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Abstract. As a key component of the carbon cycle, soil££O probably because infrequent measurement schemes have in-
efflux (SCE) is being increasingly studied to improve our sufficient capacity to detect shifts in the climate dependen-
mechanistic understanding of this important carbon flux. Precies of SCE. Hence, the most justified answer to the question
dicting ecosystem responses to climate change often dependd whether current moisture responses of SCE can be ex-
on extrapolation of current relationships between ecosystentrapolated to predict SCE under altered precipitation regimes
processes and their climatic drivers to conditions not yet exdis “no” — as based on the most reliable data sets available.
perienced by the ecosystem. This raises the question of tdVe strongly recommend that future experiments focus more
what extent these relationships remain unaltered beyond thstrongly on establishing response functions across a broader
current climatic window for which observations are avail- range of precipitation regimes and soil moisture conditions.
able to constrain the relationships. Here, we evaluate whetheBuch experiments should make accurate measurements of
current responses of SCE to fluctuations in soil temperaturevater availability, should conduct high-frequency SCE mea-
and soil water content can be used to predict SCE under alsurements, and should consider both instantaneous responses
tered rainfall patterns. Of the 58 experiments for which weand the potential legacy effects of climate extremes. This is
gathered SCE data, 20 were discarded because either too femportant, because with the novel approach presented here,
data were available or inconsistencies precluded their incorwe demonstrated that, at least for some ecosystems, current
poration in the analyses. The 38 remaining experiments werenoisture responses could not be extrapolated to predict SCE
used to test the hypothesis that a model parameterized withnder altered rainfall conditions.

data from the control plots (using soil temperature and wa-
ter content as predictor variables) could adequately predict
SCE measured in the manipulated treatment. Only for 7 of
these 38 experiments was this hypothesis rejected. Impor1

tantly, these were the experiments with the most reliable datiioil respiration (SCE) is a crucial component of the terres-

sets, i.e., thos'e providing hlgh frequency measurements oial carbon cycle. Comprising about 100 Pg C¥i(Bond-
SCE. Regression tree analysis demonstrated that our hypoth-
; . ) ) Lamberty and Thomson, 2010b), SCE represents the largest
esis could be rejected only for experiments with measure- .
! : terrestrial carbon flux to the atmosphere. Furthermore, be-
ment intervals of less than 11 days, and was not rejected for . : .
. . . cause SCE includes both autotrophic and heterotrophic

any of the 24 experiments with larger measurement intervals,

This highlights the importance of high-frequency measure_components, it reflects the performance of both plants

ments when studying effects of altered precipitation on SCEand microbes. Soil respiration depends on available sub-
ying precip 'strates and, accordingly, differences in SCE across different

Introduction
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ecosystems have been related to photosynthetic productivRolding capacity), and timing of the rain or drought events
ity (e.g., Janssens et al., 2001; Vargas et al., 2010; Hogber@e.g., spring versus summer) (Knapp et al., 2008). Soil type
et al., 2001; Bahn et al., 2008), thereby emphasizing the instrongly affects responses to drought events (Kljun et al.,
terdependence of microbes and plants. The two key abioti006) by determining water holding capacity and thus wa-
climate-related factors that influence SCE dynamics in ter-ter availability. However, the manipulation experiments con-
restrial ecosystems are temperature and soil moisture (Raictiucted to date have rarely provided the necessary data (e.qg.,
and Schlesinger, 1992). soil water potential) for estimation of available soil water to
Raising temperature increases metabolic reaction rateglants and microbes (Vicca et al., 2012a), which consider-
and hence microbial and plant respiration (Larcher, 2003)ably hampers our ability to characterize global patterns of
The temperature response of SCE can usually be expressatosystem responses to altered precipitation regimes.
as an exponential curve, such as the frequently used Ar-
rhenius function orQio function (Davidson and Janssens,
2006). The relationship of SCE with moisture is less straight-
forward than that with temperature. Briefly, at suboptimal
soil moisture, osmotic stress and substrate diffusion limit mi-Because model projections of future climate are highly sen-
crobial activity (Moyano et al., 2013; Schimel et al., 2007). In sitive to the assumed response of SCE to changes in its abi-
addition, root respiration typically declines when soil mois- otic drivers (Friedlingstein et al., 2006; Wieder et al., 2013),
ture decreases below optimal levels (Heinemeyer et al., 2012a current challenge for ecologists is to test whether exist-
Bryla et al., 2001; Burton et al., 1998; Thorne and Frank, ing relationships between SCE and soil water content (SWC)
2009) due to reduced root growth and ion uptake, as wellcan be extrapolated to predict future ecosystem—-atmosphere
as reduced maintenance costs following protein degradatiorfeedbacks. Soil respiration has been measured in many obser-
lower membrane potentials and increased root death (Huangational studies, and data were recently collated into a global
et al., 2005; Eissenstat et al., 1999). At supra-optimum soildatabase (Bond-Lamberty and Thomson, 2010a). Such large
moisture levels, SCE decreases with increasing soil moisdata sets have great potential for improving our understand-
ture, primarily because of reduced oxygen levels availableing of terrestrial carbon cycling and for improving Earth sys-
to microbes (Moyano et al., 2013; Jungkunst et al., 2008;tem models. Nonetheless, it remains unclear to what extent
Vicca et al., 2009) and plant roots (Mékiranta et al., 2008). Incurrent-climate observations are actually suitable for predict-
summary, the short-term response of SCE to changes in soihg future patterns of SCE, given that rainfall patterns are
moisture is not monotonic; SCE increases from low to inter-expected to change in the future. Extreme events such as se-
mediate soil moisture, reaches a plateau at optimum moisvere heat waves and droughts are expected to increase in in-

1.2 Extrapolation to different climate scenarios

ture, and decreases again at high soil moisture. tensity and periodicity. Although current model projections
of climate extremes remain uncertain (with contradicting re-

1.1 Responses of soil C@efflux to precipitation sults from different models), consensus is growing that, for
manipulations example, the number of consecutive dry days will increase

in the drier temperate regions (Orlowsky and Seneviratne,
Given the strong non-monotonic response of SCE to so0il2012; Seneviratne et al., 2012). In the Mediterranean region,
moisture, changes in the hydrological cycle with climate longer dry spells and more intense precipitation events are
change may have a large and nonlinear impact on this carvery likely (Seneviratne et al., 2012).
bon flux. Impacts of altered precipitation on ecosystem pro- Altered precipitation patterns, and extreme drought and
cesses have been studied less extensively than those of warmainfall events in particular, may cause structural changes in
ing and elevated atmospheric g@oncentrations (Jentsch the ecosystem (for a detailed overview, see van der Molen et
et al., 2007), but multiple precipitation manipulation experi- al., 2011). For example, changes in precipitation patterns can
ments have been conducted in several biomes in recent yeadecrease microbial biomass and alter microbial community
(Beier et al., 2012). Wu et al. (2011) conducted a first meta-composition (Curiel Yuste et al., 2012; Jentsch et al., 2011;
analysis of these experiments, reporting overall effects of al-Sanaullah et al., 2011; Tian et al., 2012) as well as soil struc-
tered rainfall on plant productivity and SCE. Because mostture (Sowerby et al., 2008) and vegetation structure (e.g.,
of these experiments are conducted in ecosystems where wasot-to-shoot ratio) and composition (De Dato et al., 2008;
ter availability is at or below optimum levels, drought is Morecroft et al., 2004). Extreme drought events can also af-
generally reported to reduce SCE, whereas SCE usually infect soil water availability and nutrient retention via increases
creases in response to water addition (Wu et al., 2011). Thén soil hydrophobicity (Bloor and Bardgett, 2012; Goebel et
non-monotonic relationship between SCE and soil moistureal., 2011; Muhr et al., 2010). Such structural changes can
however, suggests that the influence of altered rainfall patalter SCE in a way that may not be predictable from current-
terns depends not only on the direction and magnitude otlimate observations. Moreover, the relationships between
change in precipitation but also on ecosystem characteristicSCE and soil moisture could change, or show large time
such as climate (wet or dry region), soil type (defining waterlags in response to rewetting (Joos et al., 2010), rendering
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relationships based on current-climate observations invalid In order to test whether the moisture response of SCE as
for predictions of SCE under altered precipitation regimes. observed in the control plots can be used to predict SCE un-
We use the most comprehensive data set of ecosystemer altered rainfall patterns, we followed the protocol pre-
precipitation manipulation experiments currently available tosented in Fig. 2. We first tested which of four models best fit-
explore whether response functions for SCE established unted SCEontro. These models take into account SWC as well
der ambient conditions are useful for explaining variation as ST, because the latter is an important driver of fluctuation
in SCE under altered precipitation regimes. Specifically, forin SCE over time. Soil temperatures hardly differed between
each experiment, we tested the hypothesis (H1) that the sotontrol and treatment plots (data not shown). For this and fur-
moisture response of SCE as observed from fluctuations oveher analyses, experiments with no more than 10 data points
time in the control plots can be extrapolated to predict SCEwere discarded. The four models (which have been used pre-
in plots exposed to a different precipitation regime. Testingviously, see, for example, Curiel Yuste et al., 2003; Kopittke
this hypothesis is important because ecosystem models uset al., 2013) were
ally use functions dependent on soil moisture to predict SCE
under current and future climate scenarios. Rejection of H1/09(SR) =a + bST+ cSWC, (1)
would suggest that the manipulation of precipitation alteredlog(SR) = a + bST+ log(c + dSWO), 2
the relationship of SCE with soil moisture. We further exam-
ined the vegetation types, climate zones, soil types and mal-Og (SR) = a +bST+log(c +dSWC+ e SWC), (3)
nipulation regimes for which H1 was and was not rejected.l0g(SR) = a +bST+ cSWC+ dSWC. (4)
Finally, for the experiments where H1 was rejected, we tested . ) ]
whether rejection of our hypothesis was caused by swcThese four models all reflect an exponennal relationship be-
in manipulated treatments exceeding the range of SWC entWeen SCE and ST; the relationship between log(SCE) and
countered in the control plots, or whether this rejection moreSWC is linear, quadratic, exponential linear and exponential
likely resulted from structural changes within the ecosystem. duadratic for models 1, 2, 3 and 4, respectively. The first two
Based on the above-mentioned mechanisms, we expect Hmodels characterize soil moisture response as a monotonic
to be rejected, not only when SWC in the treatment exceedéunction (increasing whed is positive), whereas models 3

SWC in the control but also after SWC recovered but otherand 4 allow non-monotonic responses. Model coefficients
ecosystem properties did not. and goodness-of-fit parameters for all sites and models are

presented in Supplement Tables S3 and S4.

Model selection was based on the second-order Akaike in-
formation criterion (AICc). Across all sites, model 4 showed
a significantly lower AICc than all other models (Wilcoxon
sign rank testp < 0.05). Therefore, we opted to use model 4
for all subsequent analyses. However, residuals were not nor-

We gathered information from single-factor field experi- mally _distributed for seven experiments, which were there-
ments in which precipitation was altered, and where SCE, s1ore discarded from the subsequent analyses (note that for
and SWC were measured in both control and treatment p|0t§qese experiments the normal distribution criterion was usu-
(further referred to as SGBatrol and SCEeatment SWCeontrol ally not met for any of the other three models either). Ar-
and SWGeamen). Whenever available, we collected high- guablyZ we couldlhave thed for the best of the four models
frequency data (i.e., daily values; if hourly measurementsfor @ given experiment instead of the best model across ex-
were available, these were averaged to obtain daily Va|ue99er|ments. We opt_ed for the latter to av_0|d possu_ble artifacts
of SCE, soil temperature (ST) and SWC. In the majority of related to using dlffergnt models .for different sites. More-
the experiments, however, the measurement interval for SCIVer, results were similar when using models 1-3 (but fewer
was larger than a day. Detailed information for all manipula- Sites were eligible for the tests, data not shown), .
tion experiments and the SCE data used in this study is given We parameterized model 4 for each of the 45 remain-
in Appendix Tables A1, B1 and C1; species composition foriNg €xperiments using the control data, and used the result-
each site is provided in Supplement Table S1. The timing ofind model coefficients spgcnﬁc to each site to test whether
measurements and manipulation for all experiments is showPCEreamentcould be predicted. Subsequently, these results
in Figs. S1 and S2. The individual responsible for data avail-Were used to test our hypothesis that the moisture response
ability in each experiment, along with contact details, is pro- ©f SCE as observed in the control plots can be extrapolated
vided in Supplement Table S2. An overview of the averaget© Predict SCleatment We set forward two criteria indica-
change in annual precipitation and the direction of the ma-tive for goodne;g of extrapolation from control conditions to
nipulation effect on SCE is presented in Fig. 1, for which tréatment conditions:

differences in SCE between control and treatment were an-

alyzed using repeated measures ANOVA, with measurement

day as the within-subject factor.

2 Methods

2.1 Data collection and analysis

Biogeosciences, 11, 2992013 2014 www.biogeosciences.net/11/2991/2014/
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|T0ta| number of experiments: 58 |

Discard experiments with <10 data points (n=6)

Wn=52
Across experiments: select best of four potential models for control data (based on AlCc)

Discard experiments for which residuals of
control model are not normally distributed
(n=7)

W n=45

Within-experiment: predict SCE;..imen: fOr the entire dataset and for a subset of the data
using only dates when SWC,aatmen: Was within the range of SWC,giro (cOmmon SWC subset).
Predictions are made using a model parameterized for the complete control dataset.

¥

Within-experiment: test for entire dataset and common SWC subset
the hypothesis (H1) that SCE; agtmen: Can be predicted from the model
parameterized for the control via two criteria:

1) Normal distribution of residuals (Lilliefors test)

2) RMSEtreatment < 2’E:RMSEmn':ml
Reject H1 if at least one of both criteria is not met

Discard non-robust experiments (where common SWC subset
rejected H1 while the entire dataset accepted H1, or vice versa;

n=7)
n=38 wn=38
|Trend analysis (runs test) | | CART-analysis |

Figure 1. (a) Overview of the magnitude and direction of precipitation effect on soip €flux (SCE) for the different experiments. Arrows

point from control precipitation to treatment precipitation (averaged over different years in case of multi-year data). Crosses localize control
conditions in terms of annual precipitation and mean annual temperature (MAT). Black arrows indicate a positive correlation between precip-
itation manipulation and SCE, i.e., an increase of SCE when precipitation increases, or a decrease of SCE when precipitation is reduced. Gra)
arrows indicate negative correlations (which could be considered to reflect somewhat unexpected results). Bold arrows represent significant
differences between SCE treatment and SCE conpret 0.05), while thin arrows reflect non-significant differences (repeated measures
ANOVA). Panel(b) shows the biomes that are represented by our data set (biome figure adapted from Chapin et al., 2002).

1. The difference between SGE&imentpredicted by the Rejection of H1 may have resulted from structural changes
control model (further termed “predicted Sgegiment) in the ecosystem, or may merely reflect erroneous extrap-
and observed SGEamentfollowed a normal distribu-  olation beyond the range of the conditions observed in the
tion (Lilliefors test). control. To test whether such erroneous extrapolation was re-

sponsible for rejection of H1, we performed the two tests
for H1 also on a subset of the data, using only dates when
SWGreatmentWas within the range of SWiGniro (further
o ) i simply referred to as “common SWC subset”). We consider
cause itindicates the goodness of it {0 Gdgnent tak the results robust when the outcomes of the analysis for the

Ing into account the performance of the control model, entire data set and for the common SWC subset agree and po-
Because no generally accepted threshold for accuratf

2. The root-mean-square error (RMSE) for predicted
SCEBreatmentwWas less than double the RMSE for pre-
dicted SCEontrol. This second criterion is critical, be-

data—model agreement exists. we opted for a stringen ential rejection of H1 is unlikely due to extrapolation. Only
threshold whe%e RMSE < 2RM§E€ which 9€Mor such robust sites were subsequent analyses performed.
N OUI CASE WaS EXCEe dgtcTﬁ?tonly a fewosr;f[rgg (Appendix We used classification and regression tree (CART) anal-
Table C1). Visual inspection of the figures for pre- ysis to investigate whether rejection of H1 was related to

. . .dsite or experimental characteristics. For this analysis, we in-
dicted versus measured values (Fig. S3) and the resi Cluded only the robust experiments£ 38; see also Fig. 2)
uals (Fig. S1) indicated that this criterion was justified y P ' 9. <)

e Predictor variables used in the CART analysis were veg-
for rejecting H1. : .
etation type (grassland, forest, shrubland or agricultural
When both conditions were fulfilled, the prediction of land), hydrology (xeric, mesic or hydric — classification
SCEreatmentwas considered reasonable and H1 was not rebased on Képpen climate classification; see also Appendix
jected. It was rejected when at least one of both criteria wash), percentage clay in the soil, mean annual precipitation
not met.

www.biogeosciences.net/11/2991/2014/ Biogeosciences, 11, Z28AB3-2014
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Total nurber of experiments: 58 where predicted SCGlanirol and predicted SGRatment are
£ Discard experiments with <10 data points (n<6) | both calculated using model 4 (see above) and parameterized
nes2 using the control data. Hence, Pi indicates the predictabil-
Across experiments: select best of four potential models for control data (based on AlCc) I |ty Of SCEreatment but taklng |nt0 account the predICtIOHS Of
ot il o ooty ey SCE:ontrol at the same moment in time. Values of Pi around
(n=7) . . .
e zero indicate that the model parameterized for the control
Within-experiment: predict SCEyesmen: for the entire dataset and for a subset of the data performs Sim"arly for control and treatment, while nega-
using only dates when SWC,.,imen: Was within the range of SWC,,.,, (common-SWC-subset). i . R .. .
Predictions are made using a model parameterized for the complete control dataset. tIVe ValueS Indlcate that the pred|Ct|On Of the treatment IS
Within-experiment: test for entire dataset and common-SWC-subset worse than that Of the ContrOI (and vice versa for pOS|t|Ve
the hypothesis (H1) that SCE,sunen can be predicted from the model values). For the current analysis, we are particularly inter-
parameterized for the control via two criteria: K ' . R ! .
£) Normaldistriutionof esiduls Lifrs e ested in the change of Pi over time. If Pi shows a trend to-
2) RMSEqeament < 2*RMSEconiol . . . .
Reject 1 if at least one of both criteria is not met wards increasingly negative values over time, then the pre-
B comners e eordicaie ) dictability of SChreatmentbecomes progressively worse. To
n=7) test whether there was a significant trend in Pi (e.g., a de-
n=38 n=38 H . . _
B [Giranenes ] crease of Pi over time, or during part of the measurement pe

riod) we performed the runs test (non-parametric trend anal-
Figure 2. Protocol of the analyses performed to test the hypothesisysis), dichotomized around the median (Davis, 2002). This
(H1) that the moisture response of soil £€Jflux as observedinthe  test checks the randomness of sequences. It creates “runs”,
control plots (SCEontro) Can be used to predict soil G@fflux in defined as uninterrupted sequences of the same state (in
the precipitation manipulation treatment (S¢ektment- The num-  this case either above or below the median), and then tests
ber of sites for each step and the reasons for discarding experimenighether the number of runs is significantly different from
from further analyses are displayed. what would be expected if they were randomly drawn from
the same distribution. The runs test is thus not affected by
the increased serial dependence of data with increasing mea-
(MAP), mean annual temperature (MAT), an aridity index surement frequency, which is important because our study in-
(MAP/2MAT), treatment manipulation type (drought or ir- cludes experiments with different measurement frequencies.
rigation experiment or altered precipitation pattern with-
out a change in total precipitation) and manipulation tech-2.2 Test for artifacts related to SWC measurements

nigue (roofs, shelters, retractable curtains, troughs or irriga—G, that ts of SWC bei when. f
tion), treatment manipulation duration (continuous manip- Iven that measurements o can be incorrect when, for

ulation, episodic manipulation or altered pattern during theexample, the soil dries out and the contact between sensor

entire experiment), number of years of experimental manip-and soil is interrupted, or when they do not reflect available

ulation, and the percentage of measurement days for whicij/ater at all depths relevant for SCE,_we ne_eded to test the

SWGreammentWas either above or below the natural bound robustness of the results found for Pi. To this end, we used
reatmen - ;

aries of SWGontrol (i.6., an indication of potentially erro- 2 simple bucket model (extracted from the Rothamsted C-

neous extrapolations beyond the range for which the modeﬁ:yCIing model, Coleman and Jenkinson, 1996) to simulate

was parameterized). We further included as predictor varivater availability in the main rooting zone independently of

ables the total number of SCE measurements (N), the me$WC measurements. Input parameters of this model are pre

dian of the measurement interval (I, number of days), anacipitatior_], pote_ntial evapotransp_iration, percentz_age_ of clay
N/I (which is low for sites with few and/or infrequent mea- and main rooting zone. Potential evapotranspiration esti-

surements; highest N/l is obtained for experiments with dailymates were obtained via the Priestley—Taylor model, which

SCE measurements). As several experimental sites were rep> based on net incoming radiation (NIR), saturation vapor

resented by more than one experiment, we weighted tharessure and air temperature (Priestley and Taylor, 1972).

CART analysis by the inverse of the number of experimentslem'f'Cat'0n of NIR was based on downward shortwave

per site. For example, the Sevilleta experiment consisted ofad'at'on‘ albedo and_outgomg Iongwav_e rad|at|oq. Dovyn-
two different irrigation experiments, and therefore each ex_Ward shortwave radiation was obtained via reanalysis of bias-

periment was weighted by 0.5 (Appendix Table C1). corrected data of WATCH (ERA40; see Weedon et al., 2011)

To further analyze the possible cause for the failure ofand BC_ERAmfnenm (ERA Interim; see Piani et al., 201.0)'
the control model to predict SGEament We examined the Albedo was derlved_fro_m MODIS MCD43_CS.005, assuming
course of a predictability index over time, which was calcu- amean sea§onal d'St”bUt.'on' The outgoing longwave r_ad|a—
lated for each measurement day as tion was derived as afra(_:t|on of the daily temperature differ-

ence scaled by the fraction of actual vapor pressure and the
ratio of downward shortwave radiation and potential short-
Pi= |predicted SCkyntrol— Observed SCgntroll wave radiation.

— |predicted SCEeatment— Observed SClatment (5)

Biogeosciences, 11, 2992013 2014 www.biogeosciences.net/11/2991/2014/



S. Vicca et al.: A synthesis of manipulation experiments 2997

The estimate of water availability obtained from the bucket conirol
model was then used to perform analyses analogous to thos ,|° o e
described above: coefficient estimates from a control model,, _ ° @W
(in model 4, SWC was replaced by the water availability esti-
mate from the bucket model, while ST did not change) were
used to predict SGRammentat each measurement date. Sub- s
sequently, we tested H1 and estimated Pi, which was further ——
analyzed for trends via the runs test. More details about this  °  ° ovesce - ? o mmeemansce.
analysis based on the bucket model estimates of water avail: reatment; entire dataset reatment; common SWG subsst
ability are given in the supporting information. *le *la

All analyses were performed using Matlab (2012b, The
Mathworks Inc., Natick, MA). A comprehensive list of the
abbreviations used in this study is provided in Table D1.

n
°

a

predicted SCI
S

o

frequency of occurrence

o
Lo

frequency of occurrence
s

frequency of occurrence
5

[
3 ReSUItS fJ50 [ 50 100 -050 [ 50’_l 100

% difference in SCE % difference in SCE

3.1 General response of soil C@efflux to precipitation

manipulation Figure 3. (a) Predicted soil CQ efflux (SCE, pmolCGm~—<s™-)

versus observed SCE for control, for the treatment when using

Our data set covers different climate regions and biome the entire data set, and for the treatment when using the common
9 . SSWC subset. Predictions of treatment SCE were based on the model

(Fig. 1 and Appendlx Table A_‘l)' but the temperate zqne ISparameterized for the contrdb—d) Histograms showing the fre-
clearly dominant. Few experiments were conducted in theyyency of occurrence for the percentage difference between ob-
tropics @ = 3), and we found no precipitation manipulation served and predicted for control, for the treatment when using the
experiments with SCE measurements for the boreal zoneentire data set and for the treatment when using the common SWC
Forests, grasslands and shrublands are all well representesljbset. The percentage difference was calculated agat8fage

but agricultural fields are not (only one site, with three ex- predicted — average observed)/average observed. For details, see
periments — Hohenheim; Appendix Table A1), and hydric Appendix Table C1.

sites are also represented by only one site (Clocaenog). Over-

all, decreased precipitation reduced SCE, whereas enhanced

precipitation increased SCE (Fig. 1), although for six exper- . i )
and 3d), although for some sites, this reduction was substan-

iments, we found a significant response of SCE in the oppo*

site direction. Four of these were drought experiments (Clolid! (Sé€ Appendix Table B1). ,
For the 38 experiments for which both the entire data set

caenog, Solling, Tolfa and WalkerBranch_ Dry; Appendix :
Table B1), one was an irrigation experiment (Boston_ wet)a”d the common SWC subset gave the same result (i.e., the

and one was an experiment where only the precipitationeXperime”f‘S with robust resqlts), H1 was reje.cted in only
pattern was altered, with little effect on total precipitation S€ven. while we could not reject the hypothesis for the re-
(RaMPsAlt; the manipulation slightly increased total rainfall, Maining 31 experiments (Appendix Table C1). The seven

and decreased total SCE; Appendix Table B1). experiments for which H1 was rejected represent six inde-
' pendent sites (one site was represented by two experiments,
3.2 Across-experiment variation in predictability of soil ~ Appendix Table C1). The 31 experiments for which H1 could
CO,, efflux not be rejected represented 14 different sites (Appendix Ta-
ble C1).
We tested the goodness of the prediction of §GEenton To test whether artifacts related to SWC measurements

the entire data set for each site, as well as on the commowere responsible for rejecting H1, we replaced SWC in
SWC subset (i.e., excluding dates for which S\W&ment  model 4 with the bucket model results. This exercise pro-
was outside the range of SW&awo). For this, we started vided results of acceptable quality (i.e., normal distribution
from the 45 experiments where the control model was of suf-of the residuals and aR? > 0.30; see SI) for only 16 of the
ficient quality (see protocol in Fig. 2). For 38 of these 45 45 experiments, indicating the limitations of this approach.
experiments subjected to this analysis, both tests gave thNonetheless, for 14 of these 16 experiments, the outcome
same outcome and results are considered robust (Appendiaf the bucket model approach agreed with the results of
Table C1, column “Robust?”). These sites showed both overthe SWC approach. Importantly, rejection of H1 was con-
and underestimations of Sg&ment(Fig. 3a and Appendix  firmed for three of the seven experiments (i.e., for Solling,
Table B1). Across all sites, using the common SWC subseStubai and TurkeyPoint; Supplement Table S5). For the other
instead of the entire data set had a minor effect on the differfour experiments where H1 was rejected using the SWC ap-
ence between predicted and observed &&fent(Fig. 3¢ proach, the low quality of the fits based on the bucket model
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Figure 4. Classification and regression tree (CART) showing for ¢ K
which groups of experiments our hypothesis (H1: the moisture re- 5 % 102
sponse of soil CO2 efflux (SCE) as observed in the controls can _, mﬁ% s a\%

be used to predict SCE in the treatment) could and could not be
rejected. This CART analysis included as a weight factor the recip-
rocal of the number of experiments per site to take into account their
interdependence. The key predictor variable (the median measure
ment interval) is depicted at the top, and predictor variable thresh- _
olds are at the side of each branch. Below the terminal nodes, the"
values between brackets display: total number of experiments; num-
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ber of experiments for which H1 was not rejected - number of ex-
periments for which H1 was rejected. A list of all predictor variables
included in the CART-analysis is given in the Methods section. This

analysis used the 38 experiments for which results from the entire

dataset and the common SWC subset agreed (i.e., robust results).

approach did not allow for this test. In any case, the bucket
model approach indicates that artifacts related to SWC mea-

surements are unlikely responsible for rejecting H1.

The CART analysis — which accounts for the dependence

of results from different experiments within a single site (Ap-
pendix Table C1) — indicated measurement frequency as th
key predictor variable of whether or not H1 could be rejected.

For experiments with median measurement intervals of SCE
larger than 11 days, H1 was never rejected (Fig. 4), whereas

H1 was rejected for 7 of the 14 experiments with intervals
<11 days, which included all 5 experiments with daily mea-
surements (Appendix Table C1). The CART analysis did not
identify other predictive variables or thresholds.

3.3  Within-experiment variability in predictability of
soil CO» efflux

A trend analysis of the predictability of SG&iment(Pi) was
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Figure 5. Time course of Pi (predictability index, large black and
gray circles) for the five experiments for which our hypothesis was
rejected and for which a significant trend was detectajiSevil-
leta_ Wetl,(b) Sevilleta_ Wet2,c) Solling, (d) Stubai and(e)
TurkeyPoint. Pi values close to zero indicate that $&knentwas
predicted similarly well compared to Sgiro, Whereas values
substantially below or above zero indicate the difference in pre-

made for the 38 experiments for which both the entire datadictability of SCBreatmentrelative to SCEontro Negative values
set and the common SWC subset gave the same result (i.dndicate that the prediction of SGEatmentwas worse than that of

those indicated as robust in Appendix Table C1). When Pi
varies around zero, predictions of SgRmentare compa-
rable to predictions of SCGhniro. Negative values indicate
that the prediction of SGRaimentWas worse than that of
SCEntrol (&and vice versa for positive values — but these were

SCE.ontro, @nd vice versa for positive values. Large gray circles
indicate when SWe¢eatmentwas outside the range of SWé&atrol
Small black and white circles represent the soil water content
(SWC) for control and treatment plots, respectively. Gray areas in-
dicate the time when water inputs were manipulated.

less abundant and always close to zero for all sites, Supple-

ment Fig. S2). Significant trends in Pi reveal that model per-
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formance varied over time and thus suggest that the modednd SCReatment Shifted after the manipulation had ended
parameterized for the control plots cannot reliably capture(Fig. S1); whereas residuals for SgegmentWere consis-

the variation in SCEeatment Whereas we detected a trend in tently lower than residuals for SG&rol before and during

Pi for only 1 of the 31 experiments for which H1 was not the manipulation, the opposite was true for all measurement
rejected (SulawesiForest; see Supplement Fig. S3 for a vidates after the manipulation period. This suggests that the
sual representation), we found a significant trend in the timemanipulation induced substantial changes in the ecosystem.
course of Pi for five of the seven experiments for which H1 Over the entire data set, estimations of $6dnentased on
was rejected (Appendix Table C1). These five experimentghe control model would overestimate Sgekmentby 72 %
were those with daily measurements of SCE. The time serie§Appendix Table B1).

of Pi for these five experiments is displayed in Fig. 5. For

all other experiments, the course of Pi over time is shown ) )

in Supplement Fig. S2. Here we briefly describe the patterné  Discussion

observed for the five experiments for which H1 was rejected
and revealed atrend in Pi (i.e., the five experiments with daily
measurements of SCE). These patterns can expose the under-

.1 General response of soil C@efflux to precipitation
manipulation

lying reasons for rejecting H1. _ _ Precipitation manipulation experiments have been conducted
The Sevilleta experiment, which consisted of two differ- iy in the temperate zone, as shown in this study (with all
ent irrigation treatments in a desert grassland, showed lity, ;¢ three experiments in temperate and subtropical regions)
tle effect on Pi in the first year, while a marked decrease inyq i 4 general review by Beier et al. (2012). Particularly un-
Pi occurred in the second year (Fig. 5a, b), particularly for yerenresented in our study were the tropics and the boreal
the treatment plots receiving the more intense rainfall events, ;o Hence, it would be important to promote research in
(Sevilleta_Wet2). Here, Pi values remained below zero ovekpege regions for improving our global understanding of SCE
two months, even though SWC was very similar in con- \eqhonses to altered precipitation regimes. Also experiments
trol and treatment (Fig. 5b). Such erroneous predictions ofi, agricultural fields and on hydric soils are underrepresented
SChBreamentwould, in the case of Sevilleta_Wet2, lead 10 j, qyr data set, with only one site for each (Appendix Ta-
ca. 35% underestimation of SCE over the entire measurep|e A1), Forests, grasslands and shrublands in temperate and
ment period (Appendix Table B1). . subtropical regions are all well represented in our data set.
Likewise for Solling, despite SWeatment remaining In agreement with Wu et al. (2011), decreased precipita-
mostly within the range of SWienirol (Fig. 5¢), Piremained  jon typically reduced SCE, whereas enhanced precipitation
below zero during part of the experiment. Of particular in- ;1 ~eased SCE (Fig. 1). However, some responses did not

terest is the decline of Pi upon rewett_ing, which occurred ing;; this pattern (Fig. 1). One reason why a reduction in rain-
both treatment years and reflects an increase ofy8ukent 4|l could stimulate SCE is related to the non-monotonic re-

(see Fig. S1). Recovery of Pi took about four months in thegonse of SCE to moisture. This is especially likely for the
second treatment yeatr, but insufficient data were available t%nly hydric experiment in our data set, i.e., Clocaenog. This
rgally test for the duration of recovery. Nonetheless, eStima'experiment showed a persistent increase in SCE following
tions of SChreamentbased on the control model would un- e cinitation reduction (Sowerby et al., 2008), which is in
derestimate SGleatmen®y 33 % over the entire experimental |jne \ith the general observation of moisture responses of
period (AppenQ|x Table-Bl). SCE in wetland ecosystems (Jungkunst and Fiedler, 2007).
In contrast, in Stubai, the number of measurements wagy aqgition, soil rewetting after a drought event can substan-
substantially reduced when selecting only the dates wheRjg\y jncrease SCE and lead to higher SCE at the annual
SWCreamentwas within the range of SWinuol (1 =103, gcai6 in the treatment compared to the control (Borken et al.,

which is exactly one-third of the total number of data, 1999) This was obviously the case in Solling (see below for
Fig. 5d). Nonetheless, H1 was rejected also when only thg,,, e details).

common SWC subset of measurements was used (Appendix

Table C1). Pi remained below zero even when SN¥ment 4.2 Across-experiment variation in predictability of soil

had recovered after the manipulation had ended. Moreover, CO,, efflux

Pi remained negative just before the initiation of the ma-

nipulation in 2012 and across the three treatment years; thi$he CART analysis indicated that sampling frequency was

would result in an overestimation of SCE by 25 % when con-an overriding factor determining whether or not H1 was

sidering only the common SWC subset (Appendix Table B1).rejected. The higher the measurement frequency, the more
At the TurkeyPoint site, Pi started declining before likely H1 was rejected, and in all five experiments where SCE

the onset of the manipulation (Fig. 5e). This caused dif-was measured daily, SGEmentcould obviously not be pre-

ficulty in distinguishing the effects of the manipulation dicted from SCEkontrol INdeed, even when avoiding extrapo-

from pre-treatment differences. Nonetheless, analysis of théation beyond the range for which the model was parameter-

residuals revealed that the difference between SGE ized, H1 was rejected for these experiments. Measurement
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frequency was thus crucial for detecting whether or not4.3 Within-experiment variability in predictability of
SCEreatmentcould be predicted from the ST-SWC relation- soil CO, efflux
ship fitted to SCEontro. This result suggests that we may
have missed important SGEmentresponses in experiments We examined in more detail the predictability index of
with larger measurement intervals. Infrequent measuremenSCEeatmentfor experiments with daily SCE measurements.
schemes have insulfficient capacity to detect shifts in the cli-This detailed analysis allows for detecting patterns and un-
mate dependencies of SCE, which implies that type 2 errorsaveling mechanisms that may remain unseen when study-
(i.e., failure to reject H1) for these experiments are probablejng only seasonal or annual totals. In our study, this analysis
and this is an important call for the scientific community to revealed various patterns for the five experiments providing
revisit studies with discrete measurements. Our results emdaily SCE measurements, i.e., the experiments with the most
phasize the need for high-frequency SCE measurements teeliable data sets. These are discussed in the following para-
fully capture the fast response of SCE to changes in precipgraphs to illustrate that various mechanisms can make the
itation and other climatic variables such as temperature aturrent moisture responses of SCE inappropriate for extrap-
multiple temporal scales (Vargas et al. 2012). olation to a future precipitation pattern, and to indicate which
Nonetheless, of the 14 experiments with a measuremeasurements are important to be obtained in future experi-
ment frequency 11 days (i.e., the threshold resulting from ments if we are to understand the response of SCE to altered
the CART analysis), H1 could not be rejected for seven.precipitation.
These experiments represent in fact only four different sites In the Sevilleta experiment, SGEimentwas equally well
(Duolun40, Duolun60, HarvardForest, Hohenheim__ LA, Ho- predicted as SCfnirol (N0 marked change in Pi) in the first
henheim_ LF, RaMPs_ Dry and RaMPs_ DryAlt; see Ap- year. In the second year and particularly for treatment plots
pendix Table C1), and it is possible for these sites that thereceiving the most intense irrigation (Sevilleta_Wet?2), Pi de-
criteria set for rejecting H1 were too stringent. The differencecreased strongly. The results from this site indicate that rain-
in RMSE was particularly high for HarvardForest (1.72, Ap- fall intensity is an important factor determining variation in
pendix Table C1), and it is plausible that a more completeSCE. Vargas et al. (2012) attributed the observed increase in
data set (i.e., more frequent measures) would have givelSCE in irrigated plots to an enhancement of the autotrophic
a different outcome (see also Supplement Fig. S2). On theomponent of SCE. This example thus illustrates that if we
other hand, experimental duration was rather short for (i) theare to understand the mechanisms driving moisture responses
two experiments of the Mongolian Duolun grassland site,of SCE, measurements of the autotrophic and heterotrophic
for which SCE was measured weekly, but only for aboutcomponents of SCE are required. These data are not currently
six months (Supplement Fig. S2), and (ii) for the experi- available for any the experiments presented in this review.
ments in Hohenheim, where SCE was measured for ca. 10 For the Sevilleta experiment, Thomey et al. (2011) fur-
months, precluding firm conclusions. Alternatively, not re- ther indicated the importance of moisture in deep soil lay-
jecting H1 for some experiments that provided frequent mea-ers, which was replenished only when applying the most in-
sures of SCE may reflect real variability in the potential for tense precipitation manipulation (one 20 mm rain event per
predicting SCReatmentfrom relations found for the control. month, Sevilleta_Wet2 in the current study), but not as much
The RaMPs experiment illustrates that in some cases, preby more frequent but less intense rain events (four 5mm rain
dicting SCEreatmentfrom SCEontrol cOuld be possible. This  events per month, Sevilleta_Wet1 in the current study). This
experiment covered four manipulation years, during whichfinding emphasizes the need for precipitation experiments to
SCE was measured at ca. 5-day intervals during the growingneasure SWC over the entire rooting zone, and not only top-
season (Appendix Table C1). The fact that H1 could not besoil SWC (as is typically the case; see Vicca et al., 2012a,
rejected and no trend was observed for the two experimentéor a discussion on this topic). Mechanistic understanding
of this site is consistent with the study by Fay et al. (2011).of such effects could be further improved by also measur-
They reported that interannual rainfall variability was more ing predawn leaf water potential, which indicates the stress
of a determinant for most ecosystem processes studied at tHevel as experienced by the plants (Vicca et al., 2012a).
RaMPs site than the manipulations applied. Hence, the ex- For the Solling experiment, Pi decreased markedly upon
perimental manipulation seems not to have pushed the sygewetting. The Pi decrease was due to suddenly higher ob-
tem beyond a threshold that would have yielded differentserved SCEeammentthan predicted (see residuals in Fig. S1),
responses of SGiamment Whether this is related to the re- which reflects a pulse of SCE often observed following soil
silience of the ecosystem, or to the manipulation applied, retewetting after drought events, known as the Birch effect
mains to be tested and is an important discussion pertinentBirch, 1958). The Birch effect is thought to be caused by
for other and future experiments. osmolyte disposal by microbes and rapid decomposition of
cells that did not survive the drought or rewetting event
(Birch, 1958; Jarvis et al., 2007; Schimel et al., 2007). Fur-
thermore, when drying and wetting cycles become more pro-
nounced, previously protected organic matter can be revealed
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through reduced aggregate stability (Borken and MatznerGavrichkova, 2010). Hence, the results from this experiment
2009; Denef et al., 2001). In the case of Solling, the in-also emphasize the need to separate autotrophic from het-
crease of SCE after rewetting more than compensated for reerotrophic respiration to fully explore the exact mechanisms
ductions in SCE during the dry period (Appendix Table B1; underlying SCE responses.
see Borken et al., 1999, for details about SCE in the Solling The above list of potential mechanisms that can alter the
experiment). Although such overcompensation for drought-moisture response of SCE when the precipitation regime
related decreases of SCE after rewetting is not a universathanges is of course incomplete. Several other mechanisms
phenomenon (Borken and Matzner, 2009), Birch effects arecan play at different levels (from community level to soil and
commonly observed in various ecosystems (Kim et al., 2012microbial level). It is beyond the scope of this study to go
Inglima et al., 2009; Jarvis et al., 2007), but are not usuallyinto detail about all potential mechanisms. For reviews about
accounted for by models. To improve our understanding ofvarious changes in the ecosystem under altered precipitation
the Birch effect, and because it is supposed to be a primarilyegimes, we refer the reader to Borken and Matzner (2009),
microbially mediated phenomenon, we again stress that it isSchimel et al., (2007) and van der Molen et al. (2011). Here,
necessary to separate heterotrophic from autotrophic respirave want to emphasize the need for a holistic approach in
tion in future SCE monitoring experiments. experiments that aim to elucidate how SCE is affected by
At the Stubai grassland site, Pi decreased sharply ovechanges in precipitation regime.
the course of several drought manipulations performed
in consecutive years. Pi broadly followed the course of4.4 A novel approach revealing limitations of current
SWGreatment but was mostly outside the range of SWfol- experiments and recommendations for future
In contrast to Solling, Pi returned rapidly to high values after experiments
rewetting, despite a noticeable Birch effect (Fig. S1), and ap-
peared to be mostly determined by SWC. Nonetheless, wheAt present, inter-site comparison of effects of altered pre-
excluding the dates when SWirowas outside the range of  cipitation is seriously hampered by the lack of data neces-
SWGreatment H1 was still rejected (Appendix Table C1) and sary to quantify the treatment as experienced by the biota
Pi remained below zero after the precipitation manipulation,(i.e., the actual treatment; Vicca et al., 2012a). Without such
(especially after the 2012 manipulation, Fig. 5), resulting in data, conventional meta-analysis of cross-experiment varia-
a substantial overestimation (25 %) of SfeEmentwhen us-  tion in ecosystem responses to precipitation manipulation is
ing the common SWC subset (Appendix Table B1). This prone to artifacts related to the enormous variation in the ac-
indicates that SCE did not fully recover after the drought, tual treatment; the magnitude, timing and duration of drought
which could be related to structural changes in soil chemicaland rain events vary substantially among experiments, and
properties, soil physical properties, microbial communitiessoil type and rooting depth considerably influence the way
and/or vegetation. This list of potential underlying reasonsplants and microbes experience a treatment (Vicca et al.,
for the observed patterns makes clear that a holistic approack012a). The novel approach presented here was developed
— considering also various other ecosystem properties andpecifically to avoid these problems. This is accomplished by
processes — is required if we are to mechanistically underanalyzing within-experiment responses (through calculation
stand how SCE responds to altered precipitation. of a predictability index) prior to across-experiment com-
For the TurkeyPoint experiment, Pi was low during and parison (via CART analysis). Although treatments also re-
after the manipulation period. This pattern corresponds tomain largely incomparable with this method (hence, if cross-
aboveground observations made at the site where the rairexperiment differences were to occur, these could be due
fall exclusion was conducted during spring, when tree growtheither to variation in the actual treatment or to differences
is greatest in this region (Hanson and Weltzin, 2000). Treein ecosystem response, or a combination), our method does
growth was strongly influenced by the precipitation exclu- provide mechanistic insight into the responses to altered pre-
sion and did not fully recover after the drought period. More- cipitation. Importantly, the results are less prone to the large
over, tree growth terminated earlier in the drought plotsvariation in the actual treatment. It would be particularly in-
as compared to the control plots (MacKay et al., 2012).teresting to combine this approach with a quantification of
Strikingly, treatment-induced changes to tree growth dynam-+the actual treatment such that moisture responses of SCE in
ics positively influenced SCE, as residuals in autumn werevarious ecosystems can be elucidated.
higher for the treatment than for the control (Fig. S1). Possi- The approach used in this study fully exploits the potential
ble mechanisms to explain this lag effect could be the Birchof the available data sets by taking advantage of the multiple
effect as described above, or the decomposition of roots thamneasurements of SCE made in each experiment. However,
died during drought-induced senescence. Moreover, plantthis method is applicable only when sufficient data are avail-
can allocate large but variable fractions of their photosyn-able (we discarded six experiments witti0 data points),
thates belowground (Vicca et al., 2012b), with potentially and when a reliable model can be fitted to the control data
rapid and strong effects on the autotrophic component of(in our study, seven experiments were discarded because of
SCE (Bahn et al., 2008; Hogberg et al., 2001; Kuzyakov andthe poor quality of the model fit through the control data;
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Fig. 2). For this reason, and because the CART analysis sugions across a broader range of precipitation regimes, annual
gests that frequent SCE measurements are essential to detéemperatures, soil moisture conditions and vegetation types
deviations of the moisture response of SCE in the treatmenfespecially in boreal and tropical regions). Such experiments
as compared to the control, we recommend that future expershould make accurate measurements of water availability,
iments that aim to test the response of SCE to altered prethey should consider both instantaneous responses and the
cipitation seek to obtain high-frequency SCE measurementspotential legacy effects of climate extremes, and would ben-
This recommendation also applies to variables such as phcefit from a holistic approach that allows for elucidation of
tosynthesis and ecosystem respiration that can be measureahderlying mechanisms. Future studies should make partic-
at high frequency with automated cuvettes and are thereforelar effort to obtain high-frequency measurements, which —
suitable for testing as in this study. as we demonstrated — are essential for capturing dynamic re-

sponses during drying and after rewetting, and for quantify-

ing their implications for the carbon cycle in a more extreme
5 Concluding remarks climate.

Is it possible to extrapolate the relationships between SCE o
and its abiotic drivers — soil temperature and soil moistureAuthor contributions

— to predict SCE responses to changes in precipitation pat-, . .
terns? According to our results, the most justified answer>: Vicca co_n_celved the manuscript, and performed the analy-
to this question is “no”; although for the majority of the ses and writing. M. Bahn, M. Estiarte and I. A. Janssens sub-

experiments we could not falsify the hypothesis that Wesl‘étagtlally (I:_ontrll?uted todthe d|§fc;us||3|0ns [r)]nor to.th.e vlvrltln?.
can predict SCE under altered precipitation regimes from— = Van Loon focussed specifically on the statistical analy-

current-climate observations. As discussed. all experiment§es' All co-authors contributed with data and/or intellectual
with daily SCE measurements (i.e., the experiments with thenPut during the writing process.
data sets most reliable for this exercise) revealed that SCE
in the altered preC|p|tat|qn treatment could not be prEOIICteo'The Supplement related to this article is available online
from the control observations. We postulate that at least some -

. o at doi:10.5194bg-11-2991-2014-supplement
of the experiments with infrequent measurement schemes
provided insufficient capacity to detect shifts in the climate
dependencies of SCE. In other words, crucial patterns in SCE

likely went undetected for these experiments. Importantly,
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Appendix A

General information for the experimental sites was generally
obtained from the site investigators, except for the climate
classification and the hydrology. For each site, we extracted
the climate class from the Koppen classification (Hijmans
et al. 2005) using latitude and longitude. This classification
was further used to determine the hydrology. Sites classi-
fied as arid or semi-arid according to Koppen classification,
i.e., those with a first letter “B”, as well as those classified
as “dry-summer subtropical or Mediterranean climates” (i.e.,
Csa and Csb) were assigned to the xeric group. Sites classi-
fied as tropical rainforest (Af), as humid subtropical (Cfa), as
maritime temperate (Cfb), or as continental with wet summer
(Dfa, Dfb, Dwb, Dfc) were considered mesic. For all but two
sites — Kiskunsag and Clocaenog — the resulting climate cor-
responded to the experience of the investigators. Kiskunsag
is a shrubland on sandy soil, at the transition between de-
ciduous forest and steppe and previously classified as xeric
(Lellei-Kovacs et al., 2011); Clocaenog is a wetland with
peaty soil in Wales, UK. Because the Képpen classification
was clearly not indicative of the hydrology in these sites, we
adjusted the hydrology to xeric and hydric for Kiskunsag and
Clocaenog, respectively.
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Table Al. Information about the precipitation manipulation experiments: latitude (Lat), longitude (Long), mean annual precipitation (MAP,
mm), mean annual temperature (MAIC), Koppen classification (Képpen class.), vegetation type hydrology (Hydr.), manipulation type
(Manip. type: drying experiment (-), irrigation experiment)(or experiment in which the pattern of precipitation was altered, but not

the total amount of precipitation (0)), duration of the manipulation (episodic manipulation over a few weeks while the rest of the year is
unaltered (Epis) versus continuous drying/irrigation during entire growing season or year (Cont) versus altered rainfall pattern during entire
year (ContAlt)), the percentage of clay in the soil, the depth of SWC measurements (cm), and a key reference for each experiment (if
available). Species composition for all sites is given in Supplement Table S1. We distinguish between sites used only for Fig. 1 (not used
for further analysis because there were not enough data points to generate reliable made! Ti@§)( sites discarded from further analyses
because of non-robust results (see Appendix Table C1), and sites used for all analyses.

Experiment Lat

Long

MAP MAT Koppen class.

Vegetation

Hydr.

Manip. type

Duration manip.

% clay SWC depth

Key reference

Sites included in Fig. 1, but excluded from other analyses because of too few data or non-normal distribution of model residualgfigsi SCE

Almeria 37.09 -2.08 274 17 BSk shrubland  xeric - Cont 7 0-5 Maestre et al. (2013)
Achenkirch 4758 11.64 1480 5.7 Cfb forest mesic - Epis 28 5 Schindlbacher et al. (2012)
BigBend_S 29.30 -103.17 370 242 BWh shrubland  xeric + Epis 8 15 Patrick et al. (2007)
BigBend_W 29.30 -103.17 370 242 BWh shrubland  xeric + Epis 8 15

BigBend_SW 29.30 -103.17 370 242 BWh shrubland  xeric + Epis 8 15

Garraf 4130 1.82 552 156 Csa shrubland  xeric + Epis 18 0-15 Beier et al. (2004)

Prades 4135 1.03 663 11.7 Csa forest xeric - Epis 21 0-25 Ogaya et al. (2011)
RaMPs_Alt 39.10 -96.60 835 13 Cfa grassland  mesic 0 ContAlt 32 0-15 Fay etal. (2011)
ThuringerSchiefer5 ~ 50.48  11.60 1000 6.5 Cfb grassland mesic - Epis 25 0-10 Kahmen et al. (2005)
ThuringerSchiefer6  50.48  11.58 1000 6.5 Cfb grassland mesic - Epis 25 0-10

ThuringerSchiefer19 50.48  11.26 1000 6.5 Cfb grassland mesic - Epis 22 0-10

Tolfa_Dry 42.15 11.93 729 13 Csa forest xeric - Cont 6 0-10 Cotrufo et al. (2011)
Tolfa_Wet 42.15 11.93 729 13 Csa forest xeric + Epis 6 0-10

Sites included in Fig. 1 and hypothesis tests, but excluded from CART analysis because of non-robust results (see Appendix Table C1)

Boston_dry 42.39 -71.22 1063 10.3 Dfa grassland mesic - Cont 9 0-30 Suseela et al. (2012)
Caxiuana —-1.73 -51.46 2314 269 Af forest mesic - Cont 10 0-30 Sotta et al. (2007)
Hohenheim_LALF 48.70 9.18 679 8.7 Cfb agriculture  mesic - Epis 22 0-15

Oldebroek 5240 5.90 1042 101 Cfb shrubland ~ mesic - Epis 8 0-50 Kopittke et al. (2013)
SulawesiCacao —1.55 120.02 2092 255 Af forest mesic - Cont 14 5 van Straaten et al. (2010)
ThuringerSchiefer2 50.41 11.63 1000 6.5 Cfb grassland mesic - Epis 24 0-10 Kahmen et al. (2005)
ThuringerSchiefer3 ~ 50.41  11.63 1000 6.5 Cfb grassland mesic - Epis 23 0-10

Sites included in all analyses

Aranjuez 40.03 -3.54 349 15 Csa grassland xeric - Cont 6 0-5 Escolar et al. (2012)
Boston_wet 4239 -71.22 1063 10.3 Dfa grassland mesic + Cont 9 0-30 Suseela et al. (2012)
Brandbjerg 55.88 11.97 613 8 Cfb shrubland ~ mesic - Epis 2 20 Selsted et al. (2012)
Clocaenog 53.05 —-3.47 1550 8.2 Cfb shrubland  hydric - Epis 50 7 Sowerby et al. (2008)
Coulissenhieb 50.14 11.87 1160 5.3 Cfb forest mesic - Epis 19 10 Muhr and Borken (2009)
Duolun_20 42.02 116.17 385 21 Dwb grassland  mesic - Cont 17 0-10

Duolun_40 42.02 116.17 385 21 Dwb grassland  mesic - Cont 17 0-10

Duolun_60 42.02 116.17 385 21 Dwb grassland mesic - Cont 17 0-10

HarvardForest 4254 -72.17 1100 6 Dfb forest mesic + Epis 18 5 Borken et al. (2006)
Hohenheim_LA 48.70 9.18 679 8.7 Cfb agriculture  mesic - Epis 22 0-15 Poll et al. (2013)
Hohenheim_LF 48.70 9.18 679 8.7 Cfb agriculture  mesic 0 ContAlt 22 0-15

Kiskunsag 46.88 19.38 505 104 Cfb shrubland  xeric - Epis 2 0-20 Lellei-Kovacs et al. (2011)
Mols 56.38 10.95 550 7.7 Cfb shrubland  mesic - Epis 6 0-40 Beier et al. (2004)
PortoConte 40.62 8.17 640 16.8 Csa shrubland  xeric - Epis 13 0-10 de Dato et al. (2010)
RaMPs_Dry 39.10 -96.60 835 13 Cfa grassland mesic - Cont 32 0-15

RaMPs_DryAlt 39.10 -96.60 835 13 Cfa grassland mesic - ContAlt 32 0-15

Sevilleta_Wetl 34.34 —-106.73 250 13.2 BSk grassland xeric + ContAlt 10 0-15 Thomey et al. (2011)
Sevilleta_Wet2 34.34 —-106.73 250 13.2 BSk grassland xeric + ContAlt 10 0-15

Solling 5152 9.56 1090 6.4 Cfb forest mesic - Epis 32 10 Borken et al. (1999)
Stubai 47.13 1131 915 6.3 Dfc grassland mesic - Epis 16 5

SulawesiForest —1.49 120.05 2901 20.6 Af forest mesic - Cont 39 5 van Straaten et al. (2011)
ThuringerSchieferl 50.41 11.63 1000 6.5 Cfb grassland mesic - Epis 24 0-10 Kahmen et al. (2005)
ThuringerSchiefer4 50.46 11.59 1000 6.5 Cfb grassland mesic - Epis 25 0-10

ThuringerSchiefer7 50.48 11.56 1000 6.5 Cfb grassland mesic - Epis 25 0-10

ThuringerSchiefer8 50.47 11.50 1000 6.5 Cfb grassland mesic - Epis 22 0-10

ThuringerSchiefer9 50.43 11.51 1000 6.5 Cfb grassland mesic - Epis 23 0-10

ThuringerSchieferl0 50.40 11.45 1000 6.5 Cfb grassland mesic - Epis 27 0-10

ThuringerSchieferll 50.38  11.45 1000 6.5 Cfb grassland mesic - Epis 23 0-10

ThuringerSchieferl2 50.41  11.38 1000 6.5 Cfb grassland mesic - Epis 32 0-10

ThuringerSchieferl3 50.42  11.39 1000 6.5 Cfb grassland mesic - Epis 31 0-10

ThuringerSchieferl4 50.45 11.41 1000 6.5 Cfb grassland mesic - Epis 27 0-10

ThuringerSchieferl5 50.45 11.41 1000 6.5 Cfb grassland mesic - Epis 25 0-10

ThuringerSchieferlé  50.44  11.36 1000 6.5 Cfb grassland mesic - Epis 25 0-10

ThuringerSchieferl7 50.44  11.34 1000 6.5 Cfb grassland mesic - Epis 28 0-10

ThuringerSchieferl8 50.46  11.35 1000 6.5 Cfb grassland mesic - Epis 24 0-10

TurkeyPoint 4272 —-80.37 1010 7.8 Dfb forest mesic - Epis 1 0-5 MacKay et al. (2012)
WalkerBranch_Dry 35.97 —84.28 1352 142 Cfa forest mesic - Cont 6 0-35 Hanson et al. (2005)
WalkerBranch_Wet 35.97 —84.28 1352 142 Cfa forest mesic + Cont 6 0-35
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Appendix B

Table B1. For each experiment, the percentage change in precipitation is given, along with the average of observed and predicted soil
CO, efflux (SCE; pmol C@m~2s~1) for control and treatment in all experiments. “Sign. level” indicates whether the difference between
treatment and control SCE measurements was significapt<a0.01 (**), at p < 0.05 (*) or not significant (ns) according to repeated
measures ANOVA. For the treatment, averages are also shown for the subset including only days whesgMS within the range of

SWC observed in the control (common SWC subset). Averages were computed over the entire measurement period. Predictions are based c
the model parameterized by the control data (model 4; see Methods and Supplement Table S3 for details). The percentage difference betwee
predicted and observed is calculated as @rage predicted — average observed)/average observed. Positive values indicate overestimates,
whereas negative values indicate that predicted SCE underestimated observed SCE. The percentage change in precipitation was calculate
from precipitation data, averaged for the entire duration of the experiment. Negative values indicate a reduction of precipitation, while
positive numbers indicate an increase in precipitation.

OBSERVED PREDICTED % difference

Experiment % change control treatment Sign. level control treatment treatment control  treatment treatment

in precip. common SWC subset common SWC subset
Achenkirch —15.44 245 211 ns 2.47 2.29 241 0.87 8.75 11.86
Aranjuez —-30.00 0.72 0.73 ** 0.67 0.67 0.69 -5.77 -8.39 —7.77
Boston_dry -51.89 3.58 3.07 ** 3.64 11.34 191 1.72 269.39 —17.35
Boston_wet 20.00 3.58 3.29 ** 3.64 3.87 3.38 1.72 17.58 —2.37
Brandbjerg -7.64 1.60 1.46 ** 1.52 1.37 1.35 —4.98 —5.84 —9.86
Caxiuana -50.00 3.70 3.00 ** 3.68 2.82 3.59 —0.45 —5.89 2.87
Clocaenog —22.04 1.33 1.62 ns 1.21 1.42 1.39 -9.14 —12.46 —13.64
Coulissenhieb 6.68  2.65 2.02 * 2.62 251 2.54 -1.09 24.23 27.67
Duolun_20 —20.00 154 1.26 ** 1.43 1.24 1.32 —7.00 -1.15 —1.66
Duolun_40 —40.00 1.54 1.07 ns 1.43 1.14 1.17 —7.00 6.47 6.71
Duolun_60 —60.00 1.54 0.84 ** 1.43 0.83 1.06 —7.00 —-2.07 2.82
HarvardForest —32.55 3.05 2.25 ns 2.98 2.77 2.77 —-2.14 23.19 23.19
Hohenheim_LA —-11.73 1.08 1.00 ** 1.01 1.06 1.04 —6.45 6.45 4.67
Hohenheim_LALF —11.00 1.08 0.94 ns 1.01 1.07 1.02 —6.45 13.71 10.94
Hohenheim_LF 085 1.08 1.13 * 1.01 1.05 1.02 —6.45 —7.75 —9.88
Kiskunsag —-21.38 0.53 0.43 ** 0.50 0.47 0.48 -5.76 7.79 7.12
Mols —23.18 245 1.63 ns 241 2.65 1.10 —-1.56 63.23 21.50
Oldebroek —-19.03 0.80 0.68 ** 0.77 0.57 0.61 -359  -1555 —8.63
PortoConte -16.24  2.86 2.63 ns 2.74 2.61 2.66 -4.30 —-0.67 —-0.17
RaMPs_Alt 13.13  9.37 8.35 ns 9.16 8.47 8.49 -2.25 1.48 1.41
RaMPs_Dry -17.59  9.57 8.88 ns 9.29 8.98 9.04 —2.90 1.16 0.88
RaMPs_DryAlt -17.19  9.67 7.93 ns 9.39 9.03 9.19 —2.88 13.81 13.37
Sevilleta_Wetl 26.38  0.70 0.83 * 0.69 0.67 0.68 -185 -18.91 —18.34
Sevilleta_Wet2 1563  0.70 1.02 ns 0.69 0.66 0.66 -185  -35.37 —35.29
Solling -28.37 1.07 1.48 ns 1.06 0.98 0.99 —-0.83  —33.30 —33.29
Stubai —31.42 4.33 2.73 ** 4.26 2.36 4.35 -1.60 —13.36 25.49
SulawesiCacao —60.09 2.83 2.81 ns 2.79 1.40 2.90 -139 -50.28 -8.39
SulawesiForest -53.91  3.07 1.94 ns 3.05 1.79 2.58 —-0.85 —7.69 4.34
ThuringerSchieferl -11.11 477 411 ns 4.67 411 4.14 -2.09 0.01 -1.08
ThuringerSchiefer2 -11.11 582 3.50 ns 5.65 4.71 5.07 —2.82 34.47 34.39
ThuringerSchiefer3 -11.11  6.10 4.89 ** 5.77 491 5.35 -5.35 0.35 2.21
ThuringerSchiefer4 -11.11 581 4.70 ** 5.49 4.86 5.10 -5.51 3.54 4.06
ThuringerSchiefer5 -11.11  6.28 4.36 * 6.11 5.20 5.44 —2.69 19.02 18.38
ThuringerSchieferé —-11.11 6.36 6.24 ** 6.13 4.96 5.53 —-3.62 —20.57 —15.36
ThuringerSchiefer7 —-11.11 8.12 6.09 *x 7.86 6.44 6.73 —-3.16 5.79 4.73
ThuringerSchiefer8 -11.11 5.96 6.10 ns 5.84 5.85 6.14 —-2.13 —4.05 —3.87
ThuringerSchiefer9 —-11.11 4.36 4.12 *x 4.25 4.00 4.00 —-2.50 —2.96 —-2.96
ThuringerSchiefer10 —-11.11 4.30 4.18 ** 4.18 4.06 4.06 —2.92 —2.72 —2.72
ThuringerSchieferll —-11.11 6.41 5.61 ** 6.15 5.54 5.54 —4.04 —-1.36 -1.36
ThuringerSchiefer12 —-11.11 5.17 4.24 ** 4.61 4.08 4.35 —-10.81 —3.64 —-4.11
ThuringerSchieferl3 —-11.11 5.93 6.46 ** 5.65 5.58 5.79 —4.64 —13.68 —-14.41
ThuringerSchieferl4  —-11.11  4.26 3.84 ** 4.24 3.80 3.96 —-0.63 -1.05 -3.01
ThuringerSchieferls5  —11.11  5.99 4.56 ** 5.93 4.87 5.08 -1.00 6.91 7.03
ThuringerSchieferlé ~ —11.11  4.54 3.91 ** 4.39 3.78 3.91 -3.29 -3.50 —-3.80
ThuringerSchieferl7  —-11.11  4.42 4.01 ** 4.37 4.15 471 -1.32 3.70 5.63
ThuringerSchieferl8  —11.11  4.62 4.35 ** 4.54 4.29 4.29 -1.83 -1.38 -1.38
ThuringerSchieferld  —11.11  4.12 4.98 ** 4.03 3.79 3.84 -2.32 —24.02 —26.46
Tolfa —-21.44 322 3.81 ** 3.00 3.27 3.27 —6.87 —14.23 —14.23
Tolfa_Wet 69.00 3.05 4.90 ** 2.88 3.43 3.43 -5.54  —30.00 —29.98
TurkeyPoint —-23.20 214 1.54 ** 2.10 2.65 2.48 -1.95 7217 62.92
WalkerBranch_Dry —33.00 3.59 3.81 b 3.52 3.05 3.11 -2.11 —20.05 —20.29
WalkerBranch_Wet 33.00 3.68 3.62 ** 3.60 3.61 3.53 —1.96 —0.23 —0.33
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Appendix C

For each experiment, we either fitted model 4 to the data
of the control plots using the entire data set or to a subset
of the data, including only the days where SW&mentiS
within the range of SWC observed in the control (i.e., com-
mon SWC subset). Subsequently, we tested the hypothesis
that the moisture response of soil €éfflux (SCE) as ob-
served in the control can be extrapolated to predict SCE in
the treatment for both the entire data set and the common
SWC subset via two tests (hl and h2; see Methods for de-
tails). Results of both tests are presented for both data sets in
Appendix Table C1.
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Table C1. For each experiment, we present thé of the model fitted to the data of the control plots, the number of data points (N) and

the median interval (in days) between two consecutive measurements of soéfll® (I). We also show the results of the two tests that

we performed to test our hypothesis. For both the entire data set and the common SWC subset, “hdVaukeof the Lilliefors test for
normality, “h2” shows the ratio of RMSfeatmenito RMSE;ontroland “H” indicates whether or not H1 was rejected (see Fig. 2 and Methods

for details). Experiments for which both the entire data set and the common SWC subset gave the same result are indicated with “yes” in the
column “Robust?”. The weight¥) used in this CART analysis is give#/is calculated as 1/number of experiments per site that are used in
CART). The results of the trend analysis on the time course of the predictability index efeSwentPi, runs test dichotomized around the
median) are presented in the column “Trend”, with O indicating that no trend was detected and 1 indicating a significant trend for Pi versus
time. When the rainfall manipulation was initiated more than one year before the start of SCE measurements, trend analysis is considered
irrelevant. This is indicated as NA, followed by the result of the trend analysis in parentheses. Note that this table includes only results for
experiments with >10 data points and for which residuals of the control were normally distributed. Values in bold highlight the reason for

rejecting H1.

Entire data set

Common SWC subset

Experiment
Aranjuez
Boston_dry
Boston_wet
Brandbjerg
Caxiuana
Clocaenog
Coulissenhieb
Duolun_20
Duolun_40
Duolun_60
HarvardForest
Hohenheim_LA
Hohenheim_LALF
Hohenheim_LF
Kiskunsag

Mols

Oldebroek
PortoConte
RaMPs_Dry
RaMPs_DryAlt
Sevilleta_Wetl
Sevilleta_Wet2
Solling

Stubai
SulawesiCacao
SulawesiForest
ThuringerSchieferl
ThuringerSchiefer2
ThuringerSchiefer3
ThuringerSchiefer4
ThuringerSchiefer7
ThuringerSchiefer8
ThuringerSchiefer9
ThuringerSchiefer10
ThuringerSchiefer11
ThuringerSchiefer12
ThuringerSchieferl3
ThuringerSchiefer14
ThuringerSchieferl5
ThuringerSchiefer16
ThuringerSchieferl7
ThuringerSchiefer18
TurkeyPoint
WalkerBranch_Dry
WalkerBranch_Wet

R2
0.37
0.93
0.93
0.60
0.49
0.59

0.86
0.53
0.53
0.53

0.82
0.71
0.71
0.71
0.34

0.80
0.73
0.30
0.47
0.45
0.38
0.38

0.85
0.66

0.37
0.39
0.72
0.81
0.35
0.59
0.72
0.75
0.83
0.76
0.67
0.52
0.73
0.86
0.96
0.73
0.83

0.83

0.85
0.59
0.63

N
29
11
11
173
22
90
35
23
23
23
43
38
38
38
66
18
73
47
74
73
163
163
264
309
46
59
14
13
13
14
14
15
15
14
13
14
14
12
14
15
14
14
106
20
21

I h1
35 0.50
31 050
31 0.50
16 0.08
15 0.15
15 0.50

h2
1.06
4.29
1.74
1.30
2.35
1.09

9 0.09241
8 0.04 1.06

0.07
0.17
0.50
0.50
0.06
0.50
27 0.50
24 0.18

~N NN 0o

1.09

1.29
1.72
1.20

1.14

0.91
0.99

1.67

15 0.03 1.36

36 0.50
5 0.50
5 0.0

0.97
0.94
1.29

H hl
0.50
0.50
0.50
0.50
0.50

0.50

oroOoOORrO

h2

1.06
1.12
1.22
1.10
1.55
1.09

1 013 243
1 001 105

0.08

0.32
0.50
0.50

1.09

1.26

1.72
121

0.02 1.13
0.50 0.92

0.50
0.50
1 050
0 037
0 0.50
0 0.0

0
0
0
0
0
0
0

0

1.04
1.44
1.07
0.98
0.92
1.26

1 0.00 147
1 0.502.53
1 0.00 2.60
1 0.00 4.92
14 0.0013.14

0.01
0.42
0.00
0.06

1
1
1
1
1 050

14 0.50
22 011
24 017

1.73
1.28
1.95

240.04 0.87

22
22
24
24
22
27
23
23
26
26
24
22
22

0.50
0.50
0.33
0.32
0.34
0.13
0.50
0.13
0.22
0.50
0.14
0.13
0.50

0.85
1.53
157
1.26
112
1.14
0.88
1.18
1.13
1.44
0.95
1.86
1.18

1 0.04 359

38 0.50
33 045

1.46
1.13

1.39
2.53
2.59
2.08

1.29

0 033 0.89

0 0.30
00.03

1.45

2.38

1 011 0.72

0.50
0.50
0.50
0.32
0.34
0.13
0.50
0.20
0.08
0.50
0.27
0.38
0.50

eNeoNoNoNoNoNoNeNeNoNooNo]

0.88
1.47
1.62
1.26
112
1.14
0.94
1.37
1.18
1.47
0.95
1.62
1.18

1 0.04 3.63

0 0.50
0 047

1.42
1.13

H Robust? W Trend
0 Yes 1 0
0 No NA  NA(0)
0 Yes 1 NA(0)
0 Yes 1 0
0 No NA O
0 Yes 1 NA(0)
1 Yes 1 0
1 Yes 033 0
0 Yes 033 0
0 Yes 033 0
0 Yes 1 0
0 Yes 0.5 0
1 No NA O
0 Yes 0.5 0
0 Yes 1 NA(0)
0 Yes 1 NA(0)
0 No NA 1
0 Yes 1 0
0 Yes 0.5 0
0 Yes 0.5 0
1 Yes 0.5 1
1 Yes 0.5 1
1 Yes 1 1
1 Yes 1 1
0 No NA 1
0 Yes 1 1
0 Yes 007 O
1 No NA O
0 No NA O
0 Yes 0.07 O
0 Yes 0.07 O
0 Yes 0.07 O
0 Yes 0.07 O
0 Yes 0.07 O
0 Yes 0.07 O
0 Yes 0.07 O
0 Yes 0.07 O
0 Yes 007 O
0 Yes 0.07 O
0 Yes 0.07 O
0 Yes 0.07 O
0 Yes 0.07 O
1 Yes 1 1
0 Yes 0.5 0
0 Yes 0.5 0
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Appendix D

Table D1.List of abbreviations.

CART
H1

MAP
MAT
Pi

SCE

SCEeontrol
SChyreatment

SWC

SWCcontrol
SWGreatment
common SWC subset
ST

classification and regression tree
hypothesis that the relationship between SCE and ST and SWC observed from
fluctuations over time in the control plots can be extrapolated to predict SCE in
plots exposed to a different precipitation regime
mean annual precipitation
mean annual temperature
predictability index, calculated as the absolute error of predicted saileZfix
in the treatment reduced by the absolute error of predicted sojl €flux in
the control at a specific moment (see E). Pi values close to zero indicate
that SCEreatmentwas predicted similarly well compared to Sg&iro, Whereas
values substantially below or above zero indicate the difference in predictability
of SCEreatmentrelative to SCEgnirol Negative values indicate that the prediction
of SCEyeatmentwas worse than that of SGEiro, @and vice versa for positive
values.
soil CQ efflux
soil COp efflux in the control
soil COp efflux in the treatment
volumetric soil water content
volumetric soil water content in the control
volumetric soil water content in the treatment

data set using only dates when¥gentwvas within the range of SWGntrol
soil temperature
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