurance premiums be estimated via the RMA procedures and other proposed statistical 

methods remains unanswered. The reason for this gap in the literature might be that, in principle, the 

“true” (i.e. 100% actuarially correct) premiums that would need to be charged in a particular case are 

unknown, making any comparison between estimated and true rates unfeasible. 

This research makes such a comparison possible through simulation methods. Specifically, 

yield distributions are estimated on the basis of a comprehensive farm-level dataset in the U.S., using 

recently developed parametric modeling procedures that are sufficiently flexible to accommodate the 

variety of distributional shapes that might be encountered in practice (Ramirez and McDonald 2007). 

Although these estimates will not be totally accurate, they should sufficiently resemble the true 

underlying distributional shapes to make the analyses realistic. 

 The objective of this paper, therefore, is to determine the accuracy of various rating methods (at 

the county and individual level) by comparing the estimated rates to “true” rates using empirically-

grounded simulation procedures that takes into account common data availability constraints. 

Presumably, if one has a rich data set with a large number of farmers each having a very long time-

series of yield and insurance information (i.e. indemnities and liabilities), one can come close to 

accurately estimating the “true” premium rate. However, this type of data is rarely available and, 

therefore, it is important to assess different premium rate-setting methods in the context of limited data 

availability (i.e. limited number of farms in the sample and limited number of years for each farm).  
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 Undertaking this analysis provides important implications as to what type of rating procedures 

perform well under different data environments and assumptions. The current Risk Management 

Agency (RMA) rating approach is primarily a “loss-cost” approach that relies primarily on historical 

liability and indemnity data in setting the rates. A “yield distribution” simulation approach to setting 

premiums, where assumed yield distributions are used to simulate losses, is another method typically 

used to set rates. The empirical evidence on these two approaches seem to suggest that rates from 

“yield distribution” based approaches tend to be lower than the rates from a “loss-cost” based approach 

(see Deng, Barnett, and Vedenov, 2007). The present study adds more to this literature by providing 

insights on how the number of farms and the number of years (for each farm) in the data set affects the 

rating performance of the two common approaches to premium rate-setting. Would having more 

number of farms in the data set improve accuracy more than adding more years for each farm? 

Furthermore, the effects of different factors/assumptions (i.e. correlation of yields across farms, non-

normality assumptions, county versus individual rates) on rate accuracy are investigated as well and 

results from this analysis can also help guide researchers in improving rate-making procedures.  

Methods and Procedures 

The data for this study was obtained from the University of Illinois Endowment Farms 

database, which includes 26 corn farms located in twelve counties across that State. Data were 

available from 1959 to 2003, with sample sizes ranging from 20 to 45 observations. Ramirez and 

McDonald (2006) used this data to estimate models for those 26 yield distributions that are as accurate 

(i.e. realistic) as possible. To this effect, they used a system of probability distributions that has 

sufficient flexibility to parametrically model any empirically possible distributional shape with a high 

level of accuracy. This system, which is composed of the SU and the SB families (Johnson, 1949), can 
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accommodate any mean-variance-skewness-kurtosis (MVSK) combination that might be encountered 

in practice, and allows for the testing of the null hypothesis of yield normality.  

An advantage of using Ramirez and McDonald (2006) results for this research is that they 

identify a variety of distributional shapes that span over a substantial area of the theoretically feasible 

skewness-kurtosis (SK) space. A thoughtfully selected subset of these 26 models should, therefore, be 

representative of the breadth of distributional shapes that could possibly be encountered in practice. 

In their analyses, Ramirez and McDonald (2006) estimate normal, SU and SB models for each 

of the 26 yield series. They then conduct likelihood ratio tests which reject the normality hypothesis in 

20 of the 26 cases (=0.10). All estimated non-normal distributions are found to be left-skewed, which 

is consistent with previous literature (Nelson and Preckel, 1989; Taylor, 1990; Ramirez, 1997; Ker and 

Coble, 2003; Harri, Coble, Erdem and Knight, 2005). Out of the 20 cases that are classified as non-

normal, the SB models exhibit the highest maximum log likelihood function values in 14 cases and the 

SU models in six cases. 

Five of the 26 distributions estimated by Ramirez and McDonald (2006) are chosen for the 

purposes of this research. These include a normal, two SU’s and two SB’s. The SU’s and SB’s are 

selected to have: a) Low skewness and relatively high positive kurtosis (SUA), b) Low skewness and 

relatively high negative kurtosis (SBA), c) Moderately negative skewness and positive kurtosis (SUB), 

and d) Relatively high skewness and kurtosis (SBB). That is, they are representative of the SK spectrum 

of the 26 distributional shapes identified by Ramirez and McDonald (2006) associated with empirical 

farm-level yield data. For the purposes of this research, these are assumed to be the distributional 

shapes underlying five typical yield data generating processes. 

The research also requires simulating draws from the SU and SB distributions. The simulation 

formulas (Ramirez, McDonald 2006) are: 
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(1) }]}){[sinh({ SUSUU GFZMSS    for the SU, 

(2) ]}])[exp(1[])[exp({ SBSBSB FZGZMSS    for the SB, and 

(3) SSN = Z+M  for the normal distribution, 

where M and  are the mean and variance,  and  are the shape parameters, Z is a draw from a 

standard normal, and SUF , SUG , SBF , and SBG are lengthy exponential and trigonometric functions of  

and  (equations 7 and 9 in Ramirez and McDonald 2006).  

 The next step is to use the previous formulas to simulate data from the five selected 

distributions (Normal, SUA SUB SBA SBB). The skewness and kurtosis parameters estimated by Ramirez 

and McDonald (2006) are used in the four non-normal cases. The means and variances of the 

simulated distributions, however, are adjusted to meet a key objective of the research. Specifically, NF 

sets of mean and standard deviation parameters are assumed to be drawn from uniform distributions 

with ranges of 140 to 180 bushes/acre and 25 to 35 bushels per acre, respectively. These are consistent 

with the range of mean and variances reported by Ramirez and McDonald (2006) for their 26 estimated 

corn yield distributions. 

The reason for this framework is to explore a hypothetical situation where one observes yields 

from a number of farms (NF) within the same region or county, which have different mean and 

variances but the same distributional shape (i.e. SK) characteristics. The fact that the distributional 

shapes used in this evaluation are empirically motivated, i.e., derived from parametric models that have 

been estimated on the basis of actual yield data, enhances the credibility of the analysis.  

The exact actuarially fair crop insurance premiums corresponding to each of the “assumed” 

yield distributions for the typical 65% coverage level are then computed on the basis of simulated yield 

samples of size 100,000, using standard procedures (i.e. this is like having 100,000 years of data for 

one of the NF farms). Specifically, each of the 100,000 simulated yield values (Yi) is compared with 
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0.65 times the mean of the entire sample (
_

Y ). If the actual yield value is lower than 
_

65.0 Yx , the 

difference (
_

65.0 Yx -Yi) is multiplied by the assumed price guarantee (Pg=$2.2/bushel in this case), 

otherwise the observation is discarded. Then sum of all the non-discarded values divided by 100,000 is 

the expected indemnity associated with that yield distribution and, therefore, the actuarially fair 

premium to be charged to that farm. 

For the purposes of this research, these are considered to be the true (i.e. correct) premiums 

corresponding to the “assumed” distributions. Since there are NF “assumed” mean and variance sets, 

this process is repeated NF times for each of the five selected distributions, resulting in the NF true 

premiums corresponding to each of the “farms” in the “county.” In addition, runs for three different NF 

values (100, 50 and 25) are conducted. Thus, the final output is 100, 50 and 25 sets of true premiums 

for each of the distributions in the analysis. 

The next step is to attempt to estimate premium rates under realistic field conditions. To this 

effect, random samples of size of SS = 10, 25 and 50 are simulated using the same NF sets of mean 

and variance parameters assumed in the computation of the true premiums as well as the estimated 

shape parameters corresponding to each particular distribution. Such samples are generated for NF = 

100, 50 and 25 and correlation coefficients of CC = 0 and 0.5. 

The unit of analysis is a particular NF-SS-CC combination. Therefore, for each distribution, 

there are 3x3x2=18 units of analysis. Given the data availability constraints we impose above, the best 

situation for estimating county and farm-level rates would be to have data on NF=100 farms with 

SS=50 observations for each and no correlation across farm yields (unit of analysis 100-50-0). The 

worst case scenario would then be having data on only NF=25 farms with SS=10 observations for each 

and a 0.5 correlation across them (unit of analysis 25-10-0.5). The remaining combinations span the 

spectrum between these two scenarios. 
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The next step is to use the same distribution utilized to simulate the previously discussed 

datasets to then jointly estimate the yield distributions of all NF “farms” within each unit of analysis 

(i.e. data availabilty constraints imposed). Three alternative joint probability distribution models are 

specified and estimated: one with separate means and variances for each farm (as in the data-

generating process) (M1), one with a constant mean and variance (M2), one with different means but a 

constant variance for all farms (M3). The estimated models are then used to simulate yield draws 

(n=100,000 each) and compute actuarially fair premiums following the previously described 

procedure. In addition, two RMA-like rate computation protocols and a method assuming a normal 

distribution are also applied to estimate the premiums and they are explained in the next section. 

RMA-like procedures  

 The RMA-like procedures used in this study are based on the individual empirical premiums 

implied by the Actual Production History (APH) yield data. The empirical premium for coverage at the 

0.65 x 100% of the APH level of coverage is given by:  

(4)         𝐸𝑅𝑖 =  [ 𝑃𝑔𝑌𝑖
∗/𝑆𝑆]  𝑛

𝑡=1  

where  𝑌𝑖
∗ =  

0.65 − 𝑌𝑖𝑡    𝑖𝑓    𝑌𝑖𝑡 < 0.65𝐴𝑃𝐻𝑖𝑡  
0                                   𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒 

    , 

where 𝐸𝑅𝑖  is ith’s farmer empirical APH based premium, 0.65 is the level of coverage as explained 

previously,  𝑃𝑔  is the guaranteed price which is assumed constant, SS is the number of years or sample 

size, t is the subscript to denote the year,  𝐴𝑃𝐻𝑖𝑡  and 𝑌𝑖𝑡  are the RMA APH approved and observed 

yield data for the i farmer in year t, respectively. Equation (4) is similar to empirical rate presented in 

Skees and Reed (1986) and Goodwin (1994); however, the mean yield (μ) in their equations is replaced 

by 𝐴𝑃𝐻𝑖𝑡 .  In practice, the 𝐴𝑃𝐻𝑖𝑡  is the average of at least 4 years of individual yield data. At the 

beginning of the historical period, when a farmer just enters into the insurance program, the RMA 

assigns a transitional yield (t-yields) based on the county average and therefore the RMA APH 
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approved yields are not equal to the farm observed average yields during the first four years of 

“history.” Hence, we simulated the 𝐴𝑃𝐻𝑖𝑡  yields as follows: 𝐴𝑃𝐻𝑖1 for all i’s was the average yield of 

a different batch of yield simulations for each unit of analysis. This is meant to simulate the average 

group yield from previous years (t-yield). 𝐴𝑃𝐻𝑖2 will be the actual t=1 yield realization (drawn from 

the simulation) + (t-yield x 3 years ) and this value divided by four (since 4 years of data). And so on 

until t=4, when 4 years of actual yield data are available to calculate the individual 𝐴𝑃𝐻𝑖4. 

Subsequently,  𝐴𝑃𝐻𝑖𝑡  are updated as more yield observations become available.   

 The empirical rate calculation based on the APH yields (M4) is actually not used by the RMA 

but it is included as one of the RMA-like procedures for two reasons. First, its calculation resembles 

the procedures used to calculate the group (county) level insurance rates and second it uses RMA APH 

approved yields. Moreover, these premium rates are used to simulate historical group indemnities 

(losses) and liabilities which constitute the main ingredients of the current RMA procedure. From a 

statistical perspective, M4 is a non-parametric procedure for the calculation of the premium rates that 

uses APH yields instead of the observed yields.  

 The next method used in the simulation is the “exponential” based RMA type of procedure 

(M5). This procedure is based on the main equation underlying the RMA’s current ratemaking 

procedure (Milliman and Robertson, 2000):  

 (5)    𝑅𝑀𝐴_𝑃𝑅𝑖 = 𝑃𝑔x0.65x𝐴𝑃𝐻𝑖𝑆𝑆x𝐶𝑃𝑅x(
𝐴𝑃𝐻 𝑖𝑆𝑆

𝑌𝑎𝑣𝑐
)𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙  , 

where 𝑅𝑀𝐴_𝑃𝑅𝑖  is the RMA exponential based premium rate, 𝑃𝑔  is the guaranteed price, CPR is the 

county rate, Exponential is just an exponent that is usually less than -1, and 𝐴𝑃𝐻𝑖𝑆𝑆  and  are 𝑌𝑎𝑣𝑐 the 

farm i APH yield and county average, respectively (Milliman and Robertson, 2000). Both 𝐴𝑃𝐻𝑖𝑆𝑆  and 
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𝑌𝑎𝑣𝑐  are calculated using the entire sample of simulated observations (SS).
1
 This is a simplified 

version of the equation used by the RMA, but includes all the elements that are central for our 

analysis.
2
 The logic underlying the equation is that individual farmers’ premiums rates can be found 

using as the baseline the county rate. The Exponential is used so that farmers with above area average 

yields pay lower premiums and farmers with below area average yields pay higher insurance premiums 

(Knight, 2000).  

The calculation of CR was based on the simulated farm level (i subscript) indemnities and 

liabilities for each sample (t subscript). The simulated indemnity, liability and CR in year t for the NF 

group of farms are:  

(6)        𝐼𝑛𝑑𝑒𝑚𝑛𝑖𝑡𝑦𝑡 =  𝑃𝑔𝑌𝑖
∗𝑁𝐹

𝑡=1     

(7)    𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑡 =  𝑃𝑔0.65𝐴𝑃𝐻𝑖
𝑁𝐹
𝑡=1 = 𝑃𝑔x0.65x𝑁𝐹x𝑌𝑎𝑣𝑐    

(8)       𝐶𝑅𝑡 =
𝐼𝑛𝑑𝑒𝑚𝑛𝑖𝑡𝑦 𝑡

𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡
  

Hence, the simulated CR using the SS observations in the sample is:  

(9)     𝐶𝑅𝑡 =
1

𝑆𝑆
 

 𝑌𝑖
∗𝑁𝐹

𝑖=1

0.65x𝑁𝐹x𝑌𝑎𝑣𝑐

𝑆𝑆
𝑡=1 =

𝐸𝑅    

0.65𝑌𝑎𝑣𝑐
   

Where 𝑌𝑖
∗ was defined in (4) and 𝐸𝑅     is the average empirical premium rate across all farms.  

 The  is estimated then using non-linear least squares (NLLS) with the following 

regression model:
3
 

(10)   𝐸𝑅𝑖 = 𝑃𝑔x0.65x𝐴𝑃𝐻𝑖𝑆𝑆x𝐶𝑃𝑅x(
𝐴𝑃𝐻 𝑖𝑆𝑆

𝑌𝑎𝑣𝑐
)𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙  + 𝜀𝑖 ,    

                                                 
1
 In the RMA literature the ratio 

𝐴𝑃𝐻 𝑖𝑆𝑆

𝑌𝑎𝑣𝑐
 is usually called “yield span”. 

 
2
 The RMA procedure includes a myriad of other adjustments including caps for annual change of premiums levels, 

adjusting losses and exposures to a common coverage level, etc. (Milliman and Robertson, 2000).   

 
3
 The actual method used by the RMA to calculate the exponential is not publically available. The only RMA document 

where exponentials are calculated is Knights’ (2000) examination of yield span adjustments. This author uses an equation 

similar to (4) but the Heckman two-step procedure is used instead of NLLS.  
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where 𝜀𝑖  is the error term. NLLS was chosen given the presence of several 𝐸𝑅𝑖  estimates were equal to 

zero that preclude us from linearizing the expression using logs. The nonlinear censored regression 

approach proposed by (Stute, 1999) was also used in the preliminary stages of the study but the results 

obtained were not very different than those obtained with the NLLS estimation procedure, hence 

because of space limitations we excluded it from the simulations.  

Premiums Rates Based on the Normal Distribution  

 The final method used in the simulations calculates individual premiums rates assuming a 

normal distribution (M6) (Skees and Reed, 1986; Goodwin, 1994):   

(11)    𝑁𝑅𝑖 = 𝑃𝑔  𝛷  
0.65𝑌 𝑖−𝑌 𝑖

𝜎 𝑖
  0.65𝑌 𝑖 − 𝑌 𝑖 + 𝜑  

0.65𝑌 𝑖−𝑌 𝑖

𝜎 𝑖
 𝜎 𝑖 

,
   

where 𝑁𝑅𝑖  is the premium rate calculated assuming a normal distribution,  is the standard normal 

cdf, is the standard normal pdf, and 𝑌 𝑖 and   are the estimated mean  and standard error of farmer’ i  

yields calculated using the SS observations. 𝑁𝑅𝑖  was included in the calculations to assess the impact 

of incorrect distributional assumptions on the premium rate calculations.    

In summary, 6 premium estimation procedures are considered. These methods can be grouped into 

three categories: 

1) Premium procedures based on statistical yield models that attempt to estimate the true yield 

distribution or simplified versions of it: M1 (estimates means and variances for all farms in the 

group), M2 (estimates only one mean and one variance), and M3 (estimates different means 

and one variance for the group of farms).  

2) Methods based on historical losses: M4 (uses observed individual indemnities calculated using 

RMA APH approved yields) and M5 (RMA-like procedure based on observed group 

indemnities and liabilities).  

3) Premium rates calculated assuming a normal distribution.  
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Comparison Criteria  

The premiums estimated through the six procedures (M1, M2,…,M6) are then compared with 

the true (i.e. correct) rates in order to ascertain how accurately crop insurance premiums can be 

estimated under a variety of empirically plausible data availability conditions, model specifications 

strategies, and rate computation procedures. The statistics used to compare the estimated premiums 

with the true premiums are:  

1) Mean absolute error of the estimated premiums at the farm level (Farm-MAD): 

(12)  (
1

50𝑥𝑁𝐹
)   |𝑃 𝑟𝑗 − 𝑃𝑡𝑟𝑢𝑒𝑟𝑗 |50

𝑟=1
𝑁𝐹
𝑗=1  ,  

where 𝑃 𝑟𝑗  is the estimated premium for farm j in run r, and 𝑃𝑡𝑟𝑢𝑒𝑟𝑗  is the corresponding true premium 

value. The Farm-MAD statistic measures the accuracy of the estimated premiums at the farm level. 

2) Mean absolute error of the average premiums at the group level (Group-MAD): 

(13)  (
1

50
)   (

1

𝑁𝐹
)  𝑃 𝑟𝑗 − (

1

𝑁𝐹
)  𝑃𝑡𝑟𝑢𝑒𝑟𝑗

𝑁𝐹
𝑗−1

𝑁𝐹
𝑗 =1  50

𝑗=1 .  

3) The difference between the average estimated premium and the average true premium at the 

group level (Group-Bias): 

(14)   
1

50𝑥𝑁𝐹
   𝑃 𝑟𝑗

𝑁𝐹
𝑗=1

50
𝑗=1 −  

1

50𝑥𝑁𝐹
   𝑃𝑡𝑟𝑢𝑒𝑟𝑗

𝑁𝐹
𝑗 =1

50
𝑗=1 . 

Both, the Group-MAD and the Group-Bias statistics measure the accuracy of the group average 

estimated premiums. As explained in a previous section, the RMA uses the county (i.e., a group of 

farmers) as the basic ratemaking unit; hence it is important to analyze the precision of the estimated 

average group premiums relative to their corresponding true values.  
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Effect of SS, NF, C and premium computation procedures on accuracy of premiums  

The relationships between the measures of error/bias (i.e. Group-Bias, Farm-MAD and Group-

MAD) and the rate computation procedures, SS, NF and CC were examined using regression models 

of the following form:   

(15)   𝑦 = 𝛽0 + 𝛽𝑆𝑆 ln 𝑆𝑆 + 𝛽𝑁𝐹 ln 𝑁𝐹 + 𝛽𝐶𝐶𝐶𝐶 +  𝛽𝑀𝑗

6
𝑗 =2 𝐷𝑀𝑗

+ 

    𝛽𝑀𝑗 ,𝑆𝑆
6
𝑗 =2 𝐷𝑀𝑗

ln 𝑆𝑆 +  𝛽𝑀𝑗 ,𝑁𝐹
6
𝑗=2 𝐷𝑀𝑗

ln 𝑁𝐹 +  𝛽 𝑀𝑗 ,𝐶𝐶
6
𝑗 =2 𝐷𝑀𝑗

𝐶𝐶 + 𝜀. 

The regression models used as dependent variables ( ): the Group-Bias, Farm-MAD and 

Group-MAD. As explanatory variables the model included the natural log (ln) of SS, the ln of NF, CC, 

dummy variables for each estimation procedure (𝐷𝑀𝑗
, 𝑗 = 2,3,4,5) and simple interactions between 

ln(SS), ln(NF), CC and the method. The β’s are parameters corresponding to the explanatory variables.  

To avoid perfect multicollinearity the dummy variable corresponding to estimation procedure 1 

(𝐷𝑀1
) was dropped from the models. Separate models using OLS were estimated for each of the five 

distributions, resulting in a total of 15 regression models (three measures of accuracy times 5 

distributions). Standard errors were estimated using White heteroskedastic consistent covariance 

matrix.  

The use of the dummy variables in model (7) allows for the estimation and testing of premium-

estimation-procedure specific intercept and slope coefficients. Hence model (7) was used as the 

baseline for the estimation of models restricting some of the intercepts and slope parameters to be 

equal across models and/or equal to zero. F tests were conducted to verify that the set of parameter 

restrictions imposed in each of the final models were statistically valid. The parameter estimates of the 

restricted and their corresponding covariance matrix were then used to estimate the intercepts (𝛽0 +

𝛽𝑀𝑗
) and slope coefficients ((𝛽𝑆𝑆+𝛽𝑀𝑗 ,𝑆𝑆), (𝛽𝑁𝐹 + 𝛽𝑀𝑗 ,𝑁𝐹), 𝑎𝑛𝑑 (𝛽𝐶𝐶 + 𝛽𝑀𝑗 ,𝐶𝐶)) for each premium 

estimation method 𝑀𝑗 .  
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Results 

Simulation Results  

Table 1 shows an example of the results obtained from the simulation experiments. The figures 

displayed correspond to the Farm-MAD simulation results assuming a normal distribution. A total of 

108 Farm-MAD values were calculated corresponding to each particular combination of SS-NF-CC 

and premium estimation procedures. To facilitate comparison of the results across different 

distributions, all the Farm-MAD values (as well the other accuracy measures) are calculated relative to 

normalized average true premiums equal to 10.  For example, the 6.06 figure displayed in the first row 

and first column of the table (gray area) corresponds to the Farm-MAD of the premiums estimated 

using M1, with 25 farm units (NF=25) in the group, a sample size of 10 observations per farm 

(SS=10), 0 correlation between farm yields in the group (CC=0), when the underlying true distribution 

is normal. Since the normalized true premium equals 10, the 6.06 value indicates that the farm level 

premiums estimated using M1 are, on average, 61% above or below their true values. Tables similar to 

Table 1 were constructed for all the five assumed distributions and the three measures of accuracy 

(available from the authors upon request) and used to estimate the regression models of the form 

shown equation (15).   

Regression Analysis Results  

Table 2 summarizes the regression analyses results for the Farm-MAD variable under the five 

assumed yield distributions. Except for the Farm-MAD regression model for the SBN distribution, all 

the other regression models had R
2
 values higher than 0.93, suggesting that most of the variability in 

the Farm-MAD variable is explained by SS, NF and CC. However, the sign and magnitude of the 

parameter estimates suggest that the effect of these variables differs across distributions and premium 
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estimation procedures.  The only result that was highly consistent across all methods and distributions 

is the negative effect of the sample size which indicates that sample size, as expected, improves the 

accuracy of the farm level premium estimates. The number of farms (NF) did not have a statistically 

significant effect in about 60% of the cases and in the remaining 40% of cases where it was significant 

its effect was either positive or negative. Regarding the effect of CC on the Farm-MAD, in most cases 

a higher CC increases Farm-MAD.  

Group-MAD regression analyses are shown next in table 3. For M1, M2 and M3, the overall 

effect of SS over Group-MAD was similar to the effect of these variables over Farm-MAD (i.e., SS 

reduces Group-MADs). For these three methods, NF is also found to improve (i.e. reduce) the Group-

MADs in most of the cases. On the other hand, the effect of SS and NF in the performance of M4, M5 

and M6 is less conclusive. With regard to the effect of CC, across most methods and distributions CC 

has a significant and positive effect, except for M1, M2 and M3 in distribution SBA for which the 

effect is negative (somehow consistent with the result observed in the corresponding Farm-MAD 

regression model).  

Table 4 displays regression analysis results for Group-Bias. Given the fact that the bias can be 

positive or negative, the interpretation of the parameter estimate is done in relation to the value of the 

intercept which in theory reflects the bias of the procedure when SS, NF and CC equal zero.  Similarly 

to the previous two regression models, an increase in SS, in the majority of cases, improves the 

accuracy (i.e., reduces the bias) of the estimated premiums. The effects of NF and CC are less 

conclusive. The only method where the statistically significant parameters had the expected effect 

across all distributions was M1.  

Taken as a whole, the analysis of the regression results across all distributions suggests the 

following: 
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a) The sample size (SS) is the only variable that consistently improves the accuracy of the 

estimated premiums across most of the methods.  

b) The effect of SS and NF on Farm-MAD and Group-MAD for M1, M2 and M3 are 

generally consistent with previous expectations and tended to improve the accuracy of the 

estimation as compared to the effect of these variables for M4, M5 and M6. This result 

might have to do with the fact that M1, M2 and M3 use observed yield data. On the other 

hand, M4, M5 and M6 use APH yields which as explained in the methods section are not 

necessarily equal to the observed yields.  

c) The effect of SS on Farm-MAD and Group-MAD for M1, M2 and M3 is always higher 

than the effect of NF. In other words, each additional observation improves more the MAD 

of the estimated premiums than each additional farm added to the group.  

d) The effect of SS and NF on Farm-MAD and Group-MAD for M1 and M3, as measured by 

the estimated parameter values, is always equal or higher than the effect of these variables 

for M2. This result might have to do with the fact that M1 and M3 estimate models that are 

closer to the true model than the model estimated using M2.   

e) Regarding the Group-Bias, the only two methods where SS and NF had the expected bias-

reducing effect were M1 and M3, which as explained previously are the methods that most 

closely resemble the “true underlying model.”  

f) The CC in most cases has a negative effect on the accuracy of the estimated premiums. This 

effect was more clearly observed in the Group-MAD regression models where 27 out of the 

30 parameters corresponding to this variable were positive and statistically significant. In the 

other two sets of regression models (Farm-MAD and Group-Bias), the CC variable reduces 

accuracy of the estimation in about 50% of the cases with the remaining 50% of cases almost 
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equally split between being no-significant or improving the accuracy of the estimated 

premiums.  

Comparison using Predicted Accuracy Measures  

 Whereas the regression analysis allowed us to analyze the general direction of the effects of 

NF, SS and CC on the accuracy of the estimated premiums, a better picture of the magnitude and 

economic importance of the effects of these variables can be obtained by looking at the predicted 

values of the accuracy measures, especially since both NF and SS are nonlinearly related to the MAD 

and Bias measures. The predicted values are used instead of the raw data obtained from the simulations 

to tease out systematic sources of the relationships from random sources.   

Table 5 displays the predictions of the Farm-MAD values for the Normal distribution using the 

regression model showed in Table 1. Similar tables were constructed for all the assumed distributions 

and the three measures of accuracy. As can be seen from Table 5, the NF does not reduce the values of 

the Farm-MADs in any of the premium estimation procedures when yields are normally distributed.  

Since this result was highly consistent across all the distributions and three accuracy measures we only 

present tables displaying the average estimated accuracy measures across all NF for each SS and the 

average estimated premium across all NF and all SS (lower part of table 5) in table 6 (predicted Farm-

MAD), table 7 (predicted Group-MAD) and table 8 (predicted Bias-MAD).  

Regarding the magnitude of the Farm-MADs (table 6), the relative accuracy of the procedure 

used to estimate premiums depends on the SS. For the smallest SS of 10, which are likely to occur 

especially for new or small crops, M2 and M3 usually outperform (for M3 the exception is the SBN 

distribution) all the other methods. As the sample size increases the performance of M1 becomes 

comparable to M2 and M3 and in most cases better than both methods at SS=50.  These results reveal 
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the trade-off between the total number of parameters in the yield models and the accuracy of the 

estimated premiums with small sample sizes.  

On the other extreme of performance, we have M4 which in most cases is the worst performing 

estimation method in terms of Farm-MAD.  Even at a SS equal to 50, Farm-MADs from the estimated 

premiums using M4 are, on average, at least 70% off their true values. A comparison between M4 and 

M5 indicates that the use of the exponential tends to reduce Farm-MADs substantially.    

Concerning the performance of M6 which except for the Normal distribution is the incorrect 

model, it is interesting to see that this method in some cases outperforms the “true” distribution models 

(M1, M2 and M3) or models based on historical losses (M4 and M5). This result highlights the 

difficulty of accurately estimating the premiums at the farm level with small samples. Of course, this 

result in itself is highly variable and cannot be generalized. Moreover, accuracy improvements when 

using the wrong model are generally lower than those obtained with the methods that use the true 

models or the nonparametric methods.   

Table 7 presents the predicted Group-MAD values which is a measure of the variability of the 

average (across all farms) estimated premiums. As it would be expected the variability of the average 

group premiums is lower than the variability at the farm level. Across all the distributions, the SS 

consistently reduces Group-MADs only for M1 and M3. These two procedures are also the ones with 

the lowest Group-MADs at the SS=50. The relative performance of the procedures in terms of the 

Group-MADs is more variable at SS equal to 10 and 25, but as in the case of the Farm-MAD, M1, M2 

and M3 tend to outperform other methods. On the other extreme of performance among the 

procedures, in terms of the Group-MAD, we have M5 which in most cases is the worst or among the 

worst performing methods. Group-MADs for M5 are also in every case higher than those for M4. In 

other words, the use of the RMA-like exponential procedure increases the variability of the group level 
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average premiums relative to the individual historical loss premium estimation procedure.  In theory, 

the average of the estimated premiums using the exponential obtained from the regression should be 

equal to the average value of the dependent variable (ERi); however, there were several cases when the 

exponential was found to be higher than -1 and even positive in some of the simulation runs. In those 

cases, the estimated Exponential was substituted by a value of -1 which also explains the difference 

between the Group-MAD values obtained with M4 and M5.  

Group-Bias values for the estimated premiums are shown in table 8. As explained previously, 

the Group-Bias measures the difference between the average (across all farms) estimated premiums 

and true average group premium. Similarly to Farm-MAD and Group-MAD, we only present the 

results of average values (across all NF) for each SS value. Consistent with the regression results, M1 

and M3 are the only methods whose accuracy, as measured by the Group-Bias, is improved by the SS; 

hence, at the SS=50 they tend to outperform or be comparable with the best of the performing model 

across all distributions. However, at SS equal to 10 and 25 the relative performance of all the methods 

is quite variable.  

There are three other aspects that can be pointed out in relation to table 8. First, the RMA-like 

procedure using the exponential (M5) increases the Group-Bias relative to the individual historical 

losses procedure (M4). Second, both M4 and M5 have in most cases a positive bias. And, thirdly the 

use of the wrong distribution in M6 results in group average premiums that are biased, however the 

magnitude and direction of the bias depends upon the underlying distribution.  

In short, the analysis of the predicted accuracy measures suggests the following:  

a) M1 and M3 are the only methods whose accuracy as measured by the Farm-MAD, 

Group-MAD and Bias-MAD is significantly and consistently improved by the SS.  
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b) Related with the previous results, for the largest SS (50) M1 and M3 tend to be the most 

accurate methods.  

c) When SS equals 10 and 25 the relative performance of all the evaluated procedures is 

more variable, however M1, M2 and M3 are always among the most accurate procedures.  

d) Consistent with the regression results, the effect of CC was more obvious in the Group-

MAD values and M1, M2 and M3 where Group-MADs with CC=0.5 were about twice as 

big as the Group-MADs with CC=0. 

e) Even though in some instances M6 outperform other procedures in terms of Group-

MAD and Group-Bias, no pattern of performance of the procedure is obvious, except for 

the normal distribution in which case, as expected, its performance is the same as M1.  

f) The use and calculation of the yield exponential (M5) to go from the group average 

premium to the individual premium decreases the variability of the farm level premium 

estimates but increases both the variability and the bias of the group premium estimates.   

Conclusions and Implications 

Since the Farm-MAD values measure the variability of the premium estimates at the individual 

(farm) level, in our opinion, they should be the focus of any analysis looking at the relative 

performance of insurance premium procedures. After all, a market based crop insurance program can 

only be successful if farmers are charged at least approximately fair premiums. Simulation results 

indicate that farm level premium estimates based on individual yield data and approximately correct 

yield models (M1, M2 and M3) are significantly more accurate than those based on historical 

indemnity and liability records (M4 and M5) or incorrect yield models (M6). From an implementation 

perspective, both types of approaches require the use of statistical models for estimation. What this 

result suggests is that the additional time and effort (if any) spent trying to model an appropriate yield 
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distribution model can result in significant accuracy gains, thus reducing the potential for adverse 

selection problems.  

Our simulation results also suggest that with small samples simpler yield models that include 

one mean and variance for the group (or several means and one variance) provide farm level premiums 

that are on average closer to the farm “true” premium than models than intend to estimate separate 

means and variances for each individual farm. This apparent counterintuitive result indicates than with 

small sample sizes (25 years or less) the added variability of estimating a large number of parameters 

can outweigh potential accuracy gains obtained from estimating the “correct” model which in this case 

includes a separate mean and variance for each farm yield model. 

 The simulation results also indicate that with small samples an appropriate characterization of 

the “group” yield distributions skewness and kurtosis might be more important than the estimation of 

the individual farm variances and/or means.  

The RMA’s current approach to farm level premium estimation can be seen as a top-down type 

of premium estimation approach. The procedure begins with the calculation of a county (group) 

premium rate. Individual farms’ premiums are then calculating based on the farm’s APH yields 

relative the group average yield. Our simulation of a similar procedure showed that in fact the accuracy 

of individual level farm premiums is reduced relative to a procedure where premiums are estimated 

based on individual indemnity and liability data (M5 versus M4). However, the simulations also 

showed that, contrary to expectations, this type of approach increases both the variability and bias of 

the group average premiums (Group-MAD and Bias-MAD).  

Finally, with regard to the effect of the number of observations and number of farms on the 

accuracy of premium estimates, our results suggest that in general time would be better spent on trying 

to find more years of data than additional farms.  
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Table 1. Farm-MAD of Estimated Premiums: Normal Distribution   

SS NF 

Correlation Coefficient 

0 0.5 

Premium Estimation Procedure Premium Estimation Procedure 

M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6 

10 
25 6.06 3.94 3.30 12.97 10.54 6.32 5.97 4.58 4.71 12.62 10.24 6.62 

50 6.39 3.89 3.37 14.92 12.38 6.81 6.17 5.67 4.37 11.48 8.18 6.49 

100 6.26 4.28 3.47 14.68 12.24 6.76 5.90 4.80 4.81 14.61 12.47 6.56 

25 
25 4.07 3.16 2.36 10.79 10.14 4.29 4.00 4.76 3.30 9.91 9.25 4.17 

50 4.10 4.19 3.33 12.20 11.41 4.36 4.15 4.65 3.90 8.38 7.33 4.71 

100 4.10 4.12 3.21 12.66 12.43 4.18 3.95 4.58 3.64 12.42 12.46 3.98 

50 
25 2.84 4.44 2.83 9.55 10.00 2.97 2.94 5.10 3.74 8.17 8.14 2.90 

50 2.91 4.17 2.96 11.44 11.73 3.06 2.84 4.37 3.57 7.16 6.72 3.13 

100 3.00 3.66 3.14 12.98 13.89 3.03 2.91 4.09 3.24 10.78 11.61 3.12 

Notes: SS=sample size, NF= number of farms, CC=correlation coefficient  

M1: true distribution and separate means and variances for each farm 

M2: true distribution with constant mean and variance for all farms  

M3: true distribution with different means but a constant variance for all farms  

M4: individual farm indemnities using APH yields  

M5: RMA-like procedure based on “group” indemnities and liabilities using APH yields and 

exponential   

M6: normal distribution with separate means and variances for each farm 
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Table 2. Farm-MAD Regression Model Results  

 

Notes: SS=sample size, NF= number of farms, CC=correlation coefficient. One (*), two (**) and three 

(***) asterisks represent 0.10, 0.05 and 0.01 levels of statistical significance, respectively. 

M1: true distribution and separate means and variances for each farm 

M2: true distribution with constant mean and variance for all farms  

M3: true distribution with different means but a constant variance for all farms  

M4: individual farm indemnities using APH yields  

M5: RMA-like procedure based on “group” indemnities and liabilities using APH yields and 

exponential   

M6: normal distribution with separate means and variances for each farm 

 

 

 

 

 

 

M1 M2 M3 M4 M5 M6

Intercept 11.518 *** 4.707 *** 4.707 *** 11.518 *** 4.707 *** 11.518 *** 0.964 0.960

ln(SS) -2.154 *** -0.172 -0.440 *** -2.154 *** -0.440 *** -2.154 ***

ln(NF) -0.049 -0.049 -0.049 1.976 *** 2.108 *** -0.049

CC -0.157 1.548 *** 1.548 *** -3.831 *** -3.831 *** -0.157

SBB

Intercept 20.313 *** 5.952 *** 11.080 *** 25.203 *** 16.970 *** 12.605 *** 0.945 0.934

ln(SS) -4.503 *** -0.696 *** -2.507 *** -3.686 *** -2.507 *** -1.381 ***

ln(NF) 0.144 -0.177 0.144 -0.824 *** -0.824 *** 0.144

CC -0.909 ** 3.317 *** 3.317 *** -0.909 ** 1.813 ** 0.002

SBA

Intercept 12.773 *** 7.604 *** 22.775 *** 17.338 *** 12.773 *** 7.604 *** 0.728 0.706

ln(SS) -2.338 *** -0.978 *** -4.559 *** -2.338 *** -0.978 *** -0.978 ***

ln(NF) 0.000 0.000 0.000 0.000 0.000 0.000

CC -5.422 *** 0.000 -5.422 *** 0.000 -5.422 *** 8.665 ***

SUA

Intercept 17.555 *** 8.499 *** 8.499 *** 22.915 *** 17.555 *** 17.555 *** 0.976 0.973

ln(SS) -2.827 *** -1.170 *** -1.170 *** -3.638 *** -2.827 *** -1.784 ***

ln(NF) -1.024 *** -0.585 *** -0.585 *** 0.000 -0.585 *** 0.000

CC 1.717 *** 4.492 *** 4.492 *** 1.717 *** 5.392 *** -0.405

SUB

Intercept 18.477 *** 8.071 *** 11.716 *** 19.167 *** 11.622 *** 11.662 *** 0.925 0.905

ln(SS) -3.069 *** -1.055 *** -1.902 *** -3.678 *** -2.419 *** -1.189 ***

ln(NF) -0.946 ** -0.507 * -0.588 ** 0.594 * 0.412 0.117

CC 0.949 3.947 *** 3.822 *** 1.636 ** 3.640 *** -0.258

Normal Distribution 
R2 Adj-R2
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Table 3. Group-MAD Regression Model Results  

 

Notes: SS=sample size, NF= number of farms, CC=correlation coefficient. One (*), two (**) and three 

(***) asterisks represent 0.10, 0.05 and 0.01 levels of statistical significance, respectively. 

M1: true distribution and separate means and variances for each farm 

M2: true distribution with constant mean and variance for all farms  

M3: true distribution with different means but a constant variance for all farms  

M4: individual farm indemnities using APH yields  

M5: RMA-like procedure based on “group” indemnities and liabilities using APH yields and 

exponential   

M6: normal distribution with separate means and variances for each farm 

 

 

 

 

 

 

M1 M2 M3 M4 M5 M6

Intercept 3.993 *** 3.993 *** 3.993 *** -2.062 -2.062 3.993 *** 0.934 0.927

ln(SS) -0.796 *** -0.299 *** -0.796 *** 0.667 ** 0.667 ** -0.796 ***

ln(NF) -0.154 ** -0.154 ** -0.154 ** 1.408 *** 1.957 *** -0.154 **

CC 3.036 *** 1.571 *** 3.036 *** 5.877 *** 5.877 *** 3.036 ***

SBB

Intercept 8.823 *** 4.416 *** 12.600 *** 9.294 *** 12.886 *** 4.416 *** 0.878 0.860

ln(SS) -1.487 *** -0.614 *** -3.087 *** -1.487 *** -2.263 *** 0.557 ***

ln(NF) -0.588 *** -0.027 -0.027 -0.588 *** -0.588 *** -0.027

CC 5.272 *** 4.220 *** 4.220 *** 5.272 *** 4.220 *** 1.790 ***

SBA

Intercept 13.297 *** 2.336 *** 25.271 *** 5.518 *** 13.297 *** 2.336 *** 0.643 0.606

ln(SS) -2.731 *** 0.000 -5.722 *** 0.000 0.000 0.000

ln(NF) 0.000 0.000 0.000 0.000 -1.662 ** 0.000

CC -6.636 *** -0.487 * -6.636 *** 5.777 *** 5.777 *** 1.153 **

SUA

Intercept 9.540 *** 9.540 *** 9.540 *** 9.540 *** 14.844 *** 9.540 *** 0.901 0.893

ln(SS) -1.368 *** -1.368 *** -1.368 *** -2.125 *** -3.212 *** -1.368 ***

ln(NF) -0.860 *** -0.860 *** -0.860 *** 0.000 0.000 -0.529 ***

CC 5.164 *** 5.164 *** 5.164 *** 5.164 *** 3.100 *** 5.164 ***

SUB

Intercept 7.785 *** 6.506 *** 11.407 *** 2.966 *** 6.506 *** 2.966 *** 0.873 0.854

ln(SS) -1.141 *** -1.141 *** -2.189 *** -0.520 ** -1.141 *** 0.583 ***

ln(NF) -0.608 *** -0.364 ** -0.608 *** 0.694 *** 0.694 *** 0.280 *

CC 3.236 *** 4.813 *** 4.813 *** 3.236 *** 1.051 ** 1.051 **

R2 Adj-R2
Normal Distribution 
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Table 4. Group-Bias Regression Model Results  

 

Notes: SS=sample size, NF= number of farms, CC=correlation coefficient. One (*), two (**) and three 

(***) asterisks represent 0.10, 0.05 and 0.01 levels of statistical significance, respectively. 

M1: true distribution and separate means and variances for each farm 

M2: true distribution with constant mean and variance for all farms  

M3: true distribution with different means but a constant variance for all farms  

M4: individual farm indemnities using APH yields  

M5: RMA-like procedure based on “group” indemnities and liabilities using APH yields and 

exponential   

M6: normal distribution with separate means and variances for each farm 

 

 

 

 

 

M1 M2 M3 M4 M5 M6

Intercept -1.714 ** 0.942 -2.304 *** -1.714 ** 0.846 0.846 0.946 0.940

ln(SS) 0.452 *** 0.452 *** 0.452 *** 0.452 *** 0.452 *** -0.107

ln(NF) -0.026 -0.026 -0.026 2.134 *** 2.134 *** -0.026

CC 0.165 0.165 0.165 -5.008 *** -5.008 *** 0.165

SBB

Intercept -11.778 *** -2.394 *** 7.360 *** 1.098 *** 8.611 *** -1.681 * 0.879 0.865

ln(SS) 2.207 *** 0.000 -2.893 *** 0.000 -1.806 *** -1.321 ***

ln(NF) 0.920 *** 0.000 0.920 *** 0.000 0.000 0.000

CC -0.856 ** -0.856 ** -0.856 ** -0.856 ** -0.856 ** -0.856 **

SBA

Intercept 7.925 ** 0.883 19.023 *** 19.023 *** 19.023 *** 0.883 0.559 0.514

ln(SS) -1.526 ** 0.000 -4.294 *** 0.000 0.000 0.000

ln(NF) 0.370 0.370 0.370 -4.083 *** -3.516 *** 0.370

CC -9.491 *** -0.641 * -9.491 *** 9.242 *** 9.242 *** -0.641 *

SUA

Intercept 3.380 *** -0.280 3.380 *** -0.280 7.142 *** -0.280 0.768 0.739

ln(SS) -0.017 -0.017 -0.436 ** -0.436 ** -1.868 *** -0.017

ln(NF) -0.809 *** -0.252 ** -0.252 ** 0.634 *** 0.634 *** 0.034

CC -1.157 ** -0.302 -0.302 -1.157 ** -2.709 ** -1.157 **

SUB

Intercept 4.137 ** 1.108 6.502 *** -3.811 *** 1.108 -3.811 *** 0.931 0.922

ln(SS) -0.448 *** -0.448 *** -1.684 *** 0.607 ** -0.448 *** -0.629 ***

ln(NF) -0.554 * -0.023 -0.023 1.428 *** 1.428 *** -0.023

CC -2.299 *** -2.299 *** 0.263 -2.299 *** -2.299 *** 0.263

R2 Adj-R2
Normal Distribution 
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Table 5. Predicted Farm-level Mean Absolute Differences of Estimated Premiums: Normal 

Distribution   

 

SS NF 

Correlation Coefficient  

0 0.5 

Premium Estimation Procedure Premium Estimation Procedure 

M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6 

10 
25 5.88 4.21 3.36 10.73 7.92 5.83 5.85 4.99 4.14 12.85 10.05 5.79 

50 6.36 4.12 3.50 14.29 11.94 6.36 6.29 4.89 4.28 12.37 10.03 6.29 

100 6.33 4.09 3.47 15.66 13.40 6.33 6.25 4.86 4.24 13.74 11.49 6.25 

25 
25 4.43 4.00 3.13 10.94 10.08 4.43 4.35 4.77 3.91 9.03 8.16 4.35 

50 4.39 3.96 3.10 12.31 11.54 4.39 4.31 4.74 3.87 10.40 9.62 4.31 

100 4.36 3.93 3.06 13.68 13.00 4.36 4.28 4.70 3.84 11.77 11.08 4.28 

50 
25 2.93 3.88 2.83 9.45 9.77 2.93 2.85 4.65 3.60 7.54 7.86 2.85 

50 2.90 3.84 2.79 10.82 11.23 2.90 2.82 4.62 3.57 8.91 9.32 2.82 

100 2.86 3.81 2.76 12.19 12.69 2.86 2.79 4.58 3.53 10.28 10.78 2.79 

 25 4.59 4.01 3.17 11.10 10.11 4.59 4.51 4.78 3.94 9.19 8.19 4.51 

All 50 4.55 3.97 3.13 12.47 11.57 4.55 4.47 4.75 3.91 10.56 9.66 4.47 

 100 4.52 3.94 3.10 13.84 13.03 4.52 4.44 4.71 3.87 11.93 11.12 4.44 

10  6.36 4.12 3.50 14.29 11.94 6.36 6.29 4.89 4.28 12.37 10.03 6.29 

25 All 4.39 3.96 3.10 12.31 11.54 4.39 4.31 4.74 3.87 10.40 9.62 4.31 

50  2.90 3.84 2.79 10.82 11.23 2.90 2.82 4.62 3.57 8.91 9.32 2.82 

All All 4.55 3.98 3.13 12.47 11.57 4.55 4.47 4.75 3.91 10.56 9.66 4.47 

Notes: SS=sample size, NF= number of farms. 

M1: true distribution and separate means and variances for each farm 

M2: true distribution with constant mean and variance for all farms  

M3: true distribution with different means but a constant variance for all farms  

M4: individual farm indemnities using APH yields  

M5: RMA-like procedure based on “group” indemnities and liabilities using APH yields and 

exponential   

M6: normal distribution with separate means and variances for each farm 
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Table 6. Predicted Farm-level Mean Absolute Differences of Estimated Premiums 

 

Notes: SS=sample size, NF= number of farms 

M1: true distribution and separate means and variances for each farm 

M2: true distribution with constant mean and variance for all farms  

M3: true distribution with different means but a constant variance for all farms  

M4: individual farm indemnities using APH yields  

M5: RMA-like procedure based on “group” indemnities and liabilities using APH yields and 

exponential   

M6: normal distribution with separate means and variances for each farm 

 

 

 

 

 

 

 

Correlation Coefficient 

Distribution SS NF 0 0.5

Premium Estimation Procedure Premium Estimation Procedure 

M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6

10 6.36 4.12 3.50 14.29 11.94 6.36 6.29 4.89 4.28 12.37 10.03 6.29

Normal All 25 4.39 3.96 3.10 12.31 11.54 4.39 4.31 4.74 3.87 10.40 9.62 4.31

50 2.90 3.84 2.79 10.82 11.23 2.90 2.82 4.62 3.57 8.91 9.32 2.82

All All 4.55 3.98 3.13 12.47 11.57 4.55 4.47 4.75 3.91 10.56 9.66 4.47

10 10.51 3.66 5.87 13.49 7.97 9.99 10.05 5.32 7.53 13.04 8.88 9.99

SBB All 25 6.38 3.02 3.58 10.11 5.68 8.73 5.93 4.68 5.23 9.66 6.58 8.73

50 3.26 2.54 1.84 7.56 3.94 7.77 2.81 4.20 3.50 7.10 4.85 7.77

All All 6.72 3.07 3.76 10.39 5.86 8.83 6.26 4.73 5.42 9.93 6.77 8.83

10 7.39 5.35 12.28 11.95 10.52 5.35 4.68 5.35 9.57 11.95 7.81 9.68

SBA All 25 5.25 4.45 8.10 9.81 9.62 4.45 2.53 4.45 5.39 9.81 6.91 8.79

50 3.63 3.78 4.94 8.19 8.95 3.78 0.91 3.78 2.23 8.19 6.23 8.11

All All 5.42 4.53 8.44 9.98 9.70 4.53 2.71 4.53 5.73 9.98 6.98 8.86

10 7.04 3.52 3.52 14.54 8.76 13.45 7.90 5.76 5.76 15.40 11.45 13.25

SUA All 25 4.45 2.44 2.44 11.20 6.17 11.81 5.31 4.69 4.69 12.06 8.86 11.61

50 2.49 1.63 1.63 8.68 4.21 10.58 3.35 3.88 3.88 9.54 6.90 10.37

All All 4.66 2.53 2.53 11.47 6.38 11.95 5.52 4.78 4.78 12.33 9.07 11.74

10 7.71 3.66 5.04 13.02 7.67 9.38 8.18 5.63 6.95 13.84 9.49 9.25

SUB All 25 4.90 2.69 3.29 9.65 5.45 8.29 5.37 4.66 5.21 10.47 7.27 8.16

50 2.77 1.96 1.98 7.10 3.77 7.47 3.24 3.93 3.89 7.92 5.59 7.34

All All 5.12 2.77 3.44 9.92 5.63 8.38 5.60 4.74 5.35 10.74 7.45 8.25
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Table 7. Predicted Group-level Mean Absolute Differences of Estimated Premiums 

 

Notes: SS=sample size, NF= number of farms 

M1: true distribution and separate means and variances for each farm 

M2: true distribution with constant mean and variance for all farms  

M3: true distribution with different means but a constant variance for all farms  

M4: individual farm indemnities using APH yields  

M5: RMA-like procedure based on “group” indemnities and liabilities using APH yields and 

exponential   

M6: normal distribution with separate means and variances for each farm 

 

 

 

 

 

 

 

 

 

Correlation Coefficient 

Distribution SS NF 0 0.5

Premium Estimation Procedure Premium Estimation Procedure 

M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6

10 1.56 2.70 1.56 4.98 7.13 1.56 3.08 3.49 3.08 7.92 10.07 3.08

Normal All 25 0.83 2.43 0.83 5.59 7.74 0.83 2.35 3.21 2.35 8.53 10.68 2.35

50 0.28 2.22 0.28 6.05 8.20 0.28 1.80 3.01 1.80 8.99 11.14 1.80

All All 0.89 2.45 0.89 5.54 7.69 0.89 2.41 3.24 2.41 8.48 10.63 2.41

10 3.10 2.90 5.39 3.57 5.37 5.59 5.73 5.01 7.50 6.20 7.48 6.49

SBB All 25 1.74 2.33 2.56 2.21 3.30 6.10 4.37 4.44 4.67 4.84 5.41 7.00

50 0.70 1.91 0.42 1.17 1.73 6.49 3.34 4.02 2.53 3.81 3.84 7.38

All All 1.85 2.38 2.79 2.32 3.47 6.06 4.48 4.49 4.90 4.95 5.58 6.95

10 7.01 2.34 12.10 5.52 6.79 2.34 3.69 2.09 8.78 8.41 9.68 2.91

SBN All 25 4.51 2.34 6.85 5.52 6.79 2.34 1.19 2.09 3.54 8.41 9.68 2.91

50 2.61 2.34 2.89 5.52 6.79 2.34 -0.70 2.09 -0.43 8.41 9.68 2.91

All All 4.71 2.34 7.28 5.52 6.79 2.34 1.39 2.09 3.96 8.41 9.68 2.91

10 3.03 3.03 3.03 4.65 7.45 4.32 5.61 5.61 5.61 7.23 9.00 6.90

SUI All 25 1.77 1.77 1.77 2.70 4.50 3.07 4.35 4.35 4.35 5.28 6.05 5.65

50 0.82 0.82 0.82 1.23 2.28 2.12 3.41 3.41 3.41 3.81 3.83 4.70

All All 1.87 1.87 1.87 2.86 4.74 3.17 4.46 4.46 4.46 5.44 6.29 5.75

10 2.78 2.46 3.99 4.48 6.59 5.41 4.40 4.86 6.39 6.10 7.12 5.93

SUR All 25 1.73 1.41 1.98 4.01 5.55 5.94 3.35 3.82 4.39 5.63 6.07 6.47

50 0.94 0.62 0.46 3.65 4.76 6.34 2.56 3.03 2.87 5.27 5.28 6.87

All All 1.82 1.50 2.14 4.05 5.63 5.90 3.44 3.90 4.55 5.67 6.16 6.42
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Table 8. Predicted Group-level Bias of Estimated Premiums 

 

Notes: SS=sample size, NF= number of farms 

M1: true distribution and separate means and variances for each farm 

M2: true distribution with constant mean and variance for all farms  

M3: true distribution with different means but a constant variance for all farms  

M4: individual farm indemnities using APH yields  

M5: RMA-like procedure based on “group” indemnities and liabilities using APH yields and 

exponential   

M6: normal distribution with separate means and variances for each farm 

 

 

 

 

 

 

 

 

Correlation Coefficient 

Distribution SS NF 0 0.5

Premium Estimation Procedure Premium Estimation Procedure 

M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6

10 -1.08 1.60 -1.66 4.35 6.81 0.62 -1.03 1.65 -1.61 7.37 9.83 0.68

Normal All 25 -0.35 2.33 -0.93 5.08 7.54 0.32 -0.30 2.39 -0.87 8.11 10.57 0.37

50 0.20 2.89 -0.37 5.64 8.10 0.09 0.26 2.94 -0.32 8.66 11.12 0.14

All All -0.41 2.27 -0.99 5.02 7.48 0.34 -0.36 2.33 -0.93 8.05 10.51 0.40

10 -2.70 -2.39 4.04 1.10 3.82 -4.86 -3.13 -2.82 3.61 0.67 3.39 -5.29

SBB All 25 -1.50 -2.39 2.33 1.10 3.02 -5.66 -1.92 -2.82 1.90 0.67 2.59 -6.09

50 0.51 -2.39 -0.52 1.10 1.69 -6.99 0.08 -2.82 -0.95 0.67 1.26 -7.42

All All -1.23 -2.39 1.95 1.10 2.84 -5.84 -1.66 -2.82 1.52 0.67 2.41 -6.27

10 5.86 2.33 10.58 3.05 5.27 2.33 1.11 2.01 5.84 7.67 9.89 2.01

SBA All 25 4.46 2.33 6.65 3.05 5.27 2.33 -0.29 2.01 1.90 7.67 9.89 2.01

50 3.40 2.33 3.67 3.05 5.27 2.33 -1.34 2.01 -1.07 7.67 9.89 2.01

All All 4.57 2.33 6.97 3.05 5.27 2.33 -0.17 2.01 2.22 7.67 9.89 2.01

10 0.18 -1.30 1.39 1.19 5.32 -0.19 -0.40 -1.46 1.24 0.62 3.96 -0.76

SUA All 25 0.16 -1.32 0.99 0.79 3.61 -0.20 -0.42 -1.47 0.84 0.22 2.25 -0.78

50 0.15 -1.33 0.69 0.49 2.31 -0.21 -0.43 -1.48 0.54 -0.09 0.96 -0.79

All All 0.16 -1.32 1.02 0.82 3.75 -0.20 -0.42 -1.47 0.87 0.25 2.39 -0.78

10 0.94 -0.01 2.54 3.17 5.66 -5.35 -0.21 -1.16 2.67 2.02 4.51 -5.22

SUB All 25 0.53 -0.42 0.99 3.73 5.25 -5.93 -0.62 -1.57 1.12 2.58 4.10 -5.80

50 0.22 -0.74 -0.17 4.15 4.94 -6.36 -0.93 -1.88 -0.04 3.00 3.79 -6.23

All All 0.56 -0.39 1.12 3.68 5.28 -5.88 -0.59 -1.54 1.25 2.53 4.13 -5.75
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