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Can Crop Insurance Premiums be Reliably Estimated?

By far the most popular risk management tool used by U.S. crop producers is crop insurance. In 2008,
the U.S. crop insurance program insured more than 270 million acres, representing more than $89
billion in value, with total premium of over $9 billion. This level of coverage has largely been obtained
due to greatly increased premium subsidies that encourage producers to purchase higher coverage
levels (Glauber, 2004). Not unexpectedly, there has been a corresponding increase in expected annual
costs of delivering the program to over $3 billion, compared to just one-third of that cost in 1990
(Glauber, 2004; Worth, 2008).

In light of its role as a major safety-net for crop producers and the cost of delivering this
program, significant research efforts have been conducted to improve premium rating procedures and
the actuarial performance of the program (Glauber, 2004). Premium rating procedures that more
accurately reflect producer risks mitigate adverse selection and moral hazard problems. More accurate
rating will also assure that the program meets the risk management needs of producers at a reasonable
cost to the nation’s taxpayers.

Despite the improvement in the program’s aggregate actuarial performance (i.e. relative to the
performance in the 1980s and 1990s), there is still a common perception that the program may not be
properly rated because there are large regional disparities in loss experience across crops and regions
(Glauber, 2004, Babcock, 2008). For the 1981-2003 period, for example, the Midwest in general have
received less indemnities than premiums paid (i.e. loss ratio = indemnity/premium < 1), relative to the
Great Plains and the Southeast (loss ratio > 1.5). The regional disparities in loss performance suggest
program benefits are not being equitably distributed (i.e. Midwest farmers are paying more into the

program than they have received benefits in return). The most common reasons put forward for the



regional inequities in loss performance are political influences and systematic misratings (Glauber,
2004; Goodwin and Vado, 2007; Babcock, 2008).

Although an extensive and highly relevant body work on crop insurance programs and rating
has been published in the agricultural economics literature, to date, the question of how accurately can
actual crop insurance premiums be estimated via the RMA procedures and other proposed statistical
methods remains unanswered. The reason for this gap in the literature might be that, in principle, the
“true” (i.e. 100% actuarially correct) premiums that would need to be charged in a particular case are
unknown, making any comparison between estimated and true rates unfeasible.

This research makes such a comparison possible through simulation methods. Specifically,
yield distributions are estimated on the basis of a comprehensive farm-level dataset in the U.S., using
recently developed parametric modeling procedures that are sufficiently flexible to accommodate the
variety of distributional shapes that might be encountered in practice (Ramirez and McDonald 2007).
Although these estimates will not be totally accurate, they should sufficiently resemble the true
underlying distributional shapes to make the analyses realistic.

The objective of this paper, therefore, is to determine the accuracy of various rating methods (at
the county and individual level) by comparing the estimated rates to “true” rates using empirically-
grounded simulation procedures that takes into account common data availability constraints.
Presumably, if one has a rich data set with a large number of farmers each having a very long time-
series of yield and insurance information (i.e. indemnities and liabilities), one can come close to
accurately estimating the “true” premium rate. However, this type of data is rarely available and,
therefore, it is important to assess different premium rate-setting methods in the context of limited data

availability (i.e. limited number of farms in the sample and limited number of years for each farm).



Undertaking this analysis provides important implications as to what type of rating procedures
perform well under different data environments and assumptions. The current Risk Management
Agency (RMA) rating approach is primarily a “loss-cost” approach that relies primarily on historical
liability and indemnity data in setting the rates. A “yield distribution” simulation approach to setting
premiums, where assumed yield distributions are used to simulate losses, is another method typically
used to set rates. The empirical evidence on these two approaches seem to suggest that rates from
“yield distribution” based approaches tend to be lower than the rates from a “loss-cost” based approach
(see Deng, Barnett, and VVedenov, 2007). The present study adds more to this literature by providing
insights on how the number of farms and the number of years (for each farm) in the data set affects the
rating performance of the two common approaches to premium rate-setting. Would having more
number of farms in the data set improve accuracy more than adding more years for each farm?
Furthermore, the effects of different factors/assumptions (i.e. correlation of yields across farms, non-
normality assumptions, county versus individual rates) on rate accuracy are investigated as well and
results from this analysis can also help guide researchers in improving rate-making procedures.

Methods and Procedures

The data for this study was obtained from the University of Illinois Endowment Farms
database, which includes 26 corn farms located in twelve counties across that State. Data were
available from 1959 to 2003, with sample sizes ranging from 20 to 45 observations. Ramirez and
McDonald (2006) used this data to estimate models for those 26 yield distributions that are as accurate
(i.e. realistic) as possible. To this effect, they used a system of probability distributions that has
sufficient flexibility to parametrically model any empirically possible distributional shape with a high

level of accuracy. This system, which is composed of the Sy and the Sg families (Johnson, 1949), can



accommodate any mean-variance-skewness-kurtosis (MVSK) combination that might be encountered
in practice, and allows for the testing of the null hypothesis of yield normality.

An advantage of using Ramirez and McDonald (2006) results for this research is that they
identify a variety of distributional shapes that span over a substantial area of the theoretically feasible
skewness-kurtosis (SK) space. A thoughtfully selected subset of these 26 models should, therefore, be
representative of the breadth of distributional shapes that could possibly be encountered in practice.

In their analyses, Ramirez and McDonald (2006) estimate normal, Sy and Sg models for each
of the 26 yield series. They then conduct likelihood ratio tests which reject the normality hypothesis in
20 of the 26 cases («=0.10). All estimated non-normal distributions are found to be left-skewed, which
is consistent with previous literature (Nelson and Preckel, 1989; Taylor, 1990; Ramirez, 1997; Ker and
Coble, 2003; Harri, Coble, Erdem and Knight, 2005). Out of the 20 cases that are classified as non-
normal, the Sg models exhibit the highest maximum log likelihood function values in 14 cases and the
Sy models in six cases.

Five of the 26 distributions estimated by Ramirez and McDonald (2006) are chosen for the
purposes of this research. These include a normal, two Sy’s and two Sg’s. The Sy’s and Sg’s are
selected to have: a) Low skewness and relatively high positive kurtosis (Sua), b) Low skewness and
relatively high negative kurtosis (Sga), ¢) Moderately negative skewness and positive kurtosis (Sug),
and d) Relatively high skewness and kurtosis (Sgs). That is, they are representative of the SK spectrum
of the 26 distributional shapes identified by Ramirez and McDonald (2006) associated with empirical
farm-level yield data. For the purposes of this research, these are assumed to be the distributional
shapes underlying five typical yield data generating processes.

The research also requires simulating draws from the Sy and Sg distributions. The simulation

formulas (Ramirez, McDonald 2006) are:



1)  SS, =M +{o[sinh(H{Z + 1i}) — Fy, 1+ 6:/Gq, } for the Sy,

@) SSez =M +{oexp(9[Z — u]) +/Geg [L+exp(6[Z — 1]) — Fsz ]} for the Sg, and
3 SSy = 6Z+M for the normal distribution,
where M and o are the mean and variance, p and 6 are the shape parameters, Z is a draw from a

standard normal, and Fg,, G, Fsg, and G, are lengthy exponential and trigonometric functions of p

and 6 (equations 7 and 9 in Ramirez and McDonald 2006).

The next step is to use the previous formulas to simulate data from the five selected
distributions (Normal, Sua Sus Sea Sgg). The skewness and kurtosis parameters estimated by Ramirez
and McDonald (2006) are used in the four non-normal cases. The means and variances of the
simulated distributions, however, are adjusted to meet a key objective of the research. Specifically, NF
sets of mean and standard deviation parameters are assumed to be drawn from uniform distributions
with ranges of 140 to 180 bushes/acre and 25 to 35 bushels per acre, respectively. These are consistent
with the range of mean and variances reported by Ramirez and McDonald (2006) for their 26 estimated
corn yield distributions.

The reason for this framework is to explore a hypothetical situation where one observes yields
from a number of farms (NF) within the same region or county, which have different mean and
variances but the same distributional shape (i.e. SK) characteristics. The fact that the distributional
shapes used in this evaluation are empirically motivated, i.e., derived from parametric models that have
been estimated on the basis of actual yield data, enhances the credibility of the analysis.

The exact actuarially fair crop insurance premiums corresponding to each of the “assumed”
yield distributions for the typical 65% coverage level are then computed on the basis of simulated yield
samples of size 100,000, using standard procedures (i.e. this is like having 100,000 years of data for

one of the NF farms). Specifically, each of the 100,000 simulated yield values (Y;) is compared with
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0.65 times the mean of the entire sample (Y ). If the actual yield value is lower than 0.65xY , the

difference (0.65xY -Y;) is multiplied by the assumed price guarantee (Pg=$2.2/bushel in this case),
otherwise the observation is discarded. Then sum of all the non-discarded values divided by 100,000 is
the expected indemnity associated with that yield distribution and, therefore, the actuarially fair
premium to be charged to that farm.

For the purposes of this research, these are considered to be the true (i.e. correct) premiums
corresponding to the “assumed” distributions. Since there are NF “assumed” mean and variance sets,
this process is repeated NF times for each of the five selected distributions, resulting in the NF true
premiums corresponding to each of the “farms” in the “county.” In addition, runs for three different NF
values (100, 50 and 25) are conducted. Thus, the final output is 100, 50 and 25 sets of true premiums
for each of the distributions in the analysis.

The next step is to attempt to estimate premium rates under realistic field conditions. To this
effect, random samples of size of SS = 10, 25 and 50 are simulated using the same NF sets of mean
and variance parameters assumed in the computation of the true premiums as well as the estimated
shape parameters corresponding to each particular distribution. Such samples are generated for NF =
100, 50 and 25 and correlation coefficients of CC = 0 and 0.5.

The unit of analysis is a particular NF-SS-CC combination. Therefore, for each distribution,
there are 3x3x2=18 units of analysis. Given the data availability constraints we impose above, the best
situation for estimating county and farm-level rates would be to have data on NF=100 farms with
SS=50 observations for each and no correlation across farm yields (unit of analysis 100-50-0). The
worst case scenario would then be having data on only NF=25 farms with SS=10 observations for each
and a 0.5 correlation across them (unit of analysis 25-10-0.5). The remaining combinations span the

spectrum between these two scenarios.



The next step is to use the same distribution utilized to simulate the previously discussed
datasets to then jointly estimate the yield distributions of all NF “farms” within each unit of analysis
(i.e. data availabilty constraints imposed). Three alternative joint probability distribution models are
specified and estimated: one with separate means and variances for each farm (as in the data-
generating process) (M1), one with a constant mean and variance (M2), one with different means but a
constant variance for all farms (M3). The estimated models are then used to simulate yield draws
(n=100,000 each) and compute actuarially fair premiums following the previously described
procedure. In addition, two RMA-like rate computation protocols and a method assuming a normal
distribution are also applied to estimate the premiums and they are explained in the next section.
RMA-like procedures

The RMA-like procedures used in this study are based on the individual empirical premiums
implied by the Actual Production History (APH) yield data. The empirical premium for coverage at the

0.65 x 100% of the APH level of coverage is given by:

(4) ER; = [X{-1FY; /SS]
: otherwise

where ER; is ith’s farmer empirical APH based premium, 0.65 is the level of coverage as explained
previously, F, is the guaranteed price which is assumed constant, SS is the number of years or sample
size, t is the subscript to denote the year, APH;, and Y;, are the RMA APH approved and observed
yield data for the i farmer in year t, respectively. Equation (4) is similar to empirical rate presented in
Skees and Reed (1986) and Goodwin (1994); however, the mean yield (i) in their equations is replaced
by APH;,. In practice, the APH;; is the average of at least 4 years of individual yield data. At the
beginning of the historical period, when a farmer just enters into the insurance program, the RMA

assigns a transitional yield (t-yields) based on the county average and therefore the RMA APH



approved yields are not equal to the farm observed average yields during the first four years of
“history.” Hence, we simulated the APH,, yields as follows: APH;; for all i’s was the average yield of
a different batch of yield simulations for each unit of analysis. This is meant to simulate the average
group Yyield from previous years (t-yield). APH;, will be the actual t=1 yield realization (drawn from
the simulation) + (t-yield x 3 years ) and this value divided by four (since 4 years of data). And so on
until t=4, when 4 years of actual yield data are available to calculate the individual APH;,.
Subsequently, APH;, are updated as more yield observations become available.

The empirical rate calculation based on the APH yields (M4) is actually not used by the RMA
but it is included as one of the RMA-like procedures for two reasons. First, its calculation resembles
the procedures used to calculate the group (county) level insurance rates and second it uses RMA APH
approved yields. Moreover, these premium rates are used to simulate historical group indemnities
(losses) and liabilities which constitute the main ingredients of the current RMA procedure. From a
statistical perspective, M4 is a non-parametric procedure for the calculation of the premium rates that
uses APH yields instead of the observed yields.

The next method used in the simulation is the “exponential” based RMA type of procedure
(M5). This procedure is based on the main equation underlying the RMA’s current ratemaking

procedure (Milliman and Robertson, 2000):
(5) RMA_PR; = P;X0.65XAPH;s5XCPRx(~_S5)Bxponential
where RMA_PR; is the RMA exponential based premium rate, F; is the guaranteed price, CPR is the

county rate, Exponential is just an exponent that is usually less than -1, and APH;ss and are Yavc the

farm i APH yield and county average, respectively (Milliman and Robertson, 2000). Both APH;¢s and



Yavc are calculated using the entire sample of simulated observations (SS).* This is a simplified
version of the equation used by the RMA, but includes all the elements that are central for our
analysis.” The logic underlying the equation is that individual farmers’ premiums rates can be found
using as the baseline the county rate. The Exponential is used so that farmers with above area average
yields pay lower premiums and farmers with below area average yields pay higher insurance premiums
(Knight, 2000).

The calculation of CR was based on the simulated farm level (i subscript) indemnities and
liabilities for each sample (t subscript). The simulated indemnity, liability and CR in year t for the NF

group of farms are:

(6) Indemnity, = ¥, BY;
(7) Liability, = Y1f; P,0.65APH; = P;x0.65xNFxYavc
(8) CR. = Indemnity ¢

, = ndemnity

Liability
Hence, the simulated CR using the SS observations in the sample is:

l 1Y — ER
(9) Zt 10.65xNFxYavc ~ 0.65Yavc

Where Y;* was defined in (4) and ER is the average empirical premium rate across all farms.
The Exponential is estimated then using non-linear least squares (NLLS) with the following

regression model:*

(10) ER; = P,X0.65XAPH;ssXCPRx(——Ss)Pxponential - 4 g,

L In the RMA literature the ratio 22555 i usually called “yield span”.

% The RMA procedure includes a myriad of other adjustments including caps for annual change of premiums levels,
adjusting losses and exposures to a common coverage level, etc. (Milliman and Robertson, 2000).

® The actual method used by the RMA to calculate the exponential is not publically available. The only RMA document
where exponentials are calculated is Knights’ (2000) examination of yield span adjustments. This author uses an equation
similar to (4) but the Heckman two-step procedure is used instead of NLLS.
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where g; is the error term. NLLS was chosen given the presence of several ER; estimates were equal to
zero that preclude us from linearizing the expression using logs. The nonlinear censored regression
approach proposed by (Stute, 1999) was also used in the preliminary stages of the study but the results
obtained were not very different than those obtained with the NLLS estimation procedure, hence
because of space limitations we excluded it from the simulations.
Premiums Rates Based on the Normal Distribution

The final method used in the simulations calculates individual premiums rates assuming a

normal distribution (M6) (Skees and Reed, 1986; Goodwin, 1994):

(11) NR, =P, |® (0'652‘71') (0.657, — 7)) + ¢ (0'65&7;‘7") 5|

where NR; is the premium rate calculated assuming a normal distribution, € is the standard normal
cdf, @ is the standard normal pdf, and Y; and &; are the estimated mean and standard error of farmer’ i
yields calculated using the SS observations. NR; was included in the calculations to assess the impact
of incorrect distributional assumptions on the premium rate calculations.

In summary, 6 premium estimation procedures are considered. These methods can be grouped into

three categories:

1) Premium procedures based on statistical yield models that attempt to estimate the true yield
distribution or simplified versions of it: M1 (estimates means and variances for all farms in the
group), M2 (estimates only one mean and one variance), and M3 (estimates different means
and one variance for the group of farms).

2) Methods based on historical losses: M4 (uses observed individual indemnities calculated using
RMA APH approved yields) and M5 (RMA-like procedure based on observed group

indemnities and liabilities).

3) Premium rates calculated assuming a normal distribution.
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Comparison Criteria

The premiums estimated through the six procedures (M1, M2,...,M6) are then compared with
the true (i.e. correct) rates in order to ascertain how accurately crop insurance premiums can be
estimated under a variety of empirically plausible data availability conditions, model specifications
strategies, and rate computation procedures. The statistics used to compare the estimated premiums
with the true premiums are:

1) Mean absolute error of the estimated premiums at the farm level (Farm-MAD):

1 o~
(12) Goonr) §v£1 22 |Pj — Ptrue,;|,

where 13”- is the estimated premium for farm j in run r, and Ptrue,; is the corresponding true premium
value. The Farm-MAD statistic measures the accuracy of the estimated premiums at the farm level.

2) Mean absolute error of the average premiums at the group level (Group-MAD):
13 L250|L NF p . _ (L NF py
3) The difference between the average estimated premium and the average true premium at the

group level (Group-Bias):

1 50 yNF B 1 50 §NF

(14) (SOxNF) Xj=1 Zj=1 by — (SOxNF) Xj=1 Xj=1 Ptruey;.
Both, the Group-MAD and the Group-Bias statistics measure the accuracy of the group average

estimated premiums. As explained in a previous section, the RMA uses the county (i.e., a group of

farmers) as the basic ratemaking unit; hence it is important to analyze the precision of the estimated

average group premiums relative to their corresponding true values.
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Effect of SS, NF, C and premium computation procedures on accuracy of premiums
The relationships between the measures of error/bias (i.e. Group-Bias, Farm-MAD and Group-
MAD) and the rate computation procedures, SS, NF and CC were examined using regression models

of the following form:
(15) Y = Bo + Bss In(SS) + By IN(NF) + BecCC + Xf—; Bu, Dy, +
N Bu,ss Du; In(SS) + Yo, Bu, nr Dy, IN(NF) + P Bum;ccDu,CC + &
The regression models used as dependent variables (v): the Group-Bias, Farm-MAD and

Group-MAD. As explanatory variables the model included the natural log (In) of SS, the In of NF, CC,

dummy variables for each estimation procedure (DM].,j = 2,3,4,5) and simple interactions between

In(SS), In(NF), CC and the method. The $’s are parameters corresponding to the explanatory variables.

To avoid perfect multicollinearity the dummy variable corresponding to estimation procedure 1
(Dy,) was dropped from the models. Separate models using OLS were estimated for each of the five
distributions, resulting in a total of 15 regression models (three measures of accuracy times 5
distributions). Standard errors were estimated using White heteroskedastic consistent covariance
matrix.

The use of the dummy variables in model (7) allows for the estimation and testing of premium-
estimation-procedure specific intercept and slope coefficients. Hence model (7) was used as the
baseline for the estimation of models restricting some of the intercepts and slope parameters to be
equal across models and/or equal to zero. F tests were conducted to verify that the set of parameter
restrictions imposed in each of the final models were statistically valid. The parameter estimates of the

restricted and their corresponding covariance matrix were then used to estimate the intercepts (8, +
Bu,) and slope coefficients ((Bss+Bu; ss), (Bnr + Bu, nr), and (Bec + Bu, cc)) for each premium
estimation method M;.
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Results

Simulation Results

Table 1 shows an example of the results obtained from the simulation experiments. The figures
displayed correspond to the Farm-MAD simulation results assuming a normal distribution. A total of
108 Farm-MAD values were calculated corresponding to each particular combination of SS-NF-CC
and premium estimation procedures. To facilitate comparison of the results across different
distributions, all the Farm-MAD values (as well the other accuracy measures) are calculated relative to
normalized average true premiums equal to 10. For example, the 6.06 figure displayed in the first row
and first column of the table (gray area) corresponds to the Farm-MAD of the premiums estimated
using M1, with 25 farm units (NF=25) in the group, a sample size of 10 observations per farm
(SS=10), 0 correlation between farm yields in the group (CC=0), when the underlying true distribution
is normal. Since the normalized true premium equals 10, the 6.06 value indicates that the farm level
premiums estimated using M1 are, on average, 61% above or below their true values. Tables similar to
Table 1 were constructed for all the five assumed distributions and the three measures of accuracy
(available from the authors upon request) and used to estimate the regression models of the form
shown equation (15).
Regression Analysis Results

Table 2 summarizes the regression analyses results for the Farm-MAD variable under the five
assumed yield distributions. Except for the Farm-MAD regression model for the SBN distribution, all
the other regression models had R? values higher than 0.93, suggesting that most of the variability in
the Farm-MAD variable is explained by SS, NF and CC. However, the sign and magnitude of the

parameter estimates suggest that the effect of these variables differs across distributions and premium
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estimation procedures. The only result that was highly consistent across all methods and distributions
is the negative effect of the sample size which indicates that sample size, as expected, improves the
accuracy of the farm level premium estimates. The number of farms (NF) did not have a statistically
significant effect in about 60% of the cases and in the remaining 40% of cases where it was significant
its effect was either positive or negative. Regarding the effect of CC on the Farm-MAD, in most cases
a higher CC increases Farm-MAD.

Group-MAD regression analyses are shown next in table 3. For M1, M2 and M3, the overall
effect of SS over Group-MAD was similar to the effect of these variables over Farm-MAD (i.e., SS
reduces Group-MADs). For these three methods, NF is also found to improve (i.e. reduce) the Group-
MAD:s in most of the cases. On the other hand, the effect of SS and NF in the performance of M4, M5
and M6 is less conclusive. With regard to the effect of CC, across most methods and distributions CC
has a significant and positive effect, except for M1, M2 and M3 in distribution SBA for which the
effect is negative (somehow consistent with the result observed in the corresponding Farm-MAD
regression model).

Table 4 displays regression analysis results for Group-Bias. Given the fact that the bias can be
positive or negative, the interpretation of the parameter estimate is done in relation to the value of the
intercept which in theory reflects the bias of the procedure when SS, NF and CC equal zero. Similarly
to the previous two regression models, an increase in SS, in the majority of cases, improves the
accuracy (i.e., reduces the bias) of the estimated premiums. The effects of NF and CC are less
conclusive. The only method where the statistically significant parameters had the expected effect
across all distributions was M1.

Taken as a whole, the analysis of the regression results across all distributions suggests the

following:
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a) The sample size (SS) is the only variable that consistently improves the accuracy of the
estimated premiums across most of the methods.

b) The effect of SS and NF on Farm-MAD and Group-MAD for M1, M2 and M3 are
generally consistent with previous expectations and tended to improve the accuracy of the
estimation as compared to the effect of these variables for M4, M5 and M6. This result
might have to do with the fact that M1, M2 and M3 use observed yield data. On the other
hand, M4, M5 and M6 use APH yields which as explained in the methods section are not
necessarily equal to the observed yields.

c) The effect of SS on Farm-MAD and Group-MAD for M1, M2 and M3 is always higher
than the effect of NF. In other words, each additional observation improves more the MAD
of the estimated premiums than each additional farm added to the group.

d) The effect of SS and NF on Farm-MAD and Group-MAD for M1 and M3, as measured by
the estimated parameter values, is always equal or higher than the effect of these variables
for M2. This result might have to do with the fact that M1 and M3 estimate models that are
closer to the true model than the model estimated using M2.

e) Regarding the Group-Bias, the only two methods where SS and NF had the expected bias-
reducing effect were M1 and M3, which as explained previously are the methods that most
closely resemble the “true underlying model.”

f) The CC in most cases has a negative effect on the accuracy of the estimated premiums. This
effect was more clearly observed in the Group-MAD regression models where 27 out of the
30 parameters corresponding to this variable were positive and statistically significant. In the
other two sets of regression models (Farm-MAD and Group-Bias), the CC variable reduces

accuracy of the estimation in about 50% of the cases with the remaining 50% of cases almost
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equally split between being no-significant or improving the accuracy of the estimated
premiums.
Comparison using Predicted Accuracy Measures

Whereas the regression analysis allowed us to analyze the general direction of the effects of
NF, SS and CC on the accuracy of the estimated premiums, a better picture of the magnitude and
economic importance of the effects of these variables can be obtained by looking at the predicted
values of the accuracy measures, especially since both NF and SS are nonlinearly related to the MAD
and Bias measures. The predicted values are used instead of the raw data obtained from the simulations
to tease out systematic sources of the relationships from random sources.

Table 5 displays the predictions of the Farm-MAD values for the Normal distribution using the
regression model showed in Table 1. Similar tables were constructed for all the assumed distributions
and the three measures of accuracy. As can be seen from Table 5, the NF does not reduce the values of
the Farm-MADs in any of the premium estimation procedures when yields are normally distributed.
Since this result was highly consistent across all the distributions and three accuracy measures we only
present tables displaying the average estimated accuracy measures across all NF for each SS and the
average estimated premium across all NF and all SS (lower part of table 5) in table 6 (predicted Farm-
MAD), table 7 (predicted Group-MAD) and table 8 (predicted Bias-MAD).

Regarding the magnitude of the Farm-MADs (table 6), the relative accuracy of the procedure
used to estimate premiums depends on the SS. For the smallest SS of 10, which are likely to occur
especially for new or small crops, M2 and M3 usually outperform (for M3 the exception is the SBN
distribution) all the other methods. As the sample size increases the performance of M1 becomes

comparable to M2 and M3 and in most cases better than both methods at SS=50. These results reveal
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the trade-off between the total number of parameters in the yield models and the accuracy of the
estimated premiums with small sample sizes.

On the other extreme of performance, we have M4 which in most cases is the worst performing
estimation method in terms of Farm-MAD. Even at a SS equal to 50, Farm-MADs from the estimated
premiums using M4 are, on average, at least 70% off their true values. A comparison between M4 and
M5 indicates that the use of the exponential tends to reduce Farm-MADs substantially.

Concerning the performance of M6 which except for the Normal distribution is the incorrect
model, it is interesting to see that this method in some cases outperforms the “true” distribution models
(M1, M2 and M3) or models based on historical losses (M4 and M5). This result highlights the
difficulty of accurately estimating the premiums at the farm level with small samples. Of course, this
result in itself is highly variable and cannot be generalized. Moreover, accuracy improvements when
using the wrong model are generally lower than those obtained with the methods that use the true
models or the nonparametric methods.

Table 7 presents the predicted Group-MAD values which is a measure of the variability of the
average (across all farms) estimated premiums. As it would be expected the variability of the average
group premiums is lower than the variability at the farm level. Across all the distributions, the SS
consistently reduces Group-MADs only for M1 and M3. These two procedures are also the ones with
the lowest Group-MADs at the SS=50. The relative performance of the procedures in terms of the
Group-MADs is more variable at SS equal to 10 and 25, but as in the case of the Farm-MAD, M1, M2
and M3 tend to outperform other methods. On the other extreme of performance among the
procedures, in terms of the Group-MAD, we have M5 which in most cases is the worst or among the
worst performing methods. Group-MADs for M5 are also in every case higher than those for M4. In

other words, the use of the RMA-like exponential procedure increases the variability of the group level
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average premiums relative to the individual historical loss premium estimation procedure. In theory,
the average of the estimated premiums using the exponential obtained from the regression should be
equal to the average value of the dependent variable (ER;); however, there were several cases when the
exponential was found to be higher than -1 and even positive in some of the simulation runs. In those
cases, the estimated Exponential was substituted by a value of -1 which also explains the difference
between the Group-MAD values obtained with M4 and M5.

Group-Bias values for the estimated premiums are shown in table 8. As explained previously,
the Group-Bias measures the difference between the average (across all farms) estimated premiums
and true average group premium. Similarly to Farm-MAD and Group-MAD, we only present the
results of average values (across all NF) for each SS value. Consistent with the regression results, M1
and M3 are the only methods whose accuracy, as measured by the Group-Bias, is improved by the SS;
hence, at the SS=50 they tend to outperform or be comparable with the best of the performing model
across all distributions. However, at SS equal to 10 and 25 the relative performance of all the methods
IS quite variable.

There are three other aspects that can be pointed out in relation to table 8. First, the RMA-like
procedure using the exponential (M5) increases the Group-Bias relative to the individual historical
losses procedure (M4). Second, both M4 and M5 have in most cases a positive bias. And, thirdly the
use of the wrong distribution in M6 results in group average premiums that are biased, however the
magnitude and direction of the bias depends upon the underlying distribution.

In short, the analysis of the predicted accuracy measures suggests the following:

a) M1 and M3 are the only methods whose accuracy as measured by the Farm-MAD,

Group-MAD and Bias-MAD is significantly and consistently improved by the SS.
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b) Related with the previous results, for the largest SS (50) M1 and M3 tend to be the most
accurate methods.

c) When SS equals 10 and 25 the relative performance of all the evaluated procedures is
more variable, however M1, M2 and M3 are always among the most accurate procedures.
d) Consistent with the regression results, the effect of CC was more obvious in the Group-
MAD values and M1, M2 and M3 where Group-MADs with CC=0.5 were about twice as
big as the Group-MADs with CC=0.

e) Even though in some instances M6 outperform other procedures in terms of Group-
MAD and Group-Bias, no pattern of performance of the procedure is obvious, except for
the normal distribution in which case, as expected, its performance is the same as M1.

f) The use and calculation of the yield exponential (M5) to go from the group average
premium to the individual premium decreases the variability of the farm level premium
estimates but increases both the variability and the bias of the group premium estimates.

Conclusions and Implications

Since the Farm-MAD values measure the variability of the premium estimates at the individual

(farm) level, in our opinion, they should be the focus of any analysis looking at the relative

performance of insurance premium procedures. After all, a market based crop insurance program can

only be successful if farmers are charged at least approximately fair premiums. Simulation results

indicate that farm level premium estimates based on individual yield data and approximately correct

yield models (M1, M2 and M3) are significantly more accurate than those based on historical

indemnity and liability records (M4 and M5) or incorrect yield models (M6). From an implementation

perspective, both types of approaches require the use of statistical models for estimation. What this

result suggests is that the additional time and effort (if any) spent trying to model an appropriate yield
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distribution model can result in significant accuracy gains, thus reducing the potential for adverse
selection problems.

Our simulation results also suggest that with small samples simpler yield models that include
one mean and variance for the group (or several means and one variance) provide farm level premiums
that are on average closer to the farm “true” premium than models than intend to estimate separate
means and variances for each individual farm. This apparent counterintuitive result indicates than with
small sample sizes (25 years or less) the added variability of estimating a large number of parameters
can outweigh potential accuracy gains obtained from estimating the “correct” model which in this case
includes a separate mean and variance for each farm yield model.

The simulation results also indicate that with small samples an appropriate characterization of
the “group” yield distributions skewness and kurtosis might be more important than the estimation of
the individual farm variances and/or means.

The RMA’s current approach to farm level premium estimation can be seen as a top-down type
of premium estimation approach. The procedure begins with the calculation of a county (group)
premium rate. Individual farms’ premiums are then calculating based on the farm’s APH yields
relative the group average yield. Our simulation of a similar procedure showed that in fact the accuracy
of individual level farm premiums is reduced relative to a procedure where premiums are estimated
based on individual indemnity and liability data (M5 versus M4). However, the simulations also
showed that, contrary to expectations, this type of approach increases both the variability and bias of
the group average premiums (Group-MAD and Bias-MAD).

Finally, with regard to the effect of the number of observations and number of farms on the
accuracy of premium estimates, our results suggest that in general time would be better spent on trying

to find more years of data than additional farms.
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Table 1. Farm-MAD of Estimated Premiums: Normal Distribution

Correlation Coefficient

SS NF 0 0.5

Premium Estimation Procedure Premium Estimation Procedure

M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6

25 606 394 330 1297 1054 632 597 458 471 1262 1024 662
10 50 639 389 337 1492 1238 681 6.7 567 437 1148 818 6.49
100 626 428 347 1468 1224 676 590 480 481 1461 1247 656
25 407 316 236 1079 1014 429 400 476 330 991 925 417
25 50 410 419 333 1220 1141 436 415 465 390 838 7.33 471
100 410 412 321 1266 1243 418 395 458 364 1242 1246 3.98
25 284 444 283 955 1000 297 294 510 374 817 814 290
0 50 201 417 296 1144 1173 3.06 284 437 357 716 672 3.13
100 3.00 366 3.14 1298 1389 3.03 291 409 324 1078 11.61 3.12

Notes: SS=sample size, NF= number of farms, CC=correlation coefficient

M1.: true distribution and separate means and variances for each farm

MZ2: true distribution with constant mean and variance for all farms

M3: true distribution with different means but a constant variance for all farms

M4: individual farm indemnities using APH yields

M5: RMA-like procedure based on “group” indemnities and liabilities using APH yields and
exponential

M6: normal distribution with separate means and variances for each farm
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Table 2. Farm-MAD Regression Model Results

M1 M2 M3 M4 M5 M6 .
Normal Distribution R2  Adj-R2
Intercept 11.518 *** 4,707 *** 4,707 *** 11.518 *** 4,707 *** 11,518 *** 0.964 0.960
In(SS) -2.154 *** -0.172 -0.440 *** -2.154 ***  -0.440 *** 2,154 ***
In(NF) -0.049 -0.049 -0.049 1.976 *** 2.108 *** -0.049
CC -0.157 1.548 *** 1.548 *** -3.831 *** -3.831 *** -0.157
SBB
Intercept 20.313 *** 5,952 *** 11.080 *** 25.203 *** 16.970 *** 12.605 *** 0945 0.934
In(SS) -4.503 *** -0.696 ***  -2507 *** -3.686 *** -2.507 *** -1.38]1 ***
In(NF) 0.144 -0.177 0.144 -0.824 *** -0.824 *** 0.144
CcC -0.909 ** 3.317 *** 3.317 *** -0.909 ** 1.813 ** 0.002
SBA
Intercept 12.773 *** 7.604 *** 22775 *** 17.338 *** 12.773 *** 7.604 *** 0.728 0.706
In(SS) -2.338 *** -0.978 *** -4 559 *** -2.338 *** -0.978 *** -0.978 ***
In(NF) 0.000 0.000 0.000 0.000 0.000 0.000
CcC -5.422 *** 0.000 -5.422 *** 0.000 -5.422 *** 8.665 ***
SUA
Intercept 17.555 *** 8.499 *** 8.499 *** 22.915 *** 17555 *** 17,555 *** (0976 0.973
In(SS) -2.827 *** 1170 ***  -1.170 *** -3.638 ***  .2.827 *** 1,784 ***
In(NF) -1.024 *** 0,585 ***  -(0.585 *** 0.000 -0.585 *** 0.000
CC 1.717 *** 4,492 *** 4,492 *** 1.717 *** 5.392 *** 0,405
SUB
Intercept 18.477 *** 8.071 *** 11.716 *** 19.167 *** 11.622 *** 11.662 *** 0.925 0.905
In(SS) -3.069 *** 1,055 *** -1.902 *** -3.678 ***  -2.419 *** 1,189 ***
In(NF) -0.946 ** -0.507 * -0.588 ** 0.594 * 0.412 0.117
cC 0.949 3.947 *** 3.822 *** 1.636 ** 3.640 *** -0,258

Notes: SS=sample size, NF= number of farms, CC=correlation coefficient. One (*), two (**) and three

(***) asterisks represent 0.10, 0.05 and 0.01 levels of statistical significance, respectively.

M1: true distribution and separate means and variances for each farm

M2: true distribution with constant mean and variance for all farms

Ma3: true distribution with different means but a constant variance for all farms

M4: individual farm indemnities using APH yields

M5: RMA-like procedure based on “group” indemnities and liabilities using APH yields and
exponential

M6: normal distribution with separate means and variances for each farm
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Table 3. Group-MAD Regression Model Results

M1 M2 M3 M4 M5 M6 .
Normal Distribution Re  Adj-R2
Intercept 3.993 *** 3003 *** 3093 *** 2062 -2.062 3.993 ** (0934 0927
In(SS) -0.796 *** -0.299 *** -0,796 ** 0.667 ** 0.667 ** -0.796 ***
In(NF) -0.154 ** -0.154 ** -0.154 ** 1.408 *** 1957 *** -0.154 **
CcC 3.036 *** 1571 ***  3.036 ** 5877 *** 5877 ** 3.036 ***
SBB
Intercept 8.823 *** 4416 *** 12.600 *** 0,204 *** 12886 ** 4416 ** 0.878 0.860
In(SS) -1.487 *** -0.614 *** -3.087 *** -1.487 *** -2.263 *** (.557 ***
In(NF) -0.588 ***  -0.027 0.027  -0.588 %% 0588 ** 0027
CcC 5.272 *** 4220 *** 4,220 *** 5272 *** 4220 *>** 1790 ***
SBA
Intercept 13.297 *** 2,336 *** 25271 *** 5518 *** 13297 *>** 2336 ** 0.643 0.606
In(SS) -2.731 ***  0.000 5.722 *** (0.000 0.000 0.000
In(NF) 0.000 0.000 0.000 0.000 -1.662 ** 0.000
CcC -6.636 *** -0.487 * -6.636 *** K777 *** K777 *** 1153 **
SUA
Intercept 9.540 *** 9540 *** 9,540 *** 0,540 *** 14.844 *** 9540 ** (0901 0.893
In(SS) -1.368 *** -1.368 *** -1,368 *** -2.125 *** 3212 *** -1.368 ***
In(NF) -0.860 *** -0.860 *** -0.860 *** 0.000 0.000 -0.529 ***
CcC 5.164 *** 5164 *** 5164 *>** 5164 *** 3100 ** 5164 ***
SUB
Intercept 7.785 *** 6506 *** 11.407 *** 2.966 *** 6.506 ** 2966 ** 0873 0.8%4
In(SS) -1.141 ***  -1.141 *** -2,189 ** -0.520 ** -1.141 *** (.583 ***
In(NF) -0.608 *** -0.364 ** -0.608 *** (0.694 *** (0.694 *** (0.280 *
CcC 3.236 *** 4813 *** 4813 ** 3.236 *** 1.051 ** 1.051 **

Notes: SS=sample size, NF= number of farms, CC=correlation coefficient. One (*), two (**) and three

(***) asterisks represent 0.10, 0.05 and 0.01 levels of statistical significance, respectively.

M1: true distribution and separate means and variances for each farm

M2: true distribution with constant mean and variance for all farms

Ma3: true distribution with different means but a constant variance for all farms

M4: individual farm indemnities using APH yields

M5: RMA-like procedure based on “group” indemnities and liabilities using APH yields and
exponential

M6: normal distribution with separate means and variances for each farm
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Table 4. Group-Bias Regression Model Results

M1 M2 M3 M4 M5 M6 .
Normal Distribution R2 Ad)-R2
Intercept -1.714 ** 0.942 -2.304 *** -1.714 ** 0.846 0.846 0.946 0.940
In(SS) 0.452 *** 0.452 *** 0.452 *** 0.452 *** 0.452 *** -0.107
In(NF) -0.026 -0.026 -0.026 2.134 *** 2.134 *** -0.026
CcC 0.165 0.165 0.165 -5.008 ***  .5008 *** 0.165
SBB
Intercept -11.778 *** -2.394 *** 7.360 *** 1.098 *** 8.611 *** -1.681 * 0.879 0.865
In(SS) 2.207 *** 0.000 -2.893 *** 0.000 -1.806 *** -1.321 ***
In(NF) 0.920 *** 0.000 0.920 *** 0.000 0.000 0.000
CcC -0.856 ** -0.856 ** -0.856 ** -0.856 ** -0.856 ** -0.856 **
SBA
Intercept 7.925 ** 0.883 19.023 ***  19.023 ***  19.023 *** 0.883 0559 0514
In(SS) -1.526 ** 0.000 -4,294 *** 0.000 0.000 0.000
In(NF) 0.370 0.370 0.370 -4,083 *** 3516 *** 0.370
CcC -9.49]1 *** -0.641 * -0.491 **+ 9,242 *** 9.242 *** -0.641 *
SUA
Intercept 3.380 *** -0.280 3.380 ***  -0.280 7.142 *** -0.280 0.768 0.739
In(SS) -0.017 -0.017 -0.436 ** -0.436 ** -1.868 *** -0.017
In(NF) -0.809 *** -0.252 ** -0.252 ** 0.634 *** 0.634 *** 0.034
CcC -1.157 ** -0.302 -0.302 -1.157 ** -2.709 ** -1.157 **
SUB
Intercept 4137 ** 1.108 6.502 ***  -3.811 *** 1.108 -3.811 *** 0931 0.922
In(SS) -0.448 *** -0.448 *** -1.684 *** 0.607 ** -0.448 *** -0.629 ***
In(NF) -0.554 * -0.023 -0.023 1.428 *** 1.428 *** -0.023
CcC -2.299 *** -2.299 *** 0.263 -2.299 *** 299 *** 0.263

Notes: SS=sample size, NF= number of farms, CC=correlation coefficient. One (*), two (**) and three

(***) asterisks represent 0.10, 0.05 and 0.01 levels of statistical significance, respectively.

M1: true distribution and separate means and variances for each farm

MZ2: true distribution with constant mean and variance for all farms

Ma3: true distribution with different means but a constant variance for all farms

M4: individual farm indemnities using APH yields

M5: RMA-like procedure based on “group” indemnities and liabilities using APH yields and
exponential

M6: normal distribution with separate means and variances for each farm
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Table 5. Predicted Farm-level Mean Absolute Differences of Estimated Premiums: Normal
Distribution

Correlation Coefficient

SS NF 0 0.5

Premium Estimation Procedure Premium Estimation Procedure

ML M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6

25 588 421 336 1073 7.92 583 585 499 414 1285 10.05 5.79

10 50 6.36 4.12 350 1429 1194 6.36 6.29 489 428 1237 10.03 6.29
100 6.33 4.09 347 1566 1340 633 6.25 486 4.24 13.74 1149 6.25

25 443 400 3.13 1094 10.08 4.43 435 477 391 9.03 816 435

25 50 439 396 3.10 1231 1154 439 431 474 3.87 1040 9.62 431
100 436 393 3.06 13.68 13.00 436 4.28 470 3.84 11.77 11.08 4.28

25 293 388 283 945 977 293 285 465 360 754 786 285

50 50 290 384 279 1082 1123 290 282 462 357 891 932 282
100 286 3.81 276 1219 1269 286 279 458 353 10.28 10.78 2.79

25 459 401 317 1110 1011 459 451 478 394 919 819 451
All 50 455 397 313 1247 1157 455 447 475 391 1056 9.66 4.47
100 452 394 3.10 13.84 13.03 452 444 471 3.87 1193 1112 444

10 6.36 412 350 1429 1194 6.36 6.29 4.89 428 1237 10.03 6.29
25 Al 439 396 310 1231 1154 439 431 474 387 1040 9.62 431
50 290 384 279 1082 1123 290 282 462 357 891 932 282

All Al 455 398 313 1247 1157 455 447 475 391 1056 9.66 4.47

Notes: SS=sample size, NF= number of farms.

M1: true distribution and separate means and variances for each farm

M2: true distribution with constant mean and variance for all farms

Ma3: true distribution with different means but a constant variance for all farms

M4: individual farm indemnities using APH yields

M5: RMA-like procedure based on “group” indemnities and liabilities using APH yields and
exponential

M6: normal distribution with separate means and variances for each farm
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Table 6. Predicted Farm-level Mean Absolute Differences of Estimated Premiums

Correlation Coefficient

Distribution SS NF 0 0.5
Premium Estimation Procedure Premium Estimation Procedure
M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6
10 6.36 4.12 350 1429 1194 636 6.29 489 4.28 12.37 10.03 6.29
Normal All 25 439 396 310 1231 1154 439 431 474 3.87 1040 962 431
50 290 384 279 1082 1123 290 282 462 357 891 932 282
All All 455 3,98 313 1247 1157 455 447 475 391 1056 9.66 4.47
10 1051 366 587 1349 797 999 1005 532 753 13.04 888 9.99
SBB All 25 6.38 3.02 358 1011 568 873 593 468 523 966 658 8.73
50 326 254 184 756 394 777 281 420 350 710 48 7.77
All All 6.72 3.07 376 1039 58 883 626 473 542 993 6.77 8.83
10 739 535 1228 1195 1052 535 468 535 957 1195 781 9.68
SBA All 25 525 445 810 981 962 445 253 445 539 981 691 8.79
50 363 378 494 819 89 378 091 378 223 819 623 8.11
All All 542 453 844 998 970 453 271 453 573 998 698 8.86
10 704 352 352 1454 876 1345 790 576 576 1540 1145 13.25
SUA All 25 445 244 244 1120 6.17 1181 531 469 4.69 1206 886 11.61
50 249 163 163 868 421 1058 335 388 3.88 954 6.90 10.37
All All 466 253 253 1147 6.38 1195 552 478 478 1233 9.07 11.74
10 771 366 504 13.02 7.67 938 818 563 6.95 13.84 949 9.25
SUB All 25 490 269 329 965 545 829 537 466 521 1047 7.27 8.16
50 277 19 198 7.10 377 747 324 393 3.8 792 559 7.34
All All 512 277 344 992 563 838 560 474 535 1074 745 8.25

Notes: SS=sample size, NF= number of farms

M1: true distribution and separate means and variances for each farm
MZ2: true distribution with constant mean and variance for all farms

M3: true distribution with different means but a constant variance for all farms

M4: individual farm indemnities using APH yields

M5: RMA-like procedure based on “group” indemnities and liabilities using APH yields and

exponential
M6: normal distribution with separate means and variances for each farm
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Table 7. Predicted Group-level Mean Absolute Differences of Estimated Premiums

Correlation Coefficient

Distribution SS NF 0 0.5
Premium Estimation Procedure Premium Estimation Procedure
M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6
10 15 270 156 498 713 156 3.08 349 3.08 7.92 10.07 3.08
Normal All 25 083 243 083 559 774 083 235 321 235 8531068 2.35
50 028 222 028 605 820 028 180 301 1.80 899 1114 1.80
All All 089 245 089 554 769 089 241 324 241 848 1063 241
10 310 290 539 357 537 559 573 501 750 6.20 748 6.49
SBB All 25 174 233 256 221 330 610 437 444 467 484 541 7.00
50 070 191 042 117 173 649 334 402 253 381 384 7.38
All All 185 238 279 232 347 606 448 449 490 495 558 6.9
10 701 234 1210 552 679 234 369 209 878 841 9.68 2091
SBN All 25 451 234 685 552 679 234 119 209 354 841 968 291
50 261 234 289 552 679 234 -070 209 043 841 968 2091
All All 471 234 728 552 679 234 139 209 39 841 968 2091
10 303 3.03 303 465 745 432 561 561 561 723 900 6.9
SUI All 25 177 177 177 270 450 307 435 435 435 528 6.05 5.65
50 082 082 082 123 228 212 341 341 341 381 383 4.70
All All 187 187 187 286 474 317 446 446 4.46 544 629 5.75
10 278 246 399 448 659 541 440 48 6.39 6.10 712 5.93
SUR All 25 173 141 198 401 555 594 335 382 439 563 6.07 6.47
50 094 062 046 365 476 634 256 303 287 527 528 6.87
All All 182 150 214 405 563 590 344 39 455 567 6.16 6.42

Notes: SS=sample size, NF= number of farms

M1: true distribution and separate means and variances for each farm
MZ2: true distribution with constant mean and variance for all farms

M3: true distribution with different means but a constant variance for all farms

M4: individual farm indemnities using APH yields
M5: RMA-like procedure based on “group” indemnities and liabilities using APH yields and

exponential

M6: normal distribution with separate means and variances for each farm
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Table 8. Predicted Group-level Bias of Estimated Premiums

Correlation Coefficient

Distribution SS  NF 0 0.5
Premium Estimation Procedure Premium Estimation Procedure
ML M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6
10 -1.08 160 -166 435 681 062 -1.03 165 -161 737 983 0.68
Normal All 25 -0.35 233 -093 508 754 032 -030 239 -0.87 811 1057 0.37
50 020 2.89 -037 564 810 009 026 294 -032 866 11.12 0.14
All Al -041 227 -099 502 748 034 -036 233 -093 805 1051 0.40
10 -270 239 404 110 382 -486 -3.13 -282 361 067 339 -529
SBB All 25 -150 -2.39 233 110 302 -566 -192 -282 190 067 259 -6.09
50 051 239 -052 110 169 -6.99 008 -282 -095 067 126 -7.42
All Al -123 239 195 110 284 -584 -166 -282 152 067 241 -6.27
10 586 2.33 1058 305 527 233 111 201 584 767 989 201
SBA All 25 446 233 665 305 527 233 -029 201 190 767 989 201
50 340 233 367 305 527 233 -1.34 201 -107 767 989 201
All  All 457 233 697 305 527 233 -017 201 222 767 989 201
10 018 -1.30 139 119 532 -019 -040 -146 124 062 396 -0.76
SUA All 25 016 -1.32 099 079 361 -020 -042 -147 084 022 225 -0.78
50 015 -133 069 049 231 -021 -043 -148 054 -009 0.9 -0.79
All Al 016 -1.32 102 08 375 -020 -042 -147 087 025 239 -0.78
10 094 0.01 254 317 566 -535 -021 -116 267 202 451 -522
SUB All 25 053 042 099 373 525 -593 -062 -157 112 258 410 -580
50 022 0.74 -017 415 494 -636 -093 -1.8 -004 300 379 -6.23
All Al 056 039 112 368 528 -588 -059 -154 125 253 413 -575

Notes: SS=sample size, NF= number of farms

M1: true distribution and separate means and variances for each farm
MZ2: true distribution with constant mean and variance for all farms

M3: true distribution with different means but a constant variance for all farms

M4: individual farm indemnities using APH yields
M5: RMA-like procedure based on “group” indemnities and liabilities using APH yields and

exponential
M6: normal distribution with separate means and variances for each farm
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