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Can dark energy evolve to the Phantom?
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Theresienstraÿe 37, D-80333 Munih, Germany

Dark energy with the equation of state w(z) rapidly evolving from the dustlike (w ≃ 0 at z ∼ 1)
to the phantomlike (−1.2 . w . −1 at z ≃ 0) has been reently proposed as the best �t for

the supernovae Ia data. Assuming that a dark energy omponent with an arbitrary salar-�eld

Lagrangian p(ϕ,∇µϕ) dominates in the �at Friedmann universe, we analyze the possibility of a

dynamial transition from the states (ϕ, ϕ̇) with w ≥ −1 to those with w < −1 or vie versa. We

have found that generally suh transitions are physially implausible beause they are either realized

by a disrete set of trajetories in the phase spae or are unstable with respet to the osmologial

perturbations. This onlusion is on�rmed by a omparison of the analyti results with numerial

solutions obtained for simple models. Without the assumption of the dark energy domination,

this result still holds for a ertain lass of dark energy Lagrangians, in partiular, for Lagrangians

quadrati in ∇µϕ. The result is insensitive to topology of the Friedmann universe as well.

I. INTRODUCTION

One of the greatest hallenges in modern osmology

is understanding the nature of the observed late-time

aeleration of the universe. The present aeleration

expansion seems to be an experimental fat, now that

data from supernovae type Ia [4, 5℄, orroborated later

by those from the osmi mirowave bakground [7℄, have

been reently on�rmed by the observations of the largest

relaxed galaxy lusters [3℄. Although the observations are

in good agreement with the simplest explanation given by

a osmologial onstant Λ of order (10−3
eV)4, the myste-

rious origin of this tiny number, whih is about 120 orders

smaller than the naive expetations, gives rise to the idea

of a dynamial nature of this energy. Possible dynami-

al explanations of this phenomenon are given in various

frameworks. One of them is known as quintessene (see

e.g. [25℄ and other referenes from the review [24℄). In

this framework the equation of state p = wε is suh that

w ≥ −1. Another proposal is the phantom salar �elds

(see e.g. [13℄) whih possess the super-negative equation

of state w ≤ −1, due to the �wrong� sign before the

kineti term in the Lagrangian. Alternatively, there is

a more general possibility under the name k−essene
[9, 10, 43℄ whih is an e�etive salar-�eld theory de-

sribed by a Lagrangian with a nonlinear kineti term.

For this model, the equation of state w is not onstrained

to be larger or smaller than −1. Allowing the dark energy
to be dynamial provides an opportunity to study the so-

alled oinidene problem whih asks why dark energy

domination begins just at the epoh when sentient beings

are able to observe it. The main advantage of k−essene
is its ability to solve this problem in a generi way (for

details see [10℄), whereas the �rst two models require a

�ne-tuning of parameters.

Without imposing the prior onstraint w ≥ −1,
the observations seem to favor the dark energy with

the present equation of state parameter w < −1 (see

e.g. Ref. [3, 6, 15, 33℄). Moreover, reently it was argued

(see Ref. [1, 2℄ and other onstraints on w(z) obtained in

Refs. [8, 32, 37, 38, 41, 42℄) that the dark energy with the

equation of state parameter w(z) rapidly evolving from

the dustlike w ≃ 0 at high redshift z ∼ 1, to phantomlike

−1.2 . w . −1 at present z ≃ 0, provides the best �t for
the supernovae Ia data and their ombinations with other

urrently available data from the measurements of os-

mi mirowave bakground radiation (CMBR) and from

2dF Galaxy Redshift Survey (2dFGRS).

Matter with w < −1 violates the dominant energy on-

dition whih is a su�ient ondition of the onservation

theorem [26℄. Therefore for suh models one annot guar-

antee the stability of vauum on the lassial level. The

instability an reveal itself at the quantum level as well.

In fat, it was shown that the phantom salar �elds are

quantum-mehanially unstable with respet to deay of

the vauum into gravitons and phantom partiles with

negative energy [11, 12℄. Assuming that the phantom

dark energy is an e�etive theory allows one to esape this

problem through the appropriate �ne-tuning of a uto�

parameter. If the dark energy ould dynamially hange

its equation of state from a phantomlike one to that with

w ≥ −1, then this transition would prevent the undesir-

able partile prodution without suh a �ne-tuning. Here

it is worth mentioning that quantum e�ets on a loally

de Sitter bakground ould lead to the e�etive parame-

ter w < −1 (see Ref. [39, 40℄).

Another fundamental physial issue where this tran-

sition ould play an important role is the osmologial

singularity problem. If w < −1 in an expanding Fried-

mann universe, then the positive energy density of suh

phantom matter generally beomes in�nite in �nite time,

overoming all other forms of matter and, hene, leads to

the late-time singularity alled the �big rip� [14℄. The

transition under onsideration ould naturally prevent

this late-time singularity. Here it is worthwhile to men-

tion that for ertain potentials and initial onditions the

phantom salar �elds an esape this singularity by evolv-

ing to a late-time asymptoti whih is the de Sitter so-

lution with w = −1 [33, 34℄. Moreover, it was argued

that the quantum e�ets an prevent the developing of

the �big-rip� singularity as well [35℄.
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On the other hand, to avoid the big runh singularity,

whih arises in various pre-big bang and yli senarios

(see e.g. [28, 29, 30℄), one assumes that the universe an

boune instead of ollapsing to the singularity. The ex-

istene of a nonsingular bouning solution in a �at (or

open) Friedmann universe (k 6= +1) requires the viola-

tion of the null energy ondition (ε + p ≥ 0) during the

boune [27℄. If the energy density ε is onstrained to be

positive, then it follows that w < −1 is the neessary

ondition for the boune. But the energy density of suh

phantom matter would rapidly derease during the ol-

lapse and therefore only the transition from w ≥ −1 to

w < −1 just before the boune ould explain the non-

singular bouning without a �ne-tuning in initial energy

densities of phantom and other forms of matter present

in the universe.

It is worth noting as well that for regimes where the

equation of state of the k−essene �eld is greater than

−1 it is possible to �nd a quintessene model whih gives

the same osmologial evolution but behaves di�erently

with respet to osmologial perturbations [16℄. Hene,

it is interesting whether this equivalene an be broken

dynamially.

In this paper we onsider the osmologial dynamis of

a k−essene �eld ϕ, desribed by a general Lagrangian p
whih is a loal funtion of ϕ and ∇µϕ. The Lagrangian
depends only on ϕ and a salar quantity,

X ≡ 1

2
∇µϕ∇µϕ. (I.1)

First of all, we determine the properties of a general La-

grangian p(ϕ,X), whih are neessary for the smooth

transition of the dark energy from the equation of state

w(ϕ,X) ≥ −1 to w(ϕ,X) < −1 or vie versa. The tran-

sition obviously happens if the system passes through the

boundaries of the domains in the spae (ϕ,X), de�ned
by these inequalities. In most of the paper, we assume

that the dark energy dominates in a spatially �at Fried-

mann universe. The main question is whether trajeto-

ries onneting these domains on the phase spae (ϕ, ϕ̇)
exist and are stable with respet to osmologial pertur-

bations. In the ase of the phase urves whih do not

violate the stability onditions, we study their asymp-

toti behavior in the neighborhood of the points where

the transition ould our. To proeed with this analysis,

we linearize the equation of motion in the neighborhood

of these points and then use the results of the qualita-

tive theory of di�erential equations. For the dark energy

models desribed by Lagrangians linear in X , we perform

this investigation beyond the linear approximation. For

this lass of Lagrangians, we illustrate the outome of

our analysis by numerially obtained phase urves. Fi-

nally, we generalize the results to the ases of spatially

not-�at Friedmann universes �lled with a mixture or the

dark energy and other forms of matter.

II. GENERAL FRAMEWORK

Assuming the dominane of the dark energy, we neglet

all other forms of matter and onsider a single salar �eld

ϕ interating with gravity. After all, we will see that

the results an be easily extended to the models with

additional forms of matter. The ation of the model reads

in our units (Mp = ~ = c = 1, where Mp is the redued

Plank mass Mp = (8πG)−1/2 = 1.72 × 1018GeV ) as

follows:

S = Sg + Sϕ =

∫

d4x
√
−g

[

−R

2
+ p(ϕ,X)

]

, (II.1)

where R is the Rii salar and p(ϕ,X) is the Lagrangian
density for the salar �eld. This kind of ation may

desribe a fundamental salar �eld or be a low-energy

e�etive ation. In priniple, the Lagrangian density

p(ϕ,X) an be non-linear on X . For example, in string

and supergravity theories nonlinear kineti terms appear

generially in the e�etive ation desribing moduli and

massless degrees of freedom due to higher order gravita-

tional orretions to the Einstein-Hilbert ation [17, 18℄.

The �matter� energy-momentum tensor reads

Tµν ≡ 2√−g

[

δSϕ

δgµν

]

(II.2)

= p,X(ϕ, X)∇µϕ∇νϕ− p(ϕ, X)gµν .

Here a omma denotes a partial derivative with respet

to X . The last equation shows that, if ∇νϕ is timelike

(i.e. X > 0), the energy-momentum tensor is equivalent

to that of a perfet �uid,

Tµν = (ε+ p)UµUν − pgµν , (II.3)

with pressure p(ϕ,X), energy density

ε(ϕ,X) = 2Xp,X(ϕ,X)− p(ϕ,X), (II.4)

and four veloity

Uµ =
∇µϕ√
2X

. (II.5)

The equation of motion for the salar �eld an be ob-

tained either as a onsequene of the energy-momentum

tensor onservation ∇µT
µ
ν = 0 or diretly from the ex-

tremal priniple δSϕ/δϕ = 0:

p,X�gϕ+ p,XX (∇µ∇νϕ)∇µϕ∇νϕ+ ε,ϕ = 0, (II.6)

where �g ≡ gµν∇µ∇ν
and ∇µ

denotes the ovariant

derivative. For this �uid we an de�ne the equation of

state parameter w as usual:

w ≡ p

ε
. (II.7)

There is inreasing evidene that the total energy den-

sity of the universe is equal to the ritial value, and
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hene in the most part of the paper we will onsider a

�at Friedmann universe. In the end, we shall show that

the results are also appliable in the ases of losed and

open universes. Thus, the bakground line element reads

ds2 = gµνdx
µdxν = dt2 − a2(t) dx2. (II.8)

The Einstein equations an be written for our bak-

ground in the familiar form:

ä

a
= −1

6
(ε+ 3p) , (II.9)

H2 =
ε

3
, (II.10)

where H ≡ ȧ/a is the Hubble parameter and a dot

denotes derivative with respet to the physial time t.
These equations also imply a ontinuity equation:

ε̇ = −3H(ε+ p). (II.11)

In general, whenever ȧ 6= 0 any two of these three last

equations imply the third one (by ompatible initial on-

ditions). Usually it is easier to work with the seond

and the third equations (these are the Friedmann equa-

tions). Note that, from Eq. (II.10), ε was onstrained to

be non-negative.

Beause of the homogeneity and isotropy of the bak-

ground, we get X = 1
2 ϕ̇

2
and p,ϕ̇ = ϕ̇p,X so the en-

ergy density looks as the energy in usual 1D lassial

mehanis

ε(ϕ, ϕ̇) = ϕ̇p,ϕ̇ − p. (II.12)

Expressing H from the �rst Friedmann equation (II.10),

we an rewrite Eq. (II.6) in the ase of the homogeneous

and isotropi �at bakground as follows:

ϕ̈ε,X + ϕ̇p,X
√
3ε+ ε,ϕ = 0. (II.13)

So far as ȧ(t) 6= 0, all of the information about the dy-

namis of gravity and salar �eld is ontained in the equa-

tion written above. In aordane with our initial simpli-

�ation the dark energy should dominate in the universe;

therefore we assume throughout the paper that ε > 0.
Following [19℄, we introdue the e�etive sound speed

of the perturbations,

c2s ≡ p,X
ε,X

. (II.14)

Then the equation of motion takes the form

ϕ̈+ ϕ̇c2s
√
3ε+

ε,ϕ
ε,X

= 0. (II.15)

In most of this paper, we shall assume that the solutions

ϕ(t) and Lagrangians p(ϕ,X) have enough ontinuous

derivatives. So, for example, ϕ(t) will be mostly onsid-

ered as being at least of the lass C2 : ϕ(t), ϕ̇(t), ϕ̈(t)
are ontinuous.

III. POSSIBLE MECHANISMS OF THE

TRANSITION

There are two possibilities for the evolution of dark

energy from w ≥ −1 to a phantom dark energy with

w < −1 (or vise versa). These are a ontinuous transi-

tion, in whih the dark energy evolves through points

where w = −1, and a disontinuous transition ourring

through points where ε = 0, provided that the pressure

p is �nite. Sine by assumption the dark energy is the

dominating soure of gravitation, we annot have ε = 0
and therefore it is su�ient to onsider only ontinuous

transitions.

Further, throughout the paper we will usually suppose

that for the dynamial models under onsideration there

exist solutions ϕ(t) and orresponding to them moments

of time tc suh that

w [ϕ(tc), X(tc)] = −1. (III.1)

Heneforth the index c denotes a physial quantity taken

at tc; i.e., ϕc ≡ ϕ(tc), εc ≡ ε(tc), et.

The parameter w an be expressed with the help of

Eq. (II.4) in the following form, more onvenient for a

study of ontinuous transitions:

w = −1 +
2X

ε
p,X . (III.2)

Sine X = 1
2 ϕ̇

2 ≥ 0 and ε > 0, we �nd that w < −1
orresponds to p,X < 0, whereas w > −1 implies

p,X > 0. In aordane with our notation, the equation

of state parameter w takes the value −1 at the points

Ψc ≡ (ϕc, ϕ̇c), where either X = 0 or p,X = 0. Beause

of these equations, the points Ψc generally form urves

γ(λ) and isolated points in the phase spae (ϕ, ϕ̇) of the
dynamial system given by Eq. (II.13). The urves γ(λ)
may interset.

For our purposes, it is onvenient to divide the set of

points Ψc into three disjunt subsets:

A) The ϕ−axis of the phase plot (ϕ, ϕ̇), i.e., ϕ̇c = 0.

B) The points where p,X(Ψc) = 0 but ϕ̇c 6= 0 and

ε,X(Ψc) 6= 0.

C) The points where p,X(Ψc) = 0 and ε,X(Ψc) = 0 but

ϕ̇c 6= 0.

Further in this setion we will study the dynamis of the

salar �eld ϕ in the neighborhoods of Ψc separately for

these ases. If the system evolves from the states (ϕ, ϕ̇)
where w ≥ −1 to the states with w < −1 (or vise versa),

the funtion p,X hanges sign.

It is worth noting that, if the salar dark energy were

equivalent to an �isentropi� �uid for whih the pressure
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p is a funtion only of ε, then the possibility of evolving

through the points εc where w(εc) = −1 ould be eas-

ily ruled out. Indeed, in that ase we ould rewrite the

ontinuity equation (II.11) only in terms of ε:

ε̇ = −
√
3ε [ε+ p(ε)] , (III.3)

so that the system of Einstein equations (II.9) and (II.10)

ould be redued to Eq. (III.3) and the values of energy

density εc would be �xed points of this equation. A dy-

namial transition through a �xed point is learly impos-

sible.

An example of the dark energy whih seems to be

equivalent to the �isentropi� �uid is the simple model

desribed by the Lagrangian p = p(X) depending only

on X . Let us further assume that there are some values

Xc, where w(Xc) = −1. If Eq. (II.4) is solvable with

respet to X in the neighborhoods of these points Xc,

then one an �nd X(ε) and therefore the pressure is a

funtion only of energy density p(ε) ≡ p [X(ε)]. Thus

the system is equivalent to the �isentropi� �uid, Xc are

�xed points, and the transition through w = −1 is im-

possible. It remains to onsider the onditions on the

funtion ε(X) under whih Eq. (II.4) is solvable with re-

spet toX . From the theorem about the inverse funtion,

Eq. (II.4) is solvable with respet to X if

ε,X(Xc) = [2Xp,XX(Xc) + p,X(Xc)] 6= 0. (III.4)

One an see diretly from the equation of motion (II.13)

and ondition (III.4) that Xc are �xed point solutions. In

fat, as it was shown in Ref. [23℄, there generally exists

the solution X(t) ≡ Xc and moreover it is an attrator in

an expanding Friedmann universe. Thus, the transition

is generally forbidden for systems desribed by purely

kineti Lagrangians p(X).
In the general ase when p = p(ϕ,X), the pressure

annot be expressed only in terms of ε, sine ϕ and X
are independent.

A. Transition at points Xc = 0

Here we will analyze the possibility of the transition

in the ase (A) ϕ̇c = 0. Namely, we are going to study

the properties of the solutions ϕ(t) in the neighborhood

of the line ϕ̇c = 0. Di�erentiating the equation of state

parameter with respet to the time, we have

ẇ =
2Ẋ

ε
p,X +

2X

ε
˙p,X − 2X

ε2
p,X ε̇. (III.5)

At the points under onsideration we have ẇc = 0 be-

ause Xc = 0 and, respetively, Ẋc = ϕ̇cϕ̈c = 0. More-

over, the time derivatives in the seond and third sum-

mands vanish at these points as well due to the ontinuity

equation (II.11) and the formula

˙p,X = ϕ̇ (p,ϕX + ϕ̈p,XX) . (III.6)

Let us di�erentiate the ẇ one more with respet to the

time. The only term whih survives from the formula

(III.5) at the points Xc = 0 is the �rst term. Hene, we

have

ẅc =

[

2Ẍ

ε
p,X

]

c

=

[

2ϕ̈2

ε
p,X

]

c

. (III.7)

Using the equation of motion (II.13), we an express ϕ̈
through the p and its derivatives

ϕ̈cε,X(tc) = −ε,ϕ(tc). (III.8)

As follows from Eq. (II.4), ε,X(tc) = p,X(tc) at the time

tc when the system rosses Xc = 0. Provided ε,ϕ(tc) 6= 0
and p,X(tc) 6= 0, we infer from Eq. (III.7) and (III.8) that

the equation of state parameter w(t) has either a mini-

mum or a maximum at the point tc. Thus, the transition
is impossible in this ase.

If ε,ϕ(tc) = 0 and ε,X(tc) 6= 0, then it follows from

relation (III.8) that ϕ̈(tc) = 0. Therefore the onsidered
solution ϕ(t) for whih w [ϕ(tc)ϕ̇(tc)] = −1 is a �xed

point solution ϕ(t) ≡ ϕc ≡ const and the transition is

impossible. Sine ε > 0, we see that this �xed point is

obviously the de Sitter solution.

If not only Xc = 0 but also ε,X(tc) ≡ p,X(tc) = 0,
then ε,ϕ(tc) = 0 and it follows from the formula (II.4)

that p,ϕ(tc) = 0. Moreover, the equation of motion

(II.13) is not solved with respet to the highest deriva-

tives (namely, with respet to ϕ̈ ) and therefore does not

neessarily have a unique solution. It happens beause

the point (ϕc, 0) on the phase plot (ϕ, ϕ̇) does not deter-
mine the ϕ̈ via the equation of motion (II.13). It is lear

that, in this ase, the pointlike (on the phase plot) solu-

tion ϕ(t) ≡ ϕc ≡ const is a solution, but not neessary a

unique one.

Below, we will give a more general onsideration of the

geometry of phase urves in the neighborhood of the ϕ
axis. The phase �ows are direted from right to left for

the lower part of the phase plot ϕ̇ < 0 and from left to

right for the upper part ϕ̇ > 0, see Fig 1. Therefore the

system an pass the ϕ axis only if the point of intersetion

is a turning point (urves 1 and 6 on Fig 1). Otherwise

the rossing is a �xed point (or a singularity). If there is

a smooth phase urve on whih the system pass through

the ϕ axis, then in a su�iently small neighborhood of

the turning point we have (ϕ− ϕc) ∼ ϕ̇2n ∼ Xn
where

n ≥ 1. Restrited to this urve, the funtion Xp,X(ϕ,X)
depends only on X and in the absene of a branhing

point the sign of this funtion above and below the ϕ
axis is the same. Then it follows from the formula (III.2)

that the system annot hange the sign of (w + 1) while
rossing the ϕ axis.

If a smooth phase urve does not ross but touhes

the ϕ axis at a point ϕc (see Fig. 1, trajetories 3 and

4), then the following asymptoti holds: ϕ̇ ∼ (ϕ− ϕc)
2n
,

where n ≥ 1. Let us �nd the time needed for the system
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Figure 1: Possible phase urves in the neighborhood of the

ϕ−axis. Only on the urves 1 and 6, the system rosses the

ϕ axis. Curves 2, 3, 4 and 7 have an attrator as a shared

point with the ϕ axis, whereas urves 5 and 8 have a repulsor.

These attrators and repulsors an be �xed-point solutions or

singularities.

to reah the tangent point (ϕc, 0) in this ase. We have

t ≡
∫ ϕc

ϕin

dϕ

ϕ̇(ϕ)
∼
∫ ϕc

ϕin

dϕ

(ϕ− ϕc)
2n , (III.9)

where ϕin is a starting point on the phase urve. The

last integral is obviously divergent. Therefore the system

annot reah the tangent point in a �nite time

Finally, we ome to the onlusion that in the frame-

work under onsideration it is impossible to build a model

with the desirable transition through the points Xc = 0.

B. Transition at points Ψc: p,X(Ψc) = 0,
ε,X(Ψc) 6= 0, Xc 6= 0

In the neighborhood of a point Ψc, at whih the on-

dition ε,X(Ψc) 6= 0 holds, one an �nd a funtion ϕ̇c(ϕc):
p,X [ϕc, ϕ̇c(ϕc)] = 0. This follows from the theorem

about the impliit funtion. One would antiipate that

on the phase urves interseting the urve ϕ̇c(ϕc) the

state of the dark energy hanges to the phantom one

(or vise versa). Let us express p,X from Eq. (III.2) and

substitute it into formula (II.14) for the sound speed of

perturbations:

c2s =
(w + 1)ε

2Xε,X
. (III.10)

For the stability with respet to the general metri and

matter perturbations the ondition c2s ≥ 0 is neessary

(see [19℄). Indeed the inrement of instability is inversely

proportional to the wavelength of the perturbations, and

hene the bakground models for that c2s < 0 are vio-

lently unstable and do not have any physial signi�ane.

Beause of the ontinuity of ε,X , there exists a neighbor-

hood of the point Ψc where ε,X 6= 0. Therefore, from the

above expression for the sound speed (III.10) it follows

that if (w + 1) hange a sign then c2s should hange a sign

as well. If this is the ase, then the trajetories, realiz-

ing the transition, violate the stability ondition c2s ≥ 0.
Therefore the model of the transition is not realisti.

C. Transition at points Ψc: p,X(Ψc) = 0,
ε,X(Ψc) = 0, Xc 6= 0

As we have already mentioned at the beginning of this

setion, the points Ψc generally form the urves in the

phase spae (ϕ, ϕ̇). The sublass of the points Ψc, whih

we are going to onsider in this subsetion, is generally a

olletion of the isolated points given by the solutions of

the system,

p,X(ϕ, ϕ̇) = 0, ε,X(ϕ, ϕ̇) = 0. (III.11)

Only for spei� models, the solutions of this system are

not isolated points. An example when these solutions

form a line is onsidered in setion IV. Usually the phase

urves passing through the isolated points build a set of

the zero measure. Therefore it is physially implausi-

ble to observe the proesses realized on these solutions.

The only reason to study the behaviour of the system

around these points is their singular harater. The point

is that the equation of motion (II.13) is not solved with

respet to the highest derivatives at this points. In suh

points there an be more than one phase urve passing

through eah point. Moreover, the set of solutions ϕ(t),
whih pass through Ψc with di�erent ϕ̈, ould have a

non-zero measure. On the other hand, the equation of

motion does not neessarily have a solution ϕ(t) suh

that (ϕ(tc), ϕ̇(tc)) = Ψc at some moment of time tc, or
there exists the desirable solution ϕ(t) but it does not

possess the seond derivative with respet to time at the

pointΨc. Below we will analyze the behavior of the phase

urves in the neighborhoods of the points Ψc.

The equation of motion (II.13) an be rewritten as a

system of two di�erential equations of the �rst order:

dϕ̇

dt
= −ϕ̇

p,X
ε,X

√
3ε− ε,ϕ

ε,X
, (III.12)

dϕ

dt
= ϕ̇.

The phase urves of this dynamial system are given by

the following di�erential equation:

dϕ̇

dϕ
= − ϕ̇p,X

√
3ε+ ε,ϕ

ϕ̇ε,X
. (III.13)

This equation follows from the system (III.12) and there-

fore all phase urves orresponding to the integral urves

of system (III.12) are integral urves of the di�erential

equation (III.13). But the reverse statement is false, so

eah integral urve of Eq. (III.13) does not neessarily

orrespond to a solution ϕ(t) of the equation of motion

(or of the system (III.12)). In the neighborhoods of the

points where ε,X 6= 0, it is onvenient to introdue a new
auxiliary time variable τ de�ned by

dt ≡ ε,Xdτ. (III.14)
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The system (III.12) is equivalent to the τ system:

dϕ̇

dτ
= −ϕ̇p,X

√
3ε− ε,ϕ, (III.15)

dϕ

dτ
= ϕ̇ε,X .

The auxiliary time variable τ hange the diretion if ε,X
hange the sign. Note that the system (III.15) always

possesses the same phase urves as the equation of motion

(III.12).

In the ase under onsideration we have ϕ̇c 6= 0 and

from the formula

dϕ̇

dϕ
=

ϕ̈

ϕ̇
(III.16)

we infer that dϕ̇/dϕ(tc) should be �nite, if ϕ̈(tc) is �nite.
As one an see from the equation determining the phase

urves (III.13), in order to obtain a �nite dϕ̇/dϕ(tc) it

is neessary that at least ε,ϕ(Ψc) = 0. In the ase if

ε,ϕ(Ψc) 6= 0, the solution ϕ(t) does not possess the se-

ond t derivative at the point tc. Usually this an be seen

as unphysial situation. But nevertheless this does not

neessarily lead to the unphysial inontinuity in the ob-

served quantities ε, p, H , and ϕ, ϕ̇. One may probably

fae problems with the stability of suh solutions, but

let us �rst of all investigate the behavior of the phase

urves in the ase ε,ϕ(Ψc) 6= 0. From Eq. (III.13), we

obtain dϕ/dϕ̇ = 0 at Ψc. Further we an parameterize

the phase urve as ϕ = ϕ(ϕ̇) and bring the equation for

phase urves (III.13) to the form

dϕ

dϕ̇
= ε,X(ϕ, ϕ̇)F (ϕ, ϕ̇), (III.17)

where we denote

F (ϕ, ϕ̇) ≡ − ϕ̇

ϕ̇p,X
√
3ε+ ε,ϕ

. (III.18)

If, as we have assumed, ε,ϕ(Ψc) 6= 0 and ε(Ψc) 6= 0, then
F (ϕ, ϕ̇) is di�erentiable in the neighborhood of the point

Ψc and F (Ψc) = −ϕ̇/ε,ϕ. For the seond ϕ̇ derivative at

the point Ψc, one obtains

d2ϕ

d2ϕ̇
= − ϕ̇2

ε,ϕ
ε,XX . (III.19)

That is why the point Ψc is a minimum or a maximum for

the funtion ϕ(ϕ̇). In this ase Ψc is suh an exeptional

point on the phase plot, where the solution ϕ(t) annot
have ontinuous ϕ̇(t) and the phase urve terminates (see

points ξ in Figs. 2 and 3). This happens beause the di-

retion of the phase �ow is preserved in the neighborhood

of Ψc. If ε,XX(Ψc) = 0, then one an �nd the third ϕ̇
derivative of ϕ(ϕ̇) at the point Ψc:

d3ϕ

d3ϕ̇
= − ϕ̇3

ε,ϕ
ε,XXX . (III.20)

In this ase there an exist a ontinuous solution ϕ(t)
suh that (ϕ(tc), ϕ̇(tc)) = Ψc at some moment of time tc
and the only bad thing happening in this point is that

ϕ̈(tc) does not exist. Let us now investigate what hap-

pens with the equation of state at this point of time. Dif-

ferentiating both sides of the de�nition (II.7) of w yields

at tc

ẇc =

[

ϕ̇

ε

(

p,ϕ − c2sε,ϕ
)

]

c

, (III.21)

where we have used the equation of motion (II.13) at

the point tc and the de�nition (II.14) of c2s. Applying

the l'H�pital rule for the c2s(tc) = lim
t→tc

p,X/ε,X , we �nd

that c2s(tc) = 0. Moreover, using the l'H�pital rule

for the derivative of c2s at the point Ψc, one an �nd

that dc2s/dϕ̇ ∼ p,ϕ/ε,ϕ. Thus, if p,ϕ 6= 0 the transition

ould our but it hanges a sign of the sound speed c2s.
Therefore, if the stability riteria are appliable to this

ase, then the transition leads to instability.

The neessary ondition for the existene of ϕ̈ during

the transition is

ε,ϕ(Ψc) = 2Xcp,Xϕ(Ψc)− p,ϕ(Ψc) = 0. (III.22)

This ondition drastially redues the set of the points

Ψc, where the transition is possible. Namely, they are

the ritial points of the funtion ε(ϕ,X) and, on the

other hand, they are the �xed points of the auxiliary

τ system (III.15). These �xed points are additional

to the �xed points of the system (III.12) de�ned by

ϕ̇ = 0 , ε,ϕ(ϕ, 0) = 0, and ε,X(ϕ, 0) 6= 0. From now

on, we will onsider only those points Ψ+
c where the

ondition (III.22) holds. From the relation (III.22), it

follows that if p,ϕ(ϕc, Xc) = 0 then p,Xϕ(ϕc, Xc) = 0.
Otherwise Xc = 0, and as we have already seen the

transition annot happen via the points Xc = 0. Note

that if p,ϕ(Ψ
+
c ) = 0, then the points Ψ+

c are ommon

ritial points of the pressure p(ϕ, ϕ̇), energy density

ε(ϕ, ϕ̇), and p,X(ϕ, ϕ̇). From ondition (III.22) follows

that points Ψ+
c are singular points of Eq. (III.13). In

suh points there an be more than one phase urve

passing through this point. Moreover, as we have already

mentioned, the set of solutions ϕ(t), whih pass through

Ψ+
c with di�erent ϕ̈, ould have a nonzero measure.

For example, if Ψ+
c were a nodal point (see Fig. 4),

there would be a ontinuous amount of the solutions

passing through this point and therefore there would be

a ontinuous amount of solutions on whih the transition

ould our.

Let us investigate the type of the singular points Ψ+
c .

This will tell us about the amount of the solutions ϕ(t) on
whih the transition is possible and their stability. For

this analysis, one an use the tehnique desribed, for

example, in [21℄, and onsider the integral urves of the

equation (III.13). Here we proeed with this analysis in
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a more onvenient way, namely, using the auxiliary τ sys-

tem (III.15). It is onvenient beause for this system the

singular points Ψ+
c are usual �xed points. As we have

already mentioned, both systems have the same phase

urves and therefore the analysis to perform is also ap-

pliable to the phase urves of the system (III.12). The

only thing we should not forget is the di�erene in the di-

retions of the phase �ows of these systems. If ε(Ψ+
c ) 6= 0,

then one an linearize the right-hand side of the τ system

in the neighborhood of a point Ψ+
c : (ϕ

+
c + δϕ, ϕ̇+

c + δϕ̇).
The linearized τ system (III.15) is

d

dτ
V = AV, (III.23)

where we denote

V =

(

δϕ
δϕ̇

)

, A =

(

a b
c g

)

, (III.24)

and elements of the matrix A are given by the formulas

a = ε,Xϕϕ̇, (III.25)

b = 2Xε,XX,

c = − (3Hϕ̇p,Xϕ + ε,ϕϕ) ,

g = −ε,Xϕϕ̇,

where all quantities are alulated at Ψ+
c . Here we have

used the Friedmann equation (II.10). If Ψ+
c is an iso-

lated �xed point of the τ system (III.15) (or equivalently

the singular point of system (III.12)), then the following

ondition holds

detA = ag − bc 6= 0. (III.26)

The type of the �xed point depends on the eigenvalues

λ of the matrix A (for details see, for example, [22℄). In

the ase under onsideration a = −g and therefore we

have

λ2 = bc+ a2 = − detA. (III.27)

If bc + a2 > 0, then eigenvalues λ are real and of the

opposite signs. In aordane with the lassi�ation of

the singular points, Ψ+
c is a saddle point (see Fig. 2).

Therefore the transition is absolutely unstable; there are

only two solutions ϕ(t) on whih the transition is allowed

to our.

If bc + a2 < 0 then λ are pure imaginary. Here the

situation is a little bit more ompliated: In aordane

with [21℄, this �xed point of a nonlinear system an be

either a fous or a enter. In these ases, as one an see

from Fig. 3, there no solutions ϕ(t) passing through the

point Ψ+
c . Therefore, from now on we will onsider only

the �rst ase - real λ of the opposite signs.

It is onvenient to rewrite the expression for λ into

a simpler form. Di�erentiating the ontinuity equation

(II.11) yields

ε̈c = −3Hcṗc. (III.28)

ϕ

0 ϕ

Γ

ξξ

ξξ

Figure 2: Phase urves in the neighborhood of the singular

point Ψ+
c are plotted for the ase of the real λ. At the points

ξ, the solutions ϕ(t) do not exist. These points together with
Ψ+

c form the urve Γ on whih ε,X(Γ) = 0.

0 ϕ

ϕ

Γ
ξ ξ ξ ξ

Figure 3: Phase urves in the neighborhood of the singular

point Ψ+
c are plotted for the ase of the pure imaginary λ.

Here we assume that the singular point is a fous.

Remember that the index c denotes quantities taken at tc
or in this subsetion at Ψ+

c . Di�erentiating the pressure

p as a omposite funtion, we have ṗ = p,ϕϕ̇ + p,XẊ.

Assuming that ϕ̈c is �nite, we obtain that ṗc = pc,ϕϕ̇c.

Thus the formula for ε̈c is

ε̈c = −3Hcp
c
,ϕϕ̇c. (III.29)

Using the ondition (III.22) and the last equation, we

bring the element c of the matrix A to the following

form:

c = −εc,ϕϕ +
ε̈c
2Xc

. (III.30)

This relation allows one to rewrite the formula (III.27)

as follows:

λ2 = 2Xc

(

(

εc,Xϕ

)2 − εc,ϕϕε
c
,XX

)

+ ε̈cε
c
,XX . (III.31)
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ϕ

0 ϕ

Figure 4: If A had the eigenvalues λ1 = λ2, then the singu-

lar point Ψ+
c would be a nodal point and there would be a

ontinuous set of trajetories passing through it. To illustrate

this we plot here the phase urves in the partiular ase of a

degenerate nodal point. The form of the equation of motion

(II.13) exludes suh types of singular points and therefore

prevents the possibility of suh transitions.

Here it is interesting to note that the expression

εc,ϕϕε
c
,XX −

(

εc,Xϕ

)2
from the previous formula is the de-

terminant of the quadrati form arising in the Taylor set

of ε in the neighborhood of the ritial point Ψ+
c . If this

determinant is positive, then the funtion ε(ϕ,X) has

either a minimum or a maximum at point Ψ+
c . Other-

wise there is either one urve of onstant energy density

ε(urve) = ε(Ψ+
c ) with a singular turning point at Ψ+

c

in the neighborhood of Ψ+
c ore two interseting at Ψ+

c

urves of onstant ε (see [20℄) . On the other hand, dif-

ferentiating ε as a omposite funtion we �nd

ε̈c = 2Xc

(

εc,ϕϕ + 2εc,Xϕϕ̈c + εc,XXϕ̈2
c

)

. (III.32)

Substituting this relation into the previous formula

(III.31) for λ yields

λ2 = 2Xc

(

εc,XXϕ̈c + εc,Xϕ

)2
. (III.33)

This formula provides the relation between ϕ̈c at the mo-

ment of transition and λ. Note that λ depends on ϕ̈c only

in the ase when ε,XX(tc) ≡ 2Xcp,XXX(tc) 6= 0. More-

over, omparing formulas (III.29) and (III.32) for ε̈c, one
an obtain the equation on ϕ̈c:

εc,XX ϕ̇cϕ̈
2
c +2εc,Xϕϕ̇cϕ̈c + ϕ̇cε

c
,ϕϕ +3Hcp

c
,ϕ = 0. (III.34)

This equation is solvable in real numbers if the disrim-

inant is positive. As one an prove, the disriminant is

exatly the 4λ2
and therefore positive if we onsider the

saddle point. The same an be seen from relation (III.33)

as well.

Let us denote the positive and negative eigenvalues and

the orresponding eigenvetors of A as λ+, λ− = −λ+

and a+, a−, respetively.

If b 6= 0 ( or equivalently εc,XX 6= 0), then the eigen-

vetors an be hosen as a+ = (1, (λ+ − a)/b) and

a− = (1,−(λ+ + a)/b). Therefore the separatries form-

ing the saddle are

δϕ̇+ =
λ+ − a

b
δϕ and δϕ̇− = −λ+ + a

b
δϕ.

The general solution for the phase urves in the neigh-

borhood of Ψ+
c is

(

δϕ̇− λ+ − a

b
δϕ

)(

δϕ̇+
λ+ + a

b
δϕ

)

= const.

(III.35)

If b = 0 and additionally a > 0, then we have λ+ =
a = ε,Xϕϕ̇, and one an hoose the eigenvetors as

a+ = (1, c/2a) and a− = (0, 1) . For a negative a, one
an obtain the eigenvetors and eigenvalues by hanging

λ+ ↔ λ− and a+ ↔ a−. The separatries then read

δϕ = 0 and δϕ̇ =
c

2a
δϕ.

Thus, similarly to the previous ase, the phase urves are

given by

δϕ
(

δϕ̇− c

2a
δϕ
)

= const. (III.36)

As we have already mentioned from the formula

dϕ̇/dϕ= ϕ̈/ϕ̇, follows that, at the points where the

phase urves are parallel to the ϕ̇ axis and where ϕ̇ 6= 0,
the seond t derivative of the �eld does not exist. If

we look at the equations (III.35) and (III.36) providing

the phase urves in the neighborhood of Ψ+
c , then we

�nd that in the �rst ase (when εc,XX 6= 0) the phase

urves lying on the right- and left- hand sides of both

separatries should have a point ξ where they are par-

allel to the ϕ̇ axis (see Fig. 2). Therefore eah of these

phase urves onsists of two solutions of the equation

of motion (II.13) and the exeptional point ξ where the

solution ϕ(t) does not exist. The same statement holds

in the ase of the pure imaginary λ (see Fig. 3). This

behavior is not forbidden beause, as one an easily

prove, the exeptional points ξ lie exatly on the urve

Γ on whih ε,X(Γ) = 0 and the equation of motion is

not solved with respet to the highest derivatives. Note

that we have already assumed λ 6= 0, and from this

ondition it follows that εc,XX and εc,Xϕ annot vanish

simultaneously. Therefore in the neighborhood of the

point Ψ+
c there exists an impliit funtion ϕ̇(ϕ) (or

ϕ(ϕ̇)) and its plot gives the above-mentioned urve Γ on

whih ε,X(Γ) = 0. In the ase εc,XX = 0, the separatrix

δϕ = 0 loally oinides with Γ, and therefore, this

integral urve of Eq. (III.13) does not orrespond to any

solution ϕ(t) of the equation of motion. Nevertheless,

in virtue of the existene theorem, all phase urves

obtained in the neighborhood of the separatrix δϕ = 0
orrespond to the solutions of the equation of motion.

Moreover, if εc,XX = 0 and pc,Xϕ 6= 0 then the urves

on whih p,X = 0 and ε,X = 0 loally oinide with
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eah other and with the urve δϕ = 0. The only phase

urve interseting the urve δϕ = 0 at Ψ+
c is the seond

separatrix δϕ̇ = cδϕ/2a. Thus the only solution ϕ(t)
on whih the transition happens in the neighborhood of

Ψ+
c orresponds to the separatrix δϕ̇ = cδϕ/2a. This

an also be seen from the equation (III.34) whih has

only one root ϕ̈c in this ase. In the Se. (IV) we will

illustrate this with a numerial example (see Fig. 5).

It is worthwhile to disuss ases whih fall out from

the onsideration made above. We have assumed that

λ 6= 0 and therefore Ψ+
c is an isolated singular point

of Eq. (III.13). The most natural possibilities to drop

out this ondition are εc,Xϕ = 0 and either εc,XX = 0 or

ϕ̇c3Hcp
c
,Xϕ + εc,ϕϕ = 0. In the �rst ase Ψ+

c is a ritial

point not only of the funtion ε but of the funtion

ε,X as well. This an be obtained either for a very

speial kind of funtion p namely, suh that p,X = 0,
p,XX = 0, p,XXX = 0, and

[

p− 4X2p,XX

]

,ϕ
= 0 at Ψ+

c

or imposing the ondition that the point Ψ+
c is a ritial

point not only of p but also of the funtions p,X and

p,XX : p,X = 0, p,ϕ = 0, p,XX = 0, p,Xϕ = 0, p,XXφ = 0,
and �nally p,XXX = 0 at Ψ+

c . In the seond ase Ψ+
c

is a ommon ritial point for the funtions ε and ε,ϕ.
In terms of p, this ondition is as follows: p,X = 0,
p,ϕ = 0, p,Xϕ = 0, p,XX = 0, p,ϕϕ = 0, p,XXϕ = 0,
and �nally p,Xϕϕ = 0 at Ψ+

c . Thus, the point Ψ+
c is a

ommon ritial point of p, p,X and p,Xϕ. Of ourse, the

analysis performed above does not work in the ase if

the funtion p(ϕ,X) does not have a su�ient amount of

derivatives. It is lear that all these ases are not general.

Let us sum up the results obtained in this setion. In

the general ase of linearizable funtions ε,X , ε,ϕ, and
p,X , the onsidered transitions either our through the

points Ψ+
c , where p,X = 0, ε,X = 0, ε,ϕ = 0, and

ϕ̇
[(

ε2,Xϕ − ε,ϕϕε,XX

)

ϕ̇− 3Hε,XXp,ϕ
]

> 0

or lead to an unaeptable instability with respet to

the osmologial perturbations of the bakground. The

points Ψ+
c are ritial points of the energy density and

are the singular points of the equation of motion of the

�eld ϕ as well. These singular points are saddle points

and the transition is realized by the repulsive separatrix

solutions, whih form the saddle. Therefore the measure

of these solutions is zero in the set of trajetories and the

dynamial transitions from the states where w > −1 to

w < −1 or vise versa are physially implausible.

IV. LAGRANGIANS LINEAR IN X

The simplest lass of models, for that one ould anti-

ipate the existene of dynamial transitions, is the dark

energy desribed by Lagrangians p(ϕ,X) linear in X :

p(ϕ,X) = KX − 1

2
V ≡ 1

2
(K(ϕ)∇µϕ∇µϕ− V (ϕ)) .

(IV.1)

In the isotropi and homogeneous Friedmann universe,

the Lagrangian is then

p(ϕ, ϕ̇) =
1

2

(

K(ϕ)ϕ̇2 − V (ϕ)
)

. (IV.2)

For these models, we always have c2s = 1 and therefore, as
follows from our analysis, the transitions ould our only

through the points where ε,X = 0. The energy density

for this model is

ε(ϕ, ϕ̇) =
1

2

(

K(ϕ)ϕ̇2 + V (ϕ)
)

. (IV.3)

If one takes K(ϕ) ≡ 1, then the Lagrangian (IV.2) is

the usual Lagrangian density for salar �eld with a self-

interation. If we take K(ϕ) ≡ −1, then we obtain the

so-alled �Phantom �eld� from [13℄ and [11℄. The ase

K(ϕ) > 0 orresponds to w ≥ −1, whereas K(ϕ) < 0
orresponds to w ≤ −1. The equation of motion (II.13)

takes in our ase the following form:

ϕ̈K + ϕ̇K
√
3ε+ ε,ϕ = 0. (IV.4)

While the equation determining the phase urves (III.13)

reads in this partiular ase

dϕ̇

dϕ
+
√
3ε+

1

ϕ̇K
ε,ϕ = 0. (IV.5)

If K(ϕ) is a sign-preserving funtion, one an rede�ne

�eld ϕ:
√

|K(ϕ)|dϕ = dφ (see also Ref. [16℄). The equa-

tion of motion for the new �eld φ an be obtained from

Eq. (IV.4), through the formal substitutions ϕ → φ,

V (ϕ) → Ṽ (φ) ≡ V (ϕ(φ)), and K(ϕ) → ±1, where the

upper sign orresponds to a positive K(ϕ) and the lower

one to a negative K(ϕ). After these substitutions, the

equation of motion (IV.4) looks more onventionally

φ̈+ φ̇

√

3

2

(

±φ̇2 + Ṽ (φ)
)

± 1

2

(

∂Ṽ (φ)

∂φ

)

= 0. (IV.6)

Moreover, this equations is easier to dial with, beause

one an visualize the dynami determined by it, as 1D

lassial mehanis of a point partile in a potential

±Ṽ (φ)/2 with a little bit unusual frition fore. If we

were able to solve the equation of motion (IV.6) for all

possible Ṽ (φ) and initial data, we ould solve the problem
of osmologial evolution for all linear in X Lagrangians

with sign-preserving K(ϕ).
If the funtion K(ϕ) is not sign-preserving, then at

�rst sight it seems that the dark energy, desribed by

suh a Lagrangian, an realize the desirable transition.

The funtion K(ϕ) generally an hange the sign in two

ways: In the ontinuous one, then the funtion K(ϕ)
takes the value zero for some values of �eld ϕ or in a

disontinuous polelike way.
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A. Linearizable K(ϕ)

Without loss of generality, one an assume that

K(0) ≡ Kc = 0, K(ϕ) < 0 for the negative values of

ϕ and K(ϕ) > 0 for ϕ > 0. The line ϕ = 0 on the

phase plot (ϕ, ϕ̇) we will all the �ritial� line for the

given lass of Lagrangians. The phantom states (ϕ, ϕ̇)
of the salar �eld lie on the left-hand side, while the

usual states with w ≥ −1 are on the right-hand side of

the ritial line. If there exists a solution ϕ(t) whose

phase urve passes through the �ritial� line, then the

dark energy an hange the sign of (w + 1) during the

osmologial evolution. From now on, we will investigate

the behavior of the phase urves of the system in the

neighborhood of the ritial line.

First of all, it is worth onsidering the funtions K(ϕ)
suh that K ′

c > 0 (here we have denoted K ,ϕ(0) ≡ K ′
c),

beause in this ase we an diretly apply the outome of

our previous analysis made in the Se. III A. Condition

(III.22) is for the linear in X Lagrangians as follows:

ϕ̇2
cK

′

c + V ′

c = 0. (IV.7)

As we have already assumed K ′
c > 0, therefore, if V ′

c > 0,
then, as follows from ondition (IV.7), there are no twie

di�erentiable solutions ϕ(t) whose phase urves would

interset or touh the ritial line. Further (see formula

(IV.15) and below) we will show that, for the linear in X
Lagrangians, ondition (III.22) (or in our ase ondition

(IV.7) is neessary not only for the existene of the seond

t derivative ϕ̈ at the point of intersetion with the ritial

line but for the existene of a solution ϕ(t) at this point
as well. Thus, we ome to the onlusion that, if V ′

c > 0,
then two regions ϕ < 0, and ϕ > 0 on the phase plot are

not onneted by any phase urves and aordingly the

dark energy does not hange the sign of (w + 1) during
the osmologial evolution.

In the ase V ′
c < 0, we an solve Eq. (IV.7) with respet

to ϕ̇c :

ϕ̇c = u± ≡ ±
√

− V ′
c

K ′
c

. (IV.8)

The phase urves, lying in the neighborhoods of the sin-

gular points Ψ+
c = (0, u±), are to obtain from the relation

(III.36), whih gives:

ϕ

(

ϕ̇− u± − A±

2
ϕ

)

= const, (IV.9)

where

A± = −3Hc +
V ′
cK

′′
c − V ′′

c K ′
c

2u± (K ′
c)

2 . (IV.10)

For eah singular point (0, u±), there is a orresponding

solution ϕ±(t) whose phase urve is the separatrix

ϕ̇± = u± +
A±

2
ϕ, (IV.11)

whih intersets the ritial line. These phase urves

orrespond to the const = 0 in the right-hand side

of Eq. (IV.9). Another urve, whih orresponds to

const = 0 is ϕ = 0. As we have already mentioned at the

end of the previous subsetion, this urve does not or-

respond to any solutions ϕ(t) of the equation of motion

(IV.4).

Considering the phase �ow in the neighborhoods of

Ψ+
c = (0, u±) (see Fig. 5), we infer that the separatries

ϕ̇± are repulsors immediately before they interset the

ritial line and attrators after the rossing. Hene, the

measure of the initial onditions (ϕ, ϕ̇) leading to the

transition to phantom �eld (or vie versa) is zero. In this

sense the dark energy annot hange the sign of K(ϕ) (or
equivalently the sign of (w + 1)) during the osmologial

evolution.

The typial behavior of the phase urves in the neigh-

borhood of the singular points (0, u±), for the models

under onsideration (K ′
c > 0, V ′

c < 0), is shown in Fig. 5.

Here, as an example, we have plotted the phase urves

obtained numerially for a toy model with the Lagrangian

density p = 1
2ϕϕ̇

2− 1
2

(

(ϕ− 1)
2
+ 1

3

)

. For this model we

have u± = ±1, A+ = − 3
2 , and A− = − 1

2 .

Let us now onsider suh potentials V (ϕ) that V ′
c = 0.

If K(ϕ) is a di�erentiable funtion, then, in the ase un-

der onsideration, the equation of motion (IV.4) obvi-

ously has a �xed-point solution ϕ(t) ≡ 0 but this solu-

tion is not neessarily the unique one. When V ′
c = 0 and

K ′
c > 0, then, as follows from the ondition (III.22), the

only value ϕ̇, where a phase urve ould have oiniding

points with the ritial line, is ϕ̇ = 0. From the analy-

sis made in Se. III A, we have already learned that the

transition is impossible in this ase. Nevertheless it is

worth to showing expliitly how the phase urves look

at this ase. Taking into onsideration only the leading

order in the numerator and denominator of Eq. (IV.5)

and assuming that V ′′
c 6= 0, we obtain

dϕ̇

dϕ
≃ − V ′′

c

2ϕ̇K ′
c

. (IV.12)

The solution of this equation, going through the point

(0, 0) on the phase plot, is

ϕs = −ϕ̇2

(

K ′
c

V ′′
c

)

. (IV.13)

In Fig. 6 we have plotted the phase urves obtained

numerially for a toy model with the Lagrangian density

p = 1
2ϕϕ̇

2 − 1
2

(

ϕ2 + 2
)

. As one an see from Fig. 6,

the parabolalike phase urve ϕs, given by the formula

(IV.13), is the separatrix going through the �xed-point

solution ϕ(t) ≡ 0. Moreover, this �gure on�rms that

there are no phase urves interseting the ritial line by

�nite ϕ̇.
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+

−u

u
0

ϕ

ϕ

.

Figure 5: The typial behavior of the phase urves in the

neighborhood of the ritial line where K(ϕ) = 0 (here ϕ̇ axis

) is plotted for the ase when K′
c > 0 and V ′

c < 0. Horizontal
dashed lines are the analytially obtained separatries ϕ̇± and

(0, u±) are the points of transition.

0

.ϕ

ϕ

Figure 6: The typial behavior of the phase urves in the

neighborhood of the ritial line where K(ϕ) = 0 (here ϕ̇ axis

) is plotted for the ase when K′
c > 0, V ′

c = 0, and V ′′
c > 0.

B. General di�erentiable K(ϕ)

The models we are going to disuss below belong to

the more general lass of models for whih the funtion

K(ϕ) has zero of an odd order 2n + 1 (where n ≥ 0)
at ϕ = 0. For the linear in X Lagrangians, we have

ε,XX ≡ 0; therefore, if n > 0 then K ′
c = 0 and εc,ϕX = 0.

That is why the general analysis made in the Se. III C

does not work for this ase. Therefore it is interesting to

investigate on this simple example whether the desired

transition ould be possible for models not overed by

our former analysis. If K(ϕ) is a su�ient many times

di�erentiable funtion, then for |ϕ| ≪ 1 we have

K(ϕ) ≃ K
(2n+1)
c

(2n+ 1)!
ϕ2n+1, (IV.14)

where K
(2n+1)
c is the (2n + 1)th ϕ derivative of K at

ϕ = 0. If there is a phase urve, rossing the ritial line

at a �nite nonvanishing ϕ̇c, then integrating both sides

of the equation of motion (IV.4) we obtain

ϕ̇c − ϕ̇in = −3

∫ 0

ϕin

H(ϕ)dϕ−
∫ 0

ϕin

ε,ϕ
ϕ̇K

dϕ. (IV.15)

Here (ϕin, ϕ̇in) is a point on the phase urve in the neigh-

borhood of the ritial line. The �rst integral on the

right-hand side of Eq. (IV.15) is always �nite, whereas,

as follows from the relation (IV.14), the seond integral

is de�nitely divergent, if εc,ϕ 6= 0. This divergene on-

tradits to our initial assumption: ϕ̇c - �nite. There-

fore we again obtain the ondition (III.22), whih re-

strits the possible intersetion points on the ritial line

in the sense that in the other points, where the ondi-

tion does not hold, not only the seond derivative ϕ̈ does

not exist, but there are no solutions ϕ(t) at all. More-

over, it is lear that the ondition (IV.7) is not enough

for the existene of the solutions interseting the ritial

line. Thus, if the order of V ′(ϕ) exeeds the order on ϕ
of K ′(ϕ) for |ϕ| ≪ 1, then one an neglet V ′(ϕ) and

the integral (IV.15) has the logarithmi divergene (note

that we do not onsider the points ϕ̇c = 0 beause as

we already know the transition does not our via these

points). When the order of V ′(ϕ) is lower than K ′(ϕ)
(and therefore lower than the order of K(ϕ)), we an ne-

glet ϕ̇2K ′(ϕ) and the integral (IV.15) has a power-low

divergene. Finally, if the funtions K ′(ϕ) and V ′(ϕ)
have the same order on ϕ for |ϕ| ≪ 1 and are of opposite

signs in a su�ient small neighborhood of ϕ = 0, then
one an �nd an appropriate �nite value ϕ̇2

c 6= 0 for whih

the divergene on the right-hand side of Eq. (IV.15) is

aneled. One would expet that at this point the phase

urves interset the �ritial� line and the dark energy

hanges the sign of (w + 1). Below, we give the diret

alulation of these ϕ̇c and the phase urves in a neigh-

borhood of them. Suppose that the order of the funtions

(V (ϕ)− Vc) and K(ϕ) is (2n + 1) and there exist their

derivatives of the order (2n+ 2). Then for the ϕ deriva-

tive of the energy density we have in the neighborhood

of the supposed intersetion point (0, ϕ̇c):

ε,ϕ ≃ 1

2

ϕ2n

(2n)!

[(

ϕ̇2
cK

(2n+1)
c + V (2n+1)

c

)

+ 2ϕ̇cK
(2n+1)
c δϕ̇

+
ϕ

(2n+ 1)

(

ϕ̇2
cK

(2n+2)
c + V (2n+2)

c

)]

, (IV.16)

whereas the denominator ϕ̇K(ϕ) of the seond integral on
the right-hand side of Eq. (IV.15) has the order (2n+1)
on ϕ. The only possibility to get rid of the divergene

in the integral under onsideration is to assume that the
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�rst term in the brakets in the asymptoti (IV.16) for

ε,ϕ is zero. Therefore the possible rossing points are

given by

ϕ̇c = u± = ±

√

− V
(2n+1)
c

K
(2n+1)
c

. (IV.17)

Taking into aount only the leading order on ϕ and δϕ̇
in the denominator and the numerator of Eq. (IV.5), we

obtain di�erential equation for the phase urves in the

neighborhoods of the intersetion points (0, u±):

dδϕ̇

dϕ
= A± − (2n+ 1)

δϕ̇

ϕ
, (IV.18)

where

A± = −3Hc +
K

(2n+2)
c V

(2n+1)
c −K

(2n+1)
c V

(2n+2)
c

2
[

K
(2n+1)
c

]2

u±

.

(IV.19)

The solutions of this equation are given by the formula

(

δϕ̇− A±

2n+ 2
ϕ

)

ϕ2n+1 = const, (IV.20)

whih is a generalization of formula (IV.9). Similarly to

the ase n = 0 (K ′
c > 0) the solutions, on whih the tran-

sition ours, have the measure zero in the phase urves

set. Therefore we infer that the dynamial transition

from the phantom states with w ≤ −1 to the usual with

w ≥ −1 (or vie versa) is impossible.

Now we would like to mention the models, for whih

V ′(ϕ) is one order higher on ϕ than K ′(ϕ) for small ϕ.
From the asymptoti expression for ε,ϕ (IV.16) and the

relation, giving the possible values of ϕ̇c (IV.15), we see

that the only point on the ritial line whih ould be

reahed in a �nite time is ϕ̇c = 0. Therefore, as we have
seen in Se. III A, the transition is impossible. The phase

urve going trough the �xed-point solution ϕ(t) ≡ 0 is a

parabola given by the generalization of Eq. (IV.13) :

ϕ ≃ −ϕ̇2

[

K
(2n+1)
c

V
(2n+2)
c

]

. (IV.21)

If V ′(ϕ) is more than one order higher on ϕ than K ′(ϕ),
then as we have already mentioned ϕ̇c = 0 and the tran-

sition is impossible as well.

C. Pole-like K(ϕ)

In this subsetion, we brie�y onsider the ase when

the funtion K(ϕ) has a pole of an odd order, so

K ∼ ϕ−2n−1
, where n > 0, for |ϕ| ≪ 1. This kind of

funtions K(ϕ) is often disussed in the literature in

onnetion with the k−essene models (see [10℄). Let

us keep the same notation as in subsetion IVA. The

potential V (ϕ) an not have a pole at the point ϕ = 0,
beause, if it were the ase, either the energy density ε
or the pressure p would be in�nite on the ritial line.

In order to obtain �nite values of the energy density

ε and pressure p, it is neessary to assume that the

system intersets the ritial line at ϕ̇ = 0. But, as

we have already seen in Se. III A, the dark energy

annot hange the the sign of (w + 1) at the points ϕ̇ = 0.

Thus, we have shown that in the partiular ase of

the theories desribed by the linear in X Lagrangians

p(ϕ,X) = K(ϕ)X − V (ϕ), whih are di�erentiable in

the neighborhood of Ψ+
c (K(ϕ) and V (ϕ) di�erentiable

but not neessary linearizable) the results, obtained for

linearizable funtions ε,X , ε,ϕ, and p,X , hold as well. This
gives rise to hope that the same statement is true for the

general nonlinear in X Lagrangians as well. Espeially

we have proven that, if the onstrution of the linear in

X Lagrangian allows the transition, then the transitions

always realize on a pair of the phase urves. One phase

urve orresponds to the transition from w > −1 to w <
−1 while another one realizes the inverse transition. This
pair of phase urves obviously has the measure zero in the

set of trajetories of the system. Therefore we infer that

the onsidered transition is physially implausible in this

ase.

V. SCALAR DARK ENERGY IN OPEN AND

CLOSED UNIVERSES IN THE PRESENCE OF

OTHER FORMS OF MATTER

In the previous setions, we have seen that the desir-

able transition from w > −1 to w < −1 is either impos-

sible or dynamially unstable in the ase when the salar

dark energy is a dominating soure of gravity in the �at

Friedmann universe. Let us now investigate whether this

statement is true in the presene of other forms of matter

and in the ases when the Friedmann universe has open

and losed topology.

Following Ref. [19℄, the e�etive sound speed cs is given
by the same Eq. (II.14) for the �at, open, and losed uni-

verses. Therefore, if the dark energy is the dominating

soure of gravitation (in partiular this means that the

energy density of the dark energy ε 6= 0 ), then the anal-

ysis made in Se. III B is appliable to open and losed

universes as well as to the �at universe.

If the dark energy under onsideration interats

with ordinary forms of matter only through indiret

gravitational-strength ouplings, then the equation of

motion (II.13) an be written in the following form:

ϕ̈ε,X + 3ϕ̇Hp,X + ε,ϕ = 0, (V.1)

where merely the Hubble parameter depends on the spa-

tial urvature and other forms of matter. This depen-

dene is given by the Friedmann equation:

H2 +
k

a2
=

1

3

(

ε+
∑

εi

)

, (V.2)
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where

∑

εi is the total energy density. It is obvious that

the points on the plot (ϕ, ϕ̇) onsidered in the most of

this paper do not de�ne the whole dynamis of the sys-

tem anymore and therefore do not de�ne the states of

the whole system. The analysis made in Ses. III A,

III C, and IV leans only on the behavior of the salar

�led ϕ and its �rst t derivative ϕ̇ in the neighborhoods

of their seleted values, namely, suh as where some of

the onditions p,X = 0, ϕ̇ = 0, or ε,X = 0 et. hold.

For these onditions, the ontributions into the equation

of motion (V.1) oming from the other forms of mat-

ter and spatial urvature would be of a higher order and

therefore are not important for the loal behavior of ϕ
and the problem as a whole. In fat, the value of the

Hubble parameter did not hange the qualitative futures

of the phase urves onsidered in Ses. III A,III C, and

IV. To illustrate this statement, we plot the trajetories

of the system p = 1
2ϕϕ̇

2 − 1
2

(

(ϕ− 1)
2
+ 1

3

)

(it is the

same system that we onsidered in previous subsetion)

in presene of dust matter for various values of the initial

energy densities of the dust (see Fig. 7). The only thing

that is important is that H 6= 0. The universe should not

hange the expansion to the ollapse and the plot of the

sale fator a(t) should not have a usp diretly at the

time of the transition. Thus, we infer that the most of

our analysis is appliable to a more general physial situ-

ation of a Friedmann universe �lled with various kinds of

usual matter, whih interat with the dark energy only

through indiret gravitational-strength ouplings. More-

over, if the interation between the dark energy �eld ϕ
and other �elds does not inlude oupling to the deriva-

tives ∇µϕ, then the obtained result holds as well.

VI. CONCLUSIONS AND DISCUSSION

In this paper we have found that the transitions from

w > −1 to w < −1 (or vie versa) of the dark energy

desribed by a general salar-�eld Lagrangian p(ϕ,∇µϕ)
are either unstable with respet to the osmologial per-

turbations or realized on the trajetories of the measure

zero. If the dark energy dominates in the universe, this

result is still robust in the presene of other energy om-

ponents interating with the dark energy through nonk-

ineti ouplings. In partiular, we have shown that, un-

der this assumption about interation, the dark energy

desribed by Lagrangians linear in (∇µϕ)
2
annot yield

suh transitions even if it is a subdominant soure of

gravitation.

Let us now disuss the onsequenes of these results. If

further observations on�rm the evolution of the dark en-

ergy dominating in the universe, from w ≥ −1 in the lose
past to w < −1 to date, then it is impossible to explain

this phenomenon by the lassial dynamis given by an

e�etive salar-�eld Lagrangian p(ϕ,∇µϕ). In fat, the

models whih allow suh transitions have been already

proposed (see e.g., [31, 32, 36℄ and other models from the

.
ϕ ΩmΩϕ

ϕ

10

0

=

.
ϕ

ϕ
0

mΩϕΩ =

.
ϕ ΩmΩϕ

0

0.1=

ϕ

Figure 7: Numerially obtained trajetories of the dark energy

desribed by a Lagrangian linear inX are plotted for the ases

Ωϕ = 10Ωm, Ωϕ = Ωm, and Ωϕ = 0.1Ωm.

Ref. [24℄) but they inorporate more ompliated physis

then the lassial dynamis of a one salar �eld.

If observations reveal that w < −1 now and if we dis-

regard the possibility of the transitions, then the energy

density of the dark energy should grow rapidly during

the expansion of the universe and therefore the oini-

dene problem beomes even more di�ult. Thus, from

this point of view the transitions onsidered in this pa-

per would be rather desirable for the history of the uni-

verse. As we have shown, to explain the transition under

the minimal assumptions of the nonkineti interation of

dark energy and other matter one should suppose that
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the dark energy was subdominating and desribed by a

nonlinear in (∇µϕ)
2
Lagrangian. Thus, some nonlinear

(or probably quantum) physis must be invoked to ex-

plain the value w < −1 in models with one salar �eld.

The seond appliation of our analysis is the problem of

the osmologial singularity. To obtain a boune instead

of ollapse, the salar �eld ϕ must hange its equation of

state to the phantom one before the boune and should

dominate in the universe at the moment of transition.

Otherwise, if the salar �eld was subdominant then it is

still subdominant after the transition as well, beause its

energy density dereases during the ollapse, while the

other nonphantom forms of matter inrease their energy

densities. The disappearing energy density of ϕ does not

a�et the gravitational dynamis and therefore does not

lead to the boune. On the other hand, as we have al-

ready proved, a dominant salar �eld ϕ desribed by the

ation without kineti ouplings and higher derivatives

annot smoothly evolve to the phantom with w < −1.
Therefore we infer that a smooth boune of the nonlosed

Friedmann universe annot be realized in this framework.
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