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Can dark energy evolve to the Phantom?
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Dark energy with the equation of state w(z) rapidly evolving from the dustlike (w ~ 0 at z ~ 1)
to the phantomlike (—1.2 < w < —1 at z ~ 0) has been recently proposed as the best fit for
the supernovae Ia data. Assuming that a dark energy component with an arbitrary scalar-field
Lagrangian p(y, V,p) dominates in the flat Friedmann universe, we analyze the possibility of a
dynamical transition from the states (¢, ¢) with w > —1 to those with w < —1 or vice versa. We
have found that generally such transitions are physically implausible because they are either realized
by a discrete set of trajectories in the phase space or are unstable with respect to the cosmological
perturbations. This conclusion is confirmed by a comparison of the analytic results with numerical

solutions obtained for simple models.

Without the assumption of the dark energy domination,

this result still holds for a certain class of dark energy Lagrangians, in particular, for Lagrangians
quadratic in V. The result is insensitive to topology of the Friedmann universe as well.

I. INTRODUCTION

One of the greatest challenges in modern cosmology
is understanding the nature of the observed late-time
acceleration of the universe. The present acceleration
expansion seems to be an experimental fact, now that
data from supernovae type Ia B, E], corroborated later
by those from the cosmic microwave background [7], have
been recently confirmed by the observations of the largest
relaxed galaxy clusters E] Although the observations are
in good agreement with the simplest explanation given by
a cosmological constant A of order (1073 eV)?, the myste-
rious origin of this tiny number, which is about 120 orders
smaller than the naive expectations, gives rise to the idea
of a dynamical nature of this energy. Possible dynami-
cal explanations of this phenomenon are given in various
frameworks. One of them is known as quintessence (see
e.g. [23] and other references from the review [24]). In
this framework the equation of state p = we is such that
w > —1. Another proposal is the phantom scalar fields
(see e.g. [13]) which possess the super-negative equation
of state w < —1, due to the “wrong” sign before the
kinetic term in the Lagrangian. Alternatively, there is
a more general possibility under the name k—essence
E, [1d, | which is an effective scalar-field theory de-
scribed by a Lagrangian with a nonlinear kinetic term.
For this model, the equation of state w is not constrained
to be larger or smaller than —1. Allowing the dark energy
to be dynamical provides an opportunity to study the so-
called coincidence problem which asks why dark energy
domination begins just at the epoch when sentient beings
are able to observe it. The main advantage of k—essence
is its ability to solve this problem in a generic way (for
details see m]), whereas the first two models require a
fine-tuning of parameters.

Without imposing the prior constraint w > -1,
the observations seem to favor the dark energy with
the present equation of state parameter w < —1 (see
e.g. Ref. E, ﬂjﬁ, m]) Moreover, recently it was argued
(see Ref. [, 2] and other constraints on w(z) obtained in

Refs. E, B2,137, 34, l41, @]) that the dark energy with the
equation of state parameter w(z) rapidly evolving from
the dustlike w ~ 0 at high redshift z ~ 1, to phantomlike
—1.2 < w < —1 at present z ~ 0, provides the best fit for
the supernovae Ia data and their combinations with other
currently available data from the measurements of cos-
mic microwave background radiation (CMBR) and from
2dF Galaxy Redshift Survey (2dFGRS).

Matter with w < —1 violates the dominant energy con-
dition which is a sufficient condition of the conservation
theorem [2€]. Therefore for such models one cannot guar-
antee the stability of vacuum on the classical level. The
instability can reveal itself at the quantum level as well.
In fact, it was shown that the phantom scalar fields are
quantum-mechanically unstable with respect to decay of
the vacuum into gravitons and phantom particles with
negative energy , E] Assuming that the phantom
dark energy is an effective theory allows one to escape this
problem through the appropriate fine-tuning of a cutoff
parameter. If the dark energy could dynamically change
its equation of state from a phantomlike one to that with
w > —1, then this transition would prevent the undesir-
able particle production without such a fine-tuning. Here
it is worth mentioning that quantum effects on a locally
de Sitter background could lead to the effective parame-
ter w < —1 (see Ref. [39, 4(]).

Another fundamental physical issue where this tran-
sition could play an important role is the cosmological
singularity problem. If w < —1 in an expanding Fried-
mann universe, then the positive energy density of such
phantom matter generally becomes infinite in finite time,
overcoming all other forms of matter and, hence, leads to
the late-time singularity called the “big rip” m] The
transition under consideration could naturally prevent
this late-time singularity. Here it is worthwhile to men-
tion that for certain potentials and initial conditions the
phantom scalar fields can escape this singularity by evolv-
ing to a late-time asymptotic which is the de Sitter so-
lution with w = -1 E, @] Moreover, it was argued
that the quantum effects can prevent the developing of
the “big-rip” singularity as well m]
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On the other hand, to avoid the big crunch singularity,
which arises in various pre-big bang and cyclic scenarios
(see e.g. m, pd, m]), one assumes that the universe can
bounce instead of collapsing to the singularity. The ex-
istence of a nonsingular bouncing solution in a flat (or
open) Friedmann universe (k # +1) requires the viola-
tion of the null energy condition (¢ + p > 0) during the
bounce m] If the energy density ¢ is constrained to be
positive, then it follows that w < —1 is the necessary
condition for the bounce. But the energy density of such
phantom matter would rapidly decrease during the col-
lapse and therefore only the transition from w > —1 to
w < —1 just before the bounce could explain the non-
singular bouncing without a fine-tuning in initial energy
densities of phantom and other forms of matter present
in the universe.

It is worth noting as well that for regimes where the
equation of state of the k—essence field is greater than
—1 it is possible to find a quintessence model which gives
the same cosmological evolution but behaves differently
with respect to cosmological perturbations M] Hence,
it is interesting whether this equivalence can be broken
dynamically.

In this paper we consider the cosmological dynamics of
a k—essence field ¢, described by a general Lagrangian p
which is a local function of ¢ and V,¢. The Lagrangian
depends only on ¢ and a scalar quantity,

X

N =

V,upVie. (I.1)

First of all, we determine the properties of a general La-
grangian p(¢, X), which are necessary for the smooth
transition of the dark energy from the equation of state
w(p, X) > —1to w(p, X) < —1 or vice versa. The tran-
sition obviously happens if the system passes through the
boundaries of the domains in the space (p, X), defined
by these inequalities. In most of the paper, we assume
that the dark energy dominates in a spatially flat Fried-
mann universe. The main question is whether trajecto-
ries connecting these domains on the phase space (@, ¢)
exist and are stable with respect to cosmological pertur-
bations. In the case of the phase curves which do not
violate the stability conditions, we study their asymp-
totic behavior in the neighborhood of the points where
the transition could occur. To proceed with this analysis,
we linearize the equation of motion in the neighborhood
of these points and then use the results of the qualita-
tive theory of differential equations. For the dark energy
models described by Lagrangians linear in X, we perform
this investigation beyond the linear approximation. For
this class of Lagrangians, we illustrate the outcome of
our analysis by numerically obtained phase curves. Fi-
nally, we generalize the results to the cases of spatially
not-flat Friedmann universes filled with a mixture or the
dark energy and other forms of matter.

II. GENERAL FRAMEWORK

Assuming the dominance of the dark energy, we neglect
all other forms of matter and consider a single scalar field
@ interacting with gravity. After all, we will see that
the results can be easily extended to the models with
additional forms of matter. The action of the model reads
in our units (M, = h = ¢ = 1, where M, is the reduced
Planck mass M, = (87G)~%/? = 1.72 x 10'¥GeV ) as
follows:

S=8,+8,= /d4;v\/—_g {—g + p(e, X)} , (IL1)

where R is the Ricci scalar and p(p, X) is the Lagrangian
density for the scalar field. This kind of action may
describe a fundamental scalar field or be a low-energy
effective action. In principle, the Lagrangian density
p(¢, X) can be non-linear on X. For example, in string
and supergravity theories nonlinear kinetic terms appear
generically in the effective action describing moduli and
massless degrees of freedom due to higher order gravita-
tional corrections to the Einstein-Hilbert action h, [d].
The “matter” energy-momentum tensor reads

o2 [5&0}
V=g Logm
=p.x(p, X)V,uoVio —ple, X)guw.

(IL.2)

Here a comma denotes a partial derivative with respect
to X. The last equation shows that, if V,p is timelike
(i.e. X > 0), the energy-momentum tensor is equivalent
to that of a perfect fluid,

T,uv = (5 +p)U,qu — PYuv, (113)
with pressure p(p, X), energy density
e(p, X) = 2Xp x (¢, X) — p(ep, X), (IL4)
and four velocity
v
= u¥ (IL5)

U, = .
VX

The equation of motion for the scalar field can be ob-
tained either as a consequence of the energy-momentum
tensor conservation V, T = 0 or directly from the ex-
tremal principle 6S,/d¢p = 0:

p.xOgp +pxx (VuVup) VEV o + e, =0, (IL6)
where Oy = ¢, V#VY and V# denotes the covariant
derivative. For this fluid we can define the equation of
state parameter w as usual:

m_l“@

w (IL.7)

There is increasing evidence that the total energy den-
sity of the universe is equal to the critical value, and



hence in the most part of the paper we will consider a
flat Friedmann universe. In the end, we shall show that
the results are also applicable in the cases of closed and
open universes. Thus, the background line element reads

ds® = g, datds” = dt* — a®(t) dx*. (I1.8)

The Einstein equations can be written for our back-
ground in the familiar form:

i 1
H? = % (IL.10)

where H = a/a is the Hubble parameter and a dot
denotes derivative with respect to the physical time ¢.
These equations also imply a continuity equation:

€ =-3H(s+p). (IL.11)
In general, whenever a # 0 any two of these three last
equations imply the third one (by compatible initial con-
ditions). Usually it is easier to work with the second
and the third equations (these are the Friedmann equa-
tions). Note that, from Eq. (ILI0), € was constrained to
be non-negative.

Because of the homogeneity and isotropy of the back-
ground, we get X = 1% and p = ¢p x so the en-
ergy density looks as the energy in usual 1D classical
mechanics

(o, ) = ¢p.e — p- (IL.12)
Expressing H from the first Friedmann equation ([LI0),
we can rewrite Eq. ([Lf) in the case of the homogeneous
and isotropic flat background as follows:

Pex +¢pxV3e +e,=0. (I1.13)

So far as a(t) # 0, all of the information about the dy-
namics of gravity and scalar field is contained in the equa-
tion written above. In accordance with our initial simpli-
fication the dark energy should dominate in the universe;
therefore we assume throughout the paper that € > 0.

Following m], we introduce the effective sound speed
of the perturbations,

2 =2X (IL.14)
59'¢
Then the equation of motion takes the form
G+ ¢c2V/3e + 22 = . (IL15)
€

X

In most of this paper, we shall assume that the solutions
©(t) and Lagrangians p(¢, X) have enough continuous
derivatives. So, for example, ¢(t) will be mostly consid-
ered as being at least of the class C? : ©(t), p(t), ¢(t)
are continuous.

III. POSSIBLE MECHANISMS OF THE
TRANSITION

There are two possibilities for the evolution of dark
energy from w > —1 to a phantom dark energy with
w < —1 (or vise versa). These are a continuous transi-
tion, in which the dark energy evolves through points
where w = —1, and a discontinuous transition occurring
through points where € = 0, provided that the pressure
p is finite. Since by assumption the dark energy is the
dominating source of gravitation, we cannot have ¢ = 0
and therefore it is sufficient to consider only continuous
transitions.

Further, throughout the paper we will usually suppose
that for the dynamical models under consideration there
exist solutions ¢(t) and corresponding to them moments
of time t. such that

wlp(te), X(t)] = —1. (1IL.1)

Henceforth the index ¢ denotes a physical quantity taken
at to; i.e., oo = @(te), ec = e(te), ete.

The parameter w can be expressed with the help of
Eq. (T4) in the following form, more convenient for a
study of continuous transitions:

2X

(I11.2)
Since X = %c,bz > 0 and € > 0, we find that w < —1
corresponds to p x < 0, whereas w > —1 implies
p,x > 0. In accordance with our notation, the equation
of state parameter w takes the value —1 at the points
U, = (e, @c), where either X = 0 or p x = 0. Because
of these equations, the points ¥, generally form curves
~v(A) and isolated points in the phase space (¢, ¢) of the
dynamical system given by Eq. ([ILI3). The curves (\)
may intersect.

For our purposes, it is convenient to divide the set of
points ¥, into three disjunct subsets:

A) The p—axis of the phase plot (¢, ¢), i.e., . = 0.

B) The points where p x(¥.) = 0 but ¢, # 0 and
E)X(\I/C) 75 0.

C) The points where p x(¥.) = 0 and € x(¥.) = 0 but
e £ 0.

Further in this section we will study the dynamics of the
scalar field ¢ in the neighborhoods of ¥, separately for
these cases. If the system evolves from the states (p, @)
where w > —1 to the states with w < —1 (or vise versa),
the function p x changes sign.

It is worth noting that, if the scalar dark energy were
equivalent to an “isentropic” fluid for which the pressure



p is a function only of €, then the possibility of evolving
through the points €, where w(e.) = —1 could be eas-
ily ruled out. Indeed, in that case we could rewrite the
continuity equation ([LIJ) only in terms of e:

¢ =—V3ele+p(e)],

so that the system of Einstein equations ([L.9) and ([LI0)
could be reduced to Eq. ([IL3) and the values of energy
density . would be fixed points of this equation. A dy-
namical transition through a fixed point is clearly impos-
sible.

An example of the dark energy which seems to be
equivalent to the “isentropic” fluid is the simple model
described by the Lagrangian p = p(X) depending only
on X. Let us further assume that there are some values
X, where w(X,.) = —1. If Eq. ([Id) is solvable with
respect to X in the neighborhoods of these points X,
then one can find X (e) and therefore the pressure is a
function only of energy density p(¢) = p[X(e)]. Thus
the system is equivalent to the “isentropic” fluid, X, are
fixed points, and the transition through w = —1 is im-
possible. It remains to consider the conditions on the
function €(X) under which Eq. (IL4) is solvable with re-
spect to X. From the theorem about the inverse function,
Eq. ([[I3) is solvable with respect to X if

(II1.3)

ex(Xe) = 2Xp xx(Xe) +p.x(X)] #0.  (IIL4)

One can see directly from the equation of motion ([LI3)
and condition ([IL4) that X, are fixed point solutions. In
fact, as it was shown in Ref. m], there generally exists
the solution X (¢) = X, and moreover it is an attractor in
an expanding Friedmann universe. Thus, the transition
is generally forbidden for systems described by purely
kinetic Lagrangians p(X).

In the general case when p = p(p, X), the pressure
cannot be expressed only in terms of €, since ¢ and X
are independent.

A. Transition at points X. =0

Here we will analyze the possibility of the transition
in the case (A) ¢. = 0. Namely, we are going to study
the properties of the solutions (¢) in the neighborhood
of the line . = 0. Differentiating the equation of state
parameter with respect to the time, we have

. 2X 2X . 2X

W=—px+—Px — —5DPXE (IIL.5)
€ € €

At the points under consideration we have 1. = 0 be-

cause X. = 0 and, respectively, X, = ¢.p. = 0. More-

over, the time derivatives in the second and third sum-

mands vanish at these points as well due to the continuity
equation ([LT)) and the formula

DX =¢ (p,gpx + pryxx) . (I1L.6)

Let us differentiate the w once more with respect to the
time. The only term which survives from the formula
[I3) at the points X, = 0 is the first term. Hence, we
have

. 2X 202
W, = l?pyxl = [%pyx] . (I11.7)

Using the equation of motion ([LTJ), we can express ¢
through the p and its derivatives

Pee x(tc) = —€ »(te). (I11.8)
As follows from Eq. ([T4d), ¢ x(t.) = p.x(t.) at the time
t. when the system crosses X. = 0. Provided E#,(tc) #0
and p x (t.) # 0, we infer from Eq. (IL7) and ([IL8) that
the equation of state parameter w(t) has either a mini-
mum or a maximum at the point ¢.. Thus, the transition
is impossible in this case.

If € ,(tc.) = 0 and € x(t.) # 0, then it follows from
relation ([[ILY) that @(¢.) = 0. Therefore the considered
solution ¢(t) for which w[p(t.)p(t.)] = —1 is a fixed
point solution ¢(t) = ¢, = const and the transition is
impossible. Since ¢ > 0, we see that this fixed point is
obviously the de Sitter solution.

If not only X, = 0 but also ¢ x(t.) = px(t;) = 0,
then ¢ ,(t.) = 0 and it follows from the formula (L)
that p(t.) = 0. Moreover, the equation of motion
([LI3) is not solved with respect to the highest deriva-
tives (namely, with respect to ¢ ) and therefore does not
necessarily have a unique solution. It happens because
the point (¢, 0) on the phase plot (¢, ) does not deter-
mine the ¢ via the equation of motion ([LI3)). It is clear
that, in this case, the pointlike (on the phase plot) solu-
tion ¢(t) = ¢, = const is a solution, but not necessary a
unique one.

Below, we will give a more general consideration of the
geometry of phase curves in the neighborhood of the ¢
axis. The phase flows are directed from right to left for
the lower part of the phase plot ¢ < 0 and from left to
right for the upper part ¢ > 0, see Figlll Therefore the
system can pass the ¢ axis only if the point of intersection
is a turning point (curves 1 and 6 on Fig[). Otherwise
the crossing is a fixed point (or a singularity). If there is
a smooth phase curve on which the system pass through
the ¢ axis, then in a sufficiently small neighborhood of
the turning point we have (¢ — ¢.) ~ 2" ~ X™ where
n > 1. Restricted to this curve, the function Xp x (¢, X)
depends only on X and in the absence of a branching
point the sign of this function above and below the ¢
axis is the same. Then it follows from the formula ([IL2])
that the system cannot change the sign of (w + 1) while
crossing the ¢ axis.

If a smooth phase curve does not cross but touches

the ¢ axis at a point ¢, (see Fig. [ trajectories 3 and

4), then the following asymptotic holds: ¢ ~ (¢ — ¢c)*",

where n > 1. Let us find the time needed for the system



Figure 1: Possible phase curves in the neighborhood of the
p—axis. Only on the curves 1 and 6, the system crosses the
@ axis. Curves 2, 3, 4 and 7 have an attractor as a shared
point with the ¢ axis, whereas curves 5 and 8 have a repulsor.
These attractors and repulsors can be fixed-point solutions or
singularities.

to reach the tangent point (¢¢,0) in this case. We have

/tpc d(p /tpc d(p
t= Y2 S T \2n>
Pin S0(90) Qin (90 - <Pc)

where ¢;, is a starting point on the phase curve. The
last integral is obviously divergent. Therefore the system
cannot reach the tangent point in a finite time

Finally, we come to the conclusion that in the frame-
work under consideration it is impossible to build a model
with the desirable transition through the points X, = 0.

(ITL.9)

B. Transition at points U.: p x(¥.) =0,
E,X(\I/c) 7& O, X 7& 0

In the neighborhood of a point ¥., at which the con-
dition € x (¥.) # 0 holds, one can find a function ¢.(p.):
P.x [¢c, pc(@e)] = 0. This follows from the theorem
about the implicit function. One would anticipate that
on the phase curves intersecting the curve ¢.(¢.) the
state of the dark energy changes to the phantom one
(or vise versa). Let us express p x from Eq. (IL2) and
substitute it into formula ([[L14) for the sound speed of
perturbations:

s (w4+1)e

= III.10
CS 2XEyX ( )

For the stability with respect to the general metric and
matter perturbations the condition ¢ > 0 is necessary
(see [19]). Indeed the increment of instability is inversely
proportional to the wavelength of the perturbations, and
hence the background models for that ¢? < 0 are vio-
lently unstable and do not have any physical significance.
Because of the continuity of € x, there exists a neighbor-
hood of the point ¥, where € x # 0. Therefore, from the
above expression for the sound speed ([[ILI0) it follows
that if (w + 1) change a sign then ¢? should change a sign
as well. If this is the case, then the trajectories, realiz-
ing the transition, violate the stability condition ¢ > 0.
Therefore the model of the transition is not realistic.

C. Transition at points U.: p x(¥.) =0,
ny(\I/c) = O, XC 7& 0

As we have already mentioned at the beginning of this
section, the points U, generally form the curves in the
phase space (¢, ¢). The subclass of the points V., which
we are going to consider in this subsection, is generally a
collection of the isolated points given by the solutions of
the system,

p,X(Spa (p) = 07 €.X (907 SD) =0. (III]']')
Only for specific models, the solutions of this system are
not isolated points. An example when these solutions
form a line is considered in section [Vl Usually the phase
curves passing through the isolated points build a set of
the zero measure. Therefore it is physically implausi-
ble to observe the processes realized on these solutions.
The only reason to study the behaviour of the system
around these points is their singular character. The point
is that the equation of motion [[LI3) is not solved with
respect to the highest derivatives at this points. In such
points there can be more than one phase curve passing
through each point. Moreover, the set of solutions ¢(t),
which pass through W, with different ¢, could have a
non-zero measure. On the other hand, the equation of
motion does not necessarily have a solution ¢(t) such
that (¢(t.), ¢(t.)) = ¥, at some moment of time ¢., or
there exists the desirable solution ¢(t) but it does not
possess the second derivative with respect to time at the
point V.. Below we will analyze the behavior of the phase
curves in the neighborhoods of the points V..

The equation of motion ([LIJ) can be rewritten as a
system of two differential equations of the first order:

0

d—*" = X3 - e (I1.12)
t 59'¢ 59'¢

de

a v

The phase curves of this dynamical system are given by
the following differential equation:

dp _ gpxvietey (IIL.13)
dp Ve x

This equation follows from the system ([ILI2)) and there-
fore all phase curves corresponding to the integral curves
of system ([[ILI2) are integral curves of the differential
equation ([[ILT3). But the reverse statement is false, so
each integral curve of Eq. ([ILI3) does not necessarily
correspond to a solution ¢(t) of the equation of motion
(or of the system ([ILI)). In the neighborhoods of the
points where ¢ x # 0, it is convenient to introduce a new
auxiliary time variable 7 defined by

dt = ¢ xdr. (II.14)



The system ([[ILI2) is equivalent to the 7 system:

0
f = —¢pxV3E—c (IIL.15)
dy )

ar PEX-

The auxiliary time variable 7 change the direction if ¢ x
change the sign. Note that the system ([ILIH) always
possesses the same phase curves as the equation of motion
([ID).

In the case under consideration we have ¢, # 0 and
from the formula

do_ v (IIL.16)

dp ¢
we infer that dy/de(t.) should be finite, if $(t.) is finite.
As one can see from the equation determining the phase
curves ([ILT3), in order to obtain a finite d/dp(t.) it
is necessary that at least € ,(¥.) = 0. In the case if
€.o(¥.) # 0, the solution ¢(t) does not possess the sec-
ond ¢ derivative at the point ¢.. Usually this can be seen
as unphysical situation. But nevertheless this does not
necessarily lead to the unphysical incontinuity in the ob-
served quantities ¢, p, H, and ¢, ¢». One may probably
face problems with the stability of such solutions, but
let us first of all investigate the behavior of the phase
curves in the case € ,(¥.) # 0. From Eq. ([ILI3), we
obtain dy/dp = 0 at ¥.. Further we can parameterize
the phase curve as ¢ = () and bring the equation for
phase curves ([[ILI3)) to the form

d .
d—? =e.x(p, O)F (0, 9), (IIL.17)
¥
where we denote
. Y
Flo,p) = ———F——. (IIL.18)
Op,xV3E+ e,

If, as we have assumed, € ,(¥.) # 0 and (V.) # 0, then
F(p, ¢) is differentiable in the neighborhood of the point
V. and F(¥.) = —¢/e ,. For the second ¢ derivative at
the point ¥., one obtains

d2</7 @2
F = ——&XX-
® €0

(II1.19)
That is why the point ¥, is a minimum or a maximum for
the function ¢(¢). In this case U, is such an exceptional
point on the phase plot, where the solution ¢(¢) cannot
have continuous ¢(t) and the phase curve terminates (see
points £ in Figs. Pland B). This happens because the di-
rection of the phase flow is preserved in the neighborhood
of .. If ¢ xx(¥.) = 0, then one can find the third ¢
derivative of p(¢) at the point ¥.:

d3 23
d3—z = —ZLE,XXX. (IL1.20)
o)

In this case there can exist a continuous solution ()
such that (¢(t.), ¢(t.)) = ¥, at some moment of time ¢,
and the only bad thing happening in this point is that
@(t.) does not exist. Let us now investigate what hap-
pens with the equation of state at this point of time. Dif-
ferentiating both sides of the definition ([L7) of w yields
at t.

We = {f (p#, - cgs#,)} , (IIL.21)

where we have used the equation of motion ([[LI3) at

the point t. and the definition ([L14) of ¢2. Applying

the ’'Hopital rule for the c2(t.) = tlir? p.x/€ x, we find
— c

that c2(t.) = 0. Moreover, using the I'Hopital rule
for the derivative of ¢? at the point ¥., one can find
that dc?/dp ~ p,,/e,,. Thus, if p, # 0 the transition
could occur but it changes a sign of the sound speed c2.
Therefore, if the stability criteria are applicable to this
case, then the transition leads to instability.

The necessary condition for the existence of ¢ during
the transition is
€o(Pe) =2Xep xo(¥e) — po(Te) =0. (IIL.22)
This condition drastically reduces the set of the points
W., where the transition is possible. Namely, they are
the critical points of the function (¢, X) and, on the
other hand, they are the fixed points of the auxiliary
7 system ([ILTH). These fixed points are additional
to the fixed points of the system ([ILI2)) defined by
¢ =0, €,(p,0) =0, and € x(¢,0) # 0. From now
on, we will consider only those points W1 where the
condition ([[II22) holds. From the relation ([[IL23), it
follows that if p ,(pc, Xc) = 0 then p x,(¢e, Xe) = 0.
Otherwise X. = 0, and as we have already seen the
transition cannot happen via the points X. = 0. Note
that if p ,(¥F) = 0, then the points ¥} are common
critical points of the pressure p(p, ), energy density
e(p, ¢), and p x(p,¢). From condition ([IL22) follows
that points U} are singular points of Eq. (ILT3). In
such points there can be more than one phase curve
passing through this point. Moreover, as we have already
mentioned, the set of solutions ¢(t), which pass through
Ut with different ¢, could have a nonzero measure.
For example, if U}/ were a nodal point (see Fig. H),
there would be a continuous amount of the solutions
passing through this point and therefore there would be
a continuous amount of solutions on which the transition
could occur.

Let us investigate the type of the singular points W7 .
This will tell us about the amount of the solutions ¢(t) on
which the transition is possible and their stability. For
this analysis, one can use the technique described, for
example, in Ilﬂ], and consider the integral curves of the
equation ([[ILT3). Here we proceed with this analysis in



a more convenient way, namely, using the auxiliary 7 sys-
tem ([ILTH). It is convenient because for this system the
singular points W} are usual fixed points. As we have
already mentioned, both systems have the same phase
curves and therefore the analysis to perform is also ap-
plicable to the phase curves of the system ([[IL12). The
only thing we should not forget is the difference in the di-
rections of the phase flows of these systems. If e(U}) # 0,
then one can linearize the right-hand side of the 7 system
in the neighborhood of a point U1 : (¢F + dp, oF + 6¢).
The linearized 7 system ([ILI3) is

d
—V = AV I11.2
dr ’ ( 3)
where we denote
V_<§‘€’), A_<“b), (II1.24)
' c g

and elements of the matrix A are given by the formulas

a=¢ x,p, (IIL.25)
b= 2X€7X)(,

c=—(BHPP xp+€pp)

g = _€,X¢¢a

where all quantities are calculated at U,'. Here we have
used the Friedmann equation ([LI0). If ¥} is an iso-
lated fixed point of the 7 system ([ILIH) (or equivalently
the singular point of system ([ILI2)), then the following
condition holds

det A = ag — be # 0. (III1.26)

The type of the fixed point depends on the eigenvalues
A of the matrix A (for details see, for example, m]) In
the case under consideration a = —g and therefore we
have

M =bc+a® = —det A. (II1.27)

If bc + a? > 0, then eigenvalues A are real and of the
opposite signs. In accordance with the classification of
the singular points, ¥ is a saddle point (see Fig. B).
Therefore the transition is absolutely unstable; there are
only two solutions ¢(t) on which the transition is allowed
to occur.

If bc + a®? < 0 then )\ are pure imaginary. Here the
situation is a little bit more complicated: In accordance
with M], this fixed point of a nonlinear system can be
either a focus or a center. In these cases, as one can see
from Fig. B there no solutions ¢(t) passing through the
point U}, Therefore, from now on we will consider only
the first case - real A of the opposite signs.

It is convenient to rewrite the expression for A into
a simpler form. Differentiating the continuity equation

(LTI yields

£, = —3Hp.. (I11.28)

Figure 2: Phase curves in the neighborhood of the singular
point U are plotted for the case of the real A\. At the points
&, the solutions ¢(¢) do not exist. These points together with
U} form the curve I' on which £ x(I") = 0.

¢

Figure 3: Phase curves in the neighborhood of the singular
point ¥} are plotted for the case of the pure imaginary \.
Here we assume that the singular point is a focus.

Remember that the index ¢ denotes quantities taken at ¢,
or in this subsection at ¥F. Differentiating the pressure
p as a composite function, we have p = p ¢ + p,XX.
Assuming that ¢ is finite, we obtain that p. = p<,¢c.
Thus the formula for &, is

o= —3HpC,pe. (I11.29)

Using the condition ([IL22) and the last equation, we
bring the element ¢ of the matrix A to the following
form:

Ec
c=—e%,,+

oot 3 (IIL.30)

This relation allows one to rewrite the formula ([IL27)
as follows:

X =2 ((eh,)" = Spttux ) +Eesyx (I1L31)
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Figure 4: If A had the eigenvalues A1 = A2, then the singu-
lar point ¥} would be a nodal point and there would be a
continuous set of trajectories passing through it. To illustrate
this we plot here the phase curves in the particular case of a
degenerate nodal point. The form of the equation of motion
([[CI3) excludes such types of singular points and therefore
prevents the possibility of such transitions.

Here it is interesting to note that the expression
€0E% x — (stg,)Q from the previous formula is the de-
terminant of the quadratic form arising in the Taylor set
of € in the neighborhood of the critical point W}, If this
determinant is positive, then the function e(p, X) has
either a minimum or a maximum at point ¥}. Other-
wise there is either one curve of constant energy density
e(curve) = ¢(¥}) with a singular turning point at ¥}
in the ne1ghborhood of UF ore two intersecting at \IFL
curves of constant € (see On the other hand, d1f—
ferentiating € as a comp051te function we find

o =2Xc (5, + 2% P + € xP2) - (I11.32)

Substituting this relation into the previous formula

([IT3T) for A yields

A2 = 2X, (% xPe + €%,) (IIL.33)
This formula provides the relation between ¢, at the mo-
ment of transition and A. Note that A depends on ¢, only
in the case when ¢ y x(t.) = 2Xp xxx(t.) # 0. More-

over, comparing formulas ([IL23)) and ([IL32) for £, one
can obtain the equation on ¢.:

% xPePa + 26 ppePe + Pec,, + BHpS, = 0. (I11.34)
This equation is solvable in real numbers if the discrim-
inant is positive. As one can prove, the discriminant is
exactly the 4\? and therefore positive if we consider the
saddle point. The same can be seen from relation ([IL33])
as well.

Let us denote the positive and negative eigenvalues and
the corresponding eigenvectors of A as Ay, A = =\,
and a;, a_, respectively.

If b # 0 ( or equivalently e°% y # 0), then the eigen-
vectors can be chosen as a; = (1,(A; — a)/b) and

—_ =(1,—=(My + a)/b). Therefore the separatrices form-
ing the saddle are

/\+ /\+—|—a

5<p and dp_ =

The general solution for the phase curves in the neigh-

borhood of U} is
(&,b — /\+ &p) ((5gb + >\+b+ aégo) = const.
(I11.35)

If b = 0 and additionally @ > 0, then we have Ay =
a = € x,%, and one can choose the eigenvectors as
ay = (1,¢/2a) and a_ = (0,1) . For a negative a, one
can obtain the eigenvectors and eigenvalues by changing
Ay <> A_ and ay <> a_. The separatrices then read

§p=0 and §p = 2—2590.

Thus, similarly to the previous case, the phase curves are
given by

dp ((5¢7 — 2—2590) = const. (IIL.36)
As we have already mentioned from the formula
d¢/dp= ¢/p, follows that, at the points where the
phase curves are parallel to the ¢ axis and where ¢ # 0,
the second ¢ derivative of the field does not exist. If
we look at the equations ([IL33) and ([IL36) providing
the phase curves in the neighborhood of UF, then we
find that in the first case (when &%y # 0) the phase
curves lying on the right- and left- hand sides of both
separatrices should have a point ¢ where they are par-
allel to the ¢ axis (see Fig. ). Therefore each of these
phase curves consists of two solutions of the equation
of motion ([LI3) and the exceptional point & where the
solution ¢(t) does not exist. The same statement holds
in the case of the pure imaginary A (see Fig. B). This
behavior is not forbidden because, as one can easily
prove, the exceptional points £ lie exactly on the curve
I' on which € x(I') = 0 and the equation of motion is
not solved with respect to the highest derivatives. Note
that we have already assumed A # 0, and from this
condition it follows that £y and €%, cannot vanish
simultaneously. Therefore in the nelghborhood of the
point Wl there exists an implicit function ¢(p) (or
©(¢)) and its plot gives the above-mentioned curve " on
which € x(I') = 0. In the case e°%y = 0, the separatrix
dp = 0 locally coincides with T', and therefore, this
integral curve of Eq. (ILT3) does not correspond to any
solution ¢(t) of the equation of motion. Nevertheless,
in virtue of the existence theorem, all phase curves
obtained in the neighborhood of the separatrix dp = 0
correspond to the solutions of the equation of motion.
Moreover, if ey = 0 and p°,, # 0 then the curves
on which px = 0 and € x = 0 locally coincide with



each other and with the curve §¢ = 0. The only phase
curve intersecting the curve dp = 0 at U} is the second
separatrix d¢ = c¢dp/2a. Thus the only solution ¢(t)
on which the transition happens in the neighborhood of
Ut corresponds to the separatrix d¢ = c¢dp/2a. This
can also be seen from the equation ([IL34) which has
only one root ¢, in this case. In the Sec. [[Y)) we will
illustrate this with a numerical example (see Fig. H).

It is worthwhile to discuss cases which fall out from
the consideration made above. We have assumed that
A # 0 and therefore U} is an isolated singular point
of Eq. (ITT3). The most natural possibilities to drop
out this condition are £, = 0 and either £y = 0 or
¢e3Hepx, + €%, = 0. In the first case ¥/} is a critical
point not only of the function ¢ but of the function
e x as well. This can be obtained either for a very
special kind of function p namely, such that p x = 0,
pxx =0,pxxx =0, and [p — 4X2p,XXLg, =0at U
or imposing the condition that the point U is a critical
point not only of p but also of the functions p x and
Pxx:Px=0,0,=0,pxx=0,px,=0,pxx4 =0,
and finally p xxx = 0 at U}, In the second case WU}
is a common critical point for the functions € and ¢ .
In terms of p, this condition is as follows: p x = 0,
P = 0, P.xp = 0, Pxx = 0, Do = 0, P.XXp = 0,
and finally p x4, = 0 at U} . Thus, the point ¥} is a
common critical point of p, p x and p x,. Of course, the
analysis performed above does not work in the case if
the function p(p, X) does not have a sufficient amount of
derivatives. It is clear that all these cases are not general.

Let us sum up the results obtained in this section. In
the general case of linearizable functions € x, €, and
D,x, the considered transitions either occur through the
points ¥}, where p x =0,e x =0, ¢, =0, and

¢ [(E?Xga - 5,@@5,XX) ® - 3H5,XXP,<;>] >0

or lead to an unacceptable instability with respect to
the cosmological perturbations of the background. The
points ¥T are critical points of the energy density and
are the singular points of the equation of motion of the
field ¢ as well. These singular points are saddle points
and the transition is realized by the repulsive separatrix
solutions, which form the saddle. Therefore the measure
of these solutions is zero in the set of trajectories and the
dynamical transitions from the states where w > —1 to
w < —1 or vise versa are physically implausible.

IV. LAGRANGIANS LINEAR IN X

The simplest class of models, for that one could antic-
ipate the existence of dynamical transitions, is the dark

energy described by Lagrangians p(¢, X) linear in X:

Po. X) = KX = 2V = o (K()V,0¥"0 ~ V(9)
(IV.1)
In the isotropic and homogeneous Friedmann universe,
the Lagrangian is then

(K(p)@* = V(9)). (IV.2)

DN | =

p(p, ) =

For these models, we always have ¢2 = 1 and therefore, as
follows from our analysis, the transitions could occur only
through the points where ¢ x = 0. The energy density
for this model is

1 .
5 (K(@)#* +V(p).

If one takes K(¢) = 1, then the Lagrangian ([[V.2) is
the usual Lagrangian density for scalar field with a self-
interaction. If we take K () = —1, then we obtain the
so-called “Phantom field” from [1d] and [11]. The case
K(p) > 0 corresponds to w > —1, whereas K(¢) < 0
corresponds to w < —1. The equation of motion ([LI3)
takes in our case the following form:

e(p,¢) = (IV.3)

$K + ¢KV3e +¢,=0. (IV.4)

While the equation determining the phase curves ([ILI3)
reads in this particular case

dp 1

it V3e + SRS 0. (IV.5)
If K(p) is a sign-preserving function, one can redefine
field ¢: /|K (¢)|dp = dé (see also Ref. [16]). The equa-
tion of motion for the new field ¢ can be obtained from
Eq. (O0C4), through the formal substitutions ¢ — ¢,
V(p) = V(¢) = V(e(¢)), and K(p) — £1, where the
upper sign corresponds to a positive K () and the lower
one to a negative K(¢). After these substitutions, the
equation of motion ([[4)) looks more conventionally

1(ovV(e))
+ 5 <a—¢> =0. (IV.6)

Moreover, this equations is easier to dial with, because
one can visualize the dynamic determined by it, as 1D
classical mechanics of a point particle in a potential
+V(¢)/2 with a little bit unusual friction force. If we
were able to solve the equation of motion () for all
possible V (¢) and initial data, we could solve the problem
of cosmological evolution for all linear in X Lagrangians
with sign-preserving K ().

If the function K(p) is not sign-preserving, then at
first sight it seems that the dark energy, described by
such a Lagrangian, can realize the desirable transition.
The function K(¢) generally can change the sign in two
ways: In the continuous one, then the function K(y)
takes the value zero for some values of field ¢ or in a
discontinuous polelike way.

i +ayfS (£ +7(0)
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A. Linearizable K(y)

Without loss of generality, one can assume that
K(0) = K. = 0, K(p) < 0 for the negative values of
¢ and K(p) > 0 for ¢ > 0. The line ¢ = 0 on the
phase plot (¢, ¢) we will call the “critical” line for the
given class of Lagrangians. The phantom states (p, )
of the scalar field lie on the left-hand side, while the
usual states with w > —1 are on the right-hand side of
the critical line. If there exists a solution ¢(¢) whose
phase curve passes through the “critical” line, then the
dark energy can change the sign of (w+ 1) during the
cosmological evolution. From now on, we will investigate
the behavior of the phase curves of the system in the
neighborhood of the critical line.

First of all, it is worth considering the functions K ()
such that K > 0 (here we have denoted K ,(0) = K7,),
because in this case we can directly apply the outcome of
our previous analysis made in the Sec. [I[TAl Condition
([II22) is for the linear in X Lagrangians as follows:

PEKL+ V! =0. (IV.7)

As we have already assumed K/ > 0, therefore, if V! > 0,
then, as follows from condition ([_7), there are no twice
differentiable solutions ¢(t) whose phase curves would
intersect or touch the critical line. Further (see formula
(T3 and below) we will show that, for the linear in X
Lagrangians, condition ([IL22) (or in our case condition
() is necessary not only for the existence of the second
t derivative ¢ at the point of intersection with the critical
line but for the existence of a solution ¢(t) at this point
as well. Thus, we come to the conclusion that, if V! > 0,
then two regions ¢ < 0, and ¢ > 0 on the phase plot are
not connected by any phase curves and accordingly the
dark energy does not change the sign of (w+ 1) during
the cosmological evolution.

In the case V! < 0, we can solve Eq. (V7)) with respect

to e ¢
. [w
P =Ux =Ty [—=.

The phase curves, lying in the neighborhoods of the sin-
gular points U} = (0, u ), are to obtain from the relation

([IL38), which gives:

(IV.8)

A
7 <<p —uy — Tiga) = const, (IV.9)
where
VK" _ V'K
Ay = —3H, 4 Je2te ~ Ve Re (IV.10)

2u (K1)

For each singular point (0,u4 ), there is a corresponding
solution ¢4 (t) whose phase curve is the separatrix

A
pr = ux+ S50, (IV.11)

which intersects the critical line. These phase curves
correspond to the const = 0 in the right-hand side
of Eq. (Y). Another curve, which corresponds to
const = 0is ¢ = 0. As we have already mentioned at the
end of the previous subsection, this curve does not cor-
respond to any solutions ¢(t) of the equation of motion
([O4).

Considering the phase flow in the neighborhoods of
Ut = (0,ut) (see Fig. H), we infer that the separatrices
p+ are repulsors immediately before they intersect the
critical line and attractors after the crossing. Hence, the
measure of the initial conditions (p,¢) leading to the
transition to phantom field (or vice versa) is zero. In this
sense the dark energy cannot change the sign of K () (or
equivalently the sign of (w + 1)) during the cosmological
evolution.

The typical behavior of the phase curves in the neigh-
borhood of the singular points (0, us), for the models
under consideration (K > 0, V! < 0), is shown in Fig. B
Here, as an example, we have plotted the phase curves
obtained numerically for a toy model with the Lagrangian

density p = $p¢? — & ((go -1)% 4+ %) For this model we

have uy = +1, Ay = —%, and A_ = —%.

Let us now consider such potentials V(y) that V! = 0.
If K () is a differentiable function, then, in the case un-
der consideration, the equation of motion (.4l obvi-
ously has a fixed-point solution ¢(t) = 0 but this solu-
tion is not necessarily the unique one. When V! = 0 and
K! > 0, then, as follows from the condition ([IL22)), the
only value ¢, where a phase curve could have coinciding
points with the critical line, is ¢ = 0. From the analy-
sis made in Sec. [ITAl we have already learned that the
transition is impossible in this case. Nevertheless it is
worth to showing explicitly how the phase curves look
at this case. Taking into consideration only the leading
order in the numerator and denominator of Eq. ([[\.3))
and assuming that V" # 0, we obtain

dp 20K

(IV.12)

The solution of this equation, going through the point
(0,0) on the phase plot, is

K/
_ 22 c
Ps = — (W) .

In Fig. Bl we have plotted the phase curves obtained
numerically for a toy model with the Lagrangian density
p = 20¢* — 2 (¢*+2). As one can see from Fig. B
the parabolalike phase curve g, given by the formula
(T13), is the separatrix going through the fixed-point
solution ¢(t) = 0. Moreover, this figure confirms that
there are no phase curves intersecting the critical line by
finite .

(IV.13)



Figure 5: The typical behavior of the phase curves in the
neighborhood of the critical line where K(¢) = 0 (here ¢ axis
) is plotted for the case when K, > 0 and V, < 0. Horizontal
dashed lines are the analytically obtained separatrices ¢4+ and
(0,u4) are the points of transition.

to

===t 0

Figure 6: The typical behavior of the phase curves in the
neighborhood of the critical line where K(¢) = 0 (here ¢ axis
) is plotted for the case when K, > 0, V, =0, and V" > 0.

B. General differentiable K(y)

The models we are going to discuss below belong to
the more general class of models for which the function
K(p) has zero of an odd order 2n + 1 (where n > 0)
at ¢ = 0. For the linear in X Lagrangians, we have
e xx = 0; therefore, if n > 0 then K/ = 0 and e%x = 0.
That is why the general analysis made in the Sec. [Tl
does not work for this case. Therefore it is interesting to
investigate on this simple example whether the desired
transition could be possible for models not covered by
our former analysis. If K () is a sufficient many times

11

differentiable function, then for |p| < 1 we have

(2n+1)
KC " 2n+1
!SD )

e ey

(IV.14)

where K" is the (2n + 1)th ¢ derivative of K at
@ = 0. If there is a phase curve, crossing the critical line
at a finite nonvanishing ¢., then integrating both sides
of the equation of motion (.4)) we obtain

0 0

H@M@—/

€
—=dp.
Pin K

Sbc - Qbin =-3 (IV15)

Pin
Here (pin, ¥in) is a point on the phase curve in the neigh-
borhood of the critical line. The first integral on the
right-hand side of Eq. (CIH) is always finite, whereas,
as follows from the relation ([V.I4)), the second integral
is definitely divergent, if €%, # 0. This divergence con-
tradicts to our initial assumption: ¢, - finite. There-
fore we again obtain the condition ([[IL22)), which re-
stricts the possible intersection points on the critical line
in the sense that in the other points, where the condi-
tion does not hold, not only the second derivative ¢ does
not exist, but there are no solutions ¢(t) at all. More-
over, it is clear that the condition (7)) is not enough
for the existence of the solutions intersecting the critical
line. Thus, if the order of V'(y) exceeds the order on ¢
of K'(p) for |¢| < 1, then one can neglect V'(¢) and
the integral (N.15) has the logarithmic divergence (note
that we do not consider the points ¢. = 0 because as
we already know the transition does not occur via these
points). When the order of V' () is lower than K’'(p)
(and therefore lower than the order of K (¢)), we can ne-
glect 92 K'(p) and the integral (II5) has a power-low
divergence. Finally, if the functions K'(y) and V'(y)
have the same order on ¢ for |p| < 1 and are of opposite
signs in a sufficient small neighborhood of ¢ = 0, then
one can find an appropriate finite value 2 # 0 for which
the divergence on the right-hand side of Eq. ([.13) is
canceled. One would expect that at this point the phase
curves intersect the “critical” line and the dark energy
changes the sign of (w+ 1). Below, we give the direct
calculation of these ¢, and the phase curves in a neigh-
borhood of them. Suppose that the order of the functions
(V(p) — V) and K(p) is (2n + 1) and there exist their
derivatives of the order (2n + 2). Then for the ¢ deriva-
tive of the energy density we have in the neighborhood
of the supposed intersection point (0, ¢.):

1 2"
fo ™5 ® [(¢§K£2n+l) n Vc(2n+1)> + 29 K2 5

(2n)!

4 (¢3K£2n+2) 4 ‘/C(2n+2)>} ,

@ (IV.16)

whereas the denominator ¢ K () of the second integral on
the right-hand side of Eq. (_I3) has the order (2n 4+ 1)
on . The only possibility to get rid of the divergence
in the integral under consideration is to assume that the
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first term in the brackets in the asymptotic ([If) for
€,, is zero. Therefore the possible crossing points are
given by

v @t

Yo =uy =+ (IV.17)

_K(2n+l) :

Taking into account only the leading order on ¢ and §¢
in the denominator and the numerator of Eq. (L3)), we
obtain differential equation for the phase curves in the
neighborhoods of the intersection points (0, u4):

dép 0p
— =Ay —(2n+1)—, IV.18
7 (2n+1) (IV.18)
where
K§2n+2) c(2n+1) _K§2n+1) c(2n+2)
Ar =-3H.+ Ve Ve

9 [K(EQnJrl)} 2 s

(IV.19)
The solutions of this equation are given by the formula

: A 2n+1 _
(&p T 2<p> ® = const, (IV.20)

which is a generalization of formula (). Similarly to
the case n = 0 (K. > 0) the solutions, on which the tran-
sition occurs, have the measure zero in the phase curves
set. Therefore we infer that the dynamical transition
from the phantom states with w < —1 to the usual with
w > —1 (or vice versa) is impossible.

Now we would like to mention the models, for which
V'(¢) is one order higher on ¢ than K’(p) for small .
From the asymptotic expression for ¢, (.I6) and the
relation, giving the possible values of ¢, ([V.13), we see
that the only point on the critical line which could be
reached in a finite time is ¢, = 0. Therefore, as we have
seen in Sec. [[ITAl the transition is impossible. The phase
curve going trough the fixed-point solution ¢(t) =0 is a
parabola given by the generalization of Eq. (13 :

F@ntD)
Y ent2) [

22

=P (IV.21)

If V'(¢) is more than one order higher on ¢ than K'(y),
then as we have already mentioned ¢, = 0 and the tran-
sition is impossible as well.

C. Pole-like K(y)

In this subsection, we briefly consider the case when
the function K(¢) has a pole of an odd order, so
K ~ o721 where n > 0, for |¢| < 1. This kind of
functions K (p) is often discussed in the literature in
connection with the k—essence models (see [10]). Let
us keep the same notation as in subsection [N Al The

potential V(¢) can not have a pole at the point ¢ = 0,
because, if it were the case, either the energy density ¢
or the pressure p would be infinite on the critical line.
In order to obtain finite values of the energy density
€ and pressure p, it is necessary to assume that the
system intersects the critical line at ¢ = 0. But, as
we have already seen in Sec. [[IAl the dark energy
cannot change the the sign of (w + 1) at the points ¢ = 0.

Thus, we have shown that in the particular case of
the theories described by the linear in X Lagrangians
p(p, X) = K(¢)X — V(p), which are differentiable in
the neighborhood of ¥} (K(y¢) and V() differentiable
but not necessary linearizable) the results, obtained for
linearizable functions € x, € ,, and p x, hold as well. This
gives rise to hope that the same statement is true for the
general nonlinear in X Lagrangians as well. Especially
we have proven that, if the construction of the linear in
X Lagrangian allows the transition, then the transitions
always realize on a pair of the phase curves. One phase
curve corresponds to the transition from w > —1 to w <
—1 while another one realizes the inverse transition. This
pair of phase curves obviously has the measure zero in the
set of trajectories of the system. Therefore we infer that
the considered transition is physically implausible in this
case.

V. SCALAR DARK ENERGY IN OPEN AND
CLOSED UNIVERSES IN THE PRESENCE OF
OTHER FORMS OF MATTER

In the previous sections, we have seen that the desir-
able transition from w > —1 to w < —1 is either impos-
sible or dynamically unstable in the case when the scalar
dark energy is a dominating source of gravity in the flat
Friedmann universe. Let us now investigate whether this
statement is true in the presence of other forms of matter
and in the cases when the Friedmann universe has open
and closed topology.

Following Ref. %], the effective sound speed c; is given
by the same Eq. ([[LI4) for the flat, open, and closed uni-
verses. Therefore, if the dark energy is the dominating
source of gravitation (in particular this means that the
energy density of the dark energy € # 0 ), then the anal-
ysis made in Sec. is applicable to open and closed
universes as well as to the flat universe.

If the dark energy under consideration interacts
with ordinary forms of matter only through indirect
gravitational-strength couplings, then the equation of
motion ([[LI3) can be written in the following form:

(V.1)

¢e x +3pHp x +e, =0,

where merely the Hubble parameter depends on the spa-
tial curvature and other forms of matter. This depen-
dence is given by the Friedmann equation:

H =g (e,

(V.2)



where > ¢; is the total energy density. It is obvious that
the points on the plot (¢, ) considered in the most of
this paper do not define the whole dynamics of the sys-
tem anymore and therefore do not define the states of
the whole system. The analysis made in Secs. [ITAL
[T and [V leans only on the behavior of the scalar
filed ¢ and its first ¢ derivative ¢ in the neighborhoods
of their selected values, namely, such as where some of
the conditions px = 0, ¢ = 0, or € x = 0 etc. hold.
For these conditions, the contributions into the equation
of motion () coming from the other forms of mat-
ter and spatial curvature would be of a higher order and
therefore are not important for the local behavior of ¢
and the problem as a whole. In fact, the value of the
Hubble parameter did not change the qualitative futures
of the phase curves considered in Secs. [ICAIMTCl and
MV To illustrate this statement, we plot the trajectories
of the system p = Jp@? — & ((go —1)° + %) (it is the
same system that we considered in previous subsection)
in presence of dust matter for various values of the initial
energy densities of the dust (see Fig.[). The only thing
that is important is that H # 0. The universe should not
change the expansion to the collapse and the plot of the
scale factor a(t) should not have a cusp directly at the
time of the transition. Thus, we infer that the most of
our analysis is applicable to a more general physical situ-
ation of a Friedmann universe filled with various kinds of
usual matter, which interact with the dark energy only
through indirect gravitational-strength couplings. More-
over, if the interaction between the dark energy field ¢
and other fields does not include coupling to the deriva-
tives V0, then the obtained result holds as well.

VI. CONCLUSIONS AND DISCUSSION

In this paper we have found that the transitions from
w > —1 to w < —1 (or vice versa) of the dark energy
described by a general scalar-field Lagrangian p(yp, V@)
are either unstable with respect to the cosmological per-
turbations or realized on the trajectories of the measure
zero. If the dark energy dominates in the universe, this
result is still robust in the presence of other energy com-
ponents interacting with the dark energy through nonk-
inetic couplings. In particular, we have shown that, un-
der this assumption about interaction, the dark energy
described by Lagrangians linear in (Vugo)z cannot yield
such transitions even if it is a subdominant source of
gravitation.

Let us now discuss the consequences of these results. If
further observations confirm the evolution of the dark en-
ergy dominating in the universe, from w > —1 in the close
past to w < —1 to date, then it is impossible to explain
this phenomenon by the classical dynamics given by an
effective scalar-field Lagrangian p(y, V). In fact, the
models which allow such transitions have been already
proposed (see e.g., m, B3, @] and other models from the
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Figure 7: Numerically obtained trajectories of the dark energy
described by a Lagrangian linear in X are plotted for the cases
Qo = 1002, Qp = U, and Qp, = 0.1Q,.

Ref. Ilﬂ]) but they incorporate more complicated physics
then the classical dynamics of a one scalar field.

If observations reveal that w < —1 now and if we dis-
regard the possibility of the transitions, then the energy
density of the dark energy should grow rapidly during
the expansion of the universe and therefore the coinci-
dence problem becomes even more difficult. Thus, from
this point of view the transitions considered in this pa-
per would be rather desirable for the history of the uni-
verse. As we have shown, to explain the transition under
the minimal assumptions of the nonkinetic interaction of
dark energy and other matter one should suppose that
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the dark energy was subdominating and described by a
nonlinear in (V#gp)2 Lagrangian. Thus, some nonlinear
(or probably quantum) physics must be invoked to ex-
plain the value w < —1 in models with one scalar field.
The second application of our analysis is the problem of
the cosmological singularity. To obtain a bounce instead
of collapse, the scalar field ¢ must change its equation of
state to the phantom one before the bounce and should
dominate in the universe at the moment of transition.
Otherwise, if the scalar field was subdominant then it is
still subdominant after the transition as well, because its
energy density decreases during the collapse, while the
other nonphantom forms of matter increase their energy
densities. The disappearing energy density of ¢ does not
affect the gravitational dynamics and therefore does not

lead to the bounce. On the other hand, as we have al-
ready proved, a dominant scalar field ¢ described by the
action without kinetic couplings and higher derivatives
cannot smoothly evolve to the phantom with w < —1.
Therefore we infer that a smooth bounce of the nonclosed
Friedmann universe cannot be realized in this framework.
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