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Can dark energy evolve to the Phantom?
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Dark energy with the equation of state w(z) rapidly evolving from the dustlike (w ≃ 0 at z ∼ 1)
to the phantomlike (−1.2 . w . −1 at z ≃ 0) has been re
ently proposed as the best �t for

the supernovae Ia data. Assuming that a dark energy 
omponent with an arbitrary s
alar-�eld

Lagrangian p(ϕ,∇µϕ) dominates in the �at Friedmann universe, we analyze the possibility of a

dynami
al transition from the states (ϕ, ϕ̇) with w ≥ −1 to those with w < −1 or vi
e versa. We

have found that generally su
h transitions are physi
ally implausible be
ause they are either realized

by a dis
rete set of traje
tories in the phase spa
e or are unstable with respe
t to the 
osmologi
al

perturbations. This 
on
lusion is 
on�rmed by a 
omparison of the analyti
 results with numeri
al

solutions obtained for simple models. Without the assumption of the dark energy domination,

this result still holds for a 
ertain 
lass of dark energy Lagrangians, in parti
ular, for Lagrangians

quadrati
 in ∇µϕ. The result is insensitive to topology of the Friedmann universe as well.

I. INTRODUCTION

One of the greatest 
hallenges in modern 
osmology

is understanding the nature of the observed late-time

a

eleration of the universe. The present a

eleration

expansion seems to be an experimental fa
t, now that

data from supernovae type Ia [4, 5℄, 
orroborated later

by those from the 
osmi
 mi
rowave ba
kground [7℄, have

been re
ently 
on�rmed by the observations of the largest

relaxed galaxy 
lusters [3℄. Although the observations are

in good agreement with the simplest explanation given by

a 
osmologi
al 
onstant Λ of order (10−3
eV)4, the myste-

rious origin of this tiny number, whi
h is about 120 orders

smaller than the naive expe
tations, gives rise to the idea

of a dynami
al nature of this energy. Possible dynami-


al explanations of this phenomenon are given in various

frameworks. One of them is known as quintessen
e (see

e.g. [25℄ and other referen
es from the review [24℄). In

this framework the equation of state p = wε is su
h that

w ≥ −1. Another proposal is the phantom s
alar �elds

(see e.g. [13℄) whi
h possess the super-negative equation

of state w ≤ −1, due to the �wrong� sign before the

kineti
 term in the Lagrangian. Alternatively, there is

a more general possibility under the name k−essen
e
[9, 10, 43℄ whi
h is an e�e
tive s
alar-�eld theory de-

s
ribed by a Lagrangian with a nonlinear kineti
 term.

For this model, the equation of state w is not 
onstrained

to be larger or smaller than −1. Allowing the dark energy
to be dynami
al provides an opportunity to study the so-


alled 
oin
iden
e problem whi
h asks why dark energy

domination begins just at the epo
h when sentient beings

are able to observe it. The main advantage of k−essen
e
is its ability to solve this problem in a generi
 way (for

details see [10℄), whereas the �rst two models require a

�ne-tuning of parameters.

Without imposing the prior 
onstraint w ≥ −1,
the observations seem to favor the dark energy with

the present equation of state parameter w < −1 (see

e.g. Ref. [3, 6, 15, 33℄). Moreover, re
ently it was argued

(see Ref. [1, 2℄ and other 
onstraints on w(z) obtained in

Refs. [8, 32, 37, 38, 41, 42℄) that the dark energy with the

equation of state parameter w(z) rapidly evolving from

the dustlike w ≃ 0 at high redshift z ∼ 1, to phantomlike

−1.2 . w . −1 at present z ≃ 0, provides the best �t for
the supernovae Ia data and their 
ombinations with other


urrently available data from the measurements of 
os-

mi
 mi
rowave ba
kground radiation (CMBR) and from

2dF Galaxy Redshift Survey (2dFGRS).

Matter with w < −1 violates the dominant energy 
on-

dition whi
h is a su�
ient 
ondition of the 
onservation

theorem [26℄. Therefore for su
h models one 
annot guar-

antee the stability of va
uum on the 
lassi
al level. The

instability 
an reveal itself at the quantum level as well.

In fa
t, it was shown that the phantom s
alar �elds are

quantum-me
hani
ally unstable with respe
t to de
ay of

the va
uum into gravitons and phantom parti
les with

negative energy [11, 12℄. Assuming that the phantom

dark energy is an e�e
tive theory allows one to es
ape this

problem through the appropriate �ne-tuning of a 
uto�

parameter. If the dark energy 
ould dynami
ally 
hange

its equation of state from a phantomlike one to that with

w ≥ −1, then this transition would prevent the undesir-

able parti
le produ
tion without su
h a �ne-tuning. Here

it is worth mentioning that quantum e�e
ts on a lo
ally

de Sitter ba
kground 
ould lead to the e�e
tive parame-

ter w < −1 (see Ref. [39, 40℄).

Another fundamental physi
al issue where this tran-

sition 
ould play an important role is the 
osmologi
al

singularity problem. If w < −1 in an expanding Fried-

mann universe, then the positive energy density of su
h

phantom matter generally be
omes in�nite in �nite time,

over
oming all other forms of matter and, hen
e, leads to

the late-time singularity 
alled the �big rip� [14℄. The

transition under 
onsideration 
ould naturally prevent

this late-time singularity. Here it is worthwhile to men-

tion that for 
ertain potentials and initial 
onditions the

phantom s
alar �elds 
an es
ape this singularity by evolv-

ing to a late-time asymptoti
 whi
h is the de Sitter so-

lution with w = −1 [33, 34℄. Moreover, it was argued

that the quantum e�e
ts 
an prevent the developing of

the �big-rip� singularity as well [35℄.

http://arxiv.org/abs/astro-ph/0407107v4
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On the other hand, to avoid the big 
run
h singularity,

whi
h arises in various pre-big bang and 
y
li
 s
enarios

(see e.g. [28, 29, 30℄), one assumes that the universe 
an

boun
e instead of 
ollapsing to the singularity. The ex-

isten
e of a nonsingular boun
ing solution in a �at (or

open) Friedmann universe (k 6= +1) requires the viola-

tion of the null energy 
ondition (ε + p ≥ 0) during the

boun
e [27℄. If the energy density ε is 
onstrained to be

positive, then it follows that w < −1 is the ne
essary


ondition for the boun
e. But the energy density of su
h

phantom matter would rapidly de
rease during the 
ol-

lapse and therefore only the transition from w ≥ −1 to

w < −1 just before the boun
e 
ould explain the non-

singular boun
ing without a �ne-tuning in initial energy

densities of phantom and other forms of matter present

in the universe.

It is worth noting as well that for regimes where the

equation of state of the k−essen
e �eld is greater than

−1 it is possible to �nd a quintessen
e model whi
h gives

the same 
osmologi
al evolution but behaves di�erently

with respe
t to 
osmologi
al perturbations [16℄. Hen
e,

it is interesting whether this equivalen
e 
an be broken

dynami
ally.

In this paper we 
onsider the 
osmologi
al dynami
s of

a k−essen
e �eld ϕ, des
ribed by a general Lagrangian p
whi
h is a lo
al fun
tion of ϕ and ∇µϕ. The Lagrangian
depends only on ϕ and a s
alar quantity,

X ≡ 1

2
∇µϕ∇µϕ. (I.1)

First of all, we determine the properties of a general La-

grangian p(ϕ,X), whi
h are ne
essary for the smooth

transition of the dark energy from the equation of state

w(ϕ,X) ≥ −1 to w(ϕ,X) < −1 or vi
e versa. The tran-

sition obviously happens if the system passes through the

boundaries of the domains in the spa
e (ϕ,X), de�ned
by these inequalities. In most of the paper, we assume

that the dark energy dominates in a spatially �at Fried-

mann universe. The main question is whether traje
to-

ries 
onne
ting these domains on the phase spa
e (ϕ, ϕ̇)
exist and are stable with respe
t to 
osmologi
al pertur-

bations. In the 
ase of the phase 
urves whi
h do not

violate the stability 
onditions, we study their asymp-

toti
 behavior in the neighborhood of the points where

the transition 
ould o

ur. To pro
eed with this analysis,

we linearize the equation of motion in the neighborhood

of these points and then use the results of the qualita-

tive theory of di�erential equations. For the dark energy

models des
ribed by Lagrangians linear in X , we perform

this investigation beyond the linear approximation. For

this 
lass of Lagrangians, we illustrate the out
ome of

our analysis by numeri
ally obtained phase 
urves. Fi-

nally, we generalize the results to the 
ases of spatially

not-�at Friedmann universes �lled with a mixture or the

dark energy and other forms of matter.

II. GENERAL FRAMEWORK

Assuming the dominan
e of the dark energy, we negle
t

all other forms of matter and 
onsider a single s
alar �eld

ϕ intera
ting with gravity. After all, we will see that

the results 
an be easily extended to the models with

additional forms of matter. The a
tion of the model reads

in our units (Mp = ~ = c = 1, where Mp is the redu
ed

Plan
k mass Mp = (8πG)−1/2 = 1.72 × 1018GeV ) as

follows:

S = Sg + Sϕ =

∫

d4x
√
−g

[

−R

2
+ p(ϕ,X)

]

, (II.1)

where R is the Ri

i s
alar and p(ϕ,X) is the Lagrangian
density for the s
alar �eld. This kind of a
tion may

des
ribe a fundamental s
alar �eld or be a low-energy

e�e
tive a
tion. In prin
iple, the Lagrangian density

p(ϕ,X) 
an be non-linear on X . For example, in string

and supergravity theories nonlinear kineti
 terms appear

generi
ally in the e�e
tive a
tion des
ribing moduli and

massless degrees of freedom due to higher order gravita-

tional 
orre
tions to the Einstein-Hilbert a
tion [17, 18℄.

The �matter� energy-momentum tensor reads

Tµν ≡ 2√−g

[

δSϕ

δgµν

]

(II.2)

= p,X(ϕ, X)∇µϕ∇νϕ− p(ϕ, X)gµν .

Here a 
omma denotes a partial derivative with respe
t

to X . The last equation shows that, if ∇νϕ is timelike

(i.e. X > 0), the energy-momentum tensor is equivalent

to that of a perfe
t �uid,

Tµν = (ε+ p)UµUν − pgµν , (II.3)

with pressure p(ϕ,X), energy density

ε(ϕ,X) = 2Xp,X(ϕ,X)− p(ϕ,X), (II.4)

and four velo
ity

Uµ =
∇µϕ√
2X

. (II.5)

The equation of motion for the s
alar �eld 
an be ob-

tained either as a 
onsequen
e of the energy-momentum

tensor 
onservation ∇µT
µ
ν = 0 or dire
tly from the ex-

tremal prin
iple δSϕ/δϕ = 0:

p,X�gϕ+ p,XX (∇µ∇νϕ)∇µϕ∇νϕ+ ε,ϕ = 0, (II.6)

where �g ≡ gµν∇µ∇ν
and ∇µ

denotes the 
ovariant

derivative. For this �uid we 
an de�ne the equation of

state parameter w as usual:

w ≡ p

ε
. (II.7)

There is in
reasing eviden
e that the total energy den-

sity of the universe is equal to the 
riti
al value, and
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hen
e in the most part of the paper we will 
onsider a

�at Friedmann universe. In the end, we shall show that

the results are also appli
able in the 
ases of 
losed and

open universes. Thus, the ba
kground line element reads

ds2 = gµνdx
µdxν = dt2 − a2(t) dx2. (II.8)

The Einstein equations 
an be written for our ba
k-

ground in the familiar form:

ä

a
= −1

6
(ε+ 3p) , (II.9)

H2 =
ε

3
, (II.10)

where H ≡ ȧ/a is the Hubble parameter and a dot

denotes derivative with respe
t to the physi
al time t.
These equations also imply a 
ontinuity equation:

ε̇ = −3H(ε+ p). (II.11)

In general, whenever ȧ 6= 0 any two of these three last

equations imply the third one (by 
ompatible initial 
on-

ditions). Usually it is easier to work with the se
ond

and the third equations (these are the Friedmann equa-

tions). Note that, from Eq. (II.10), ε was 
onstrained to

be non-negative.

Be
ause of the homogeneity and isotropy of the ba
k-

ground, we get X = 1
2 ϕ̇

2
and p,ϕ̇ = ϕ̇p,X so the en-

ergy density looks as the energy in usual 1D 
lassi
al

me
hani
s

ε(ϕ, ϕ̇) = ϕ̇p,ϕ̇ − p. (II.12)

Expressing H from the �rst Friedmann equation (II.10),

we 
an rewrite Eq. (II.6) in the 
ase of the homogeneous

and isotropi
 �at ba
kground as follows:

ϕ̈ε,X + ϕ̇p,X
√
3ε+ ε,ϕ = 0. (II.13)

So far as ȧ(t) 6= 0, all of the information about the dy-

nami
s of gravity and s
alar �eld is 
ontained in the equa-

tion written above. In a

ordan
e with our initial simpli-

�
ation the dark energy should dominate in the universe;

therefore we assume throughout the paper that ε > 0.
Following [19℄, we introdu
e the e�e
tive sound speed

of the perturbations,

c2s ≡ p,X
ε,X

. (II.14)

Then the equation of motion takes the form

ϕ̈+ ϕ̇c2s
√
3ε+

ε,ϕ
ε,X

= 0. (II.15)

In most of this paper, we shall assume that the solutions

ϕ(t) and Lagrangians p(ϕ,X) have enough 
ontinuous

derivatives. So, for example, ϕ(t) will be mostly 
onsid-

ered as being at least of the 
lass C2 : ϕ(t), ϕ̇(t), ϕ̈(t)
are 
ontinuous.

III. POSSIBLE MECHANISMS OF THE

TRANSITION

There are two possibilities for the evolution of dark

energy from w ≥ −1 to a phantom dark energy with

w < −1 (or vise versa). These are a 
ontinuous transi-

tion, in whi
h the dark energy evolves through points

where w = −1, and a dis
ontinuous transition o

urring

through points where ε = 0, provided that the pressure

p is �nite. Sin
e by assumption the dark energy is the

dominating sour
e of gravitation, we 
annot have ε = 0
and therefore it is su�
ient to 
onsider only 
ontinuous

transitions.

Further, throughout the paper we will usually suppose

that for the dynami
al models under 
onsideration there

exist solutions ϕ(t) and 
orresponding to them moments

of time tc su
h that

w [ϕ(tc), X(tc)] = −1. (III.1)

Hen
eforth the index c denotes a physi
al quantity taken

at tc; i.e., ϕc ≡ ϕ(tc), εc ≡ ε(tc), et
.

The parameter w 
an be expressed with the help of

Eq. (II.4) in the following form, more 
onvenient for a

study of 
ontinuous transitions:

w = −1 +
2X

ε
p,X . (III.2)

Sin
e X = 1
2 ϕ̇

2 ≥ 0 and ε > 0, we �nd that w < −1

orresponds to p,X < 0, whereas w > −1 implies

p,X > 0. In a

ordan
e with our notation, the equation

of state parameter w takes the value −1 at the points

Ψc ≡ (ϕc, ϕ̇c), where either X = 0 or p,X = 0. Be
ause

of these equations, the points Ψc generally form 
urves

γ(λ) and isolated points in the phase spa
e (ϕ, ϕ̇) of the
dynami
al system given by Eq. (II.13). The 
urves γ(λ)
may interse
t.

For our purposes, it is 
onvenient to divide the set of

points Ψc into three disjun
t subsets:

A) The ϕ−axis of the phase plot (ϕ, ϕ̇), i.e., ϕ̇c = 0.

B) The points where p,X(Ψc) = 0 but ϕ̇c 6= 0 and

ε,X(Ψc) 6= 0.

C) The points where p,X(Ψc) = 0 and ε,X(Ψc) = 0 but

ϕ̇c 6= 0.

Further in this se
tion we will study the dynami
s of the

s
alar �eld ϕ in the neighborhoods of Ψc separately for

these 
ases. If the system evolves from the states (ϕ, ϕ̇)
where w ≥ −1 to the states with w < −1 (or vise versa),

the fun
tion p,X 
hanges sign.

It is worth noting that, if the s
alar dark energy were

equivalent to an �isentropi
� �uid for whi
h the pressure
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p is a fun
tion only of ε, then the possibility of evolving

through the points εc where w(εc) = −1 
ould be eas-

ily ruled out. Indeed, in that 
ase we 
ould rewrite the


ontinuity equation (II.11) only in terms of ε:

ε̇ = −
√
3ε [ε+ p(ε)] , (III.3)

so that the system of Einstein equations (II.9) and (II.10)


ould be redu
ed to Eq. (III.3) and the values of energy

density εc would be �xed points of this equation. A dy-

nami
al transition through a �xed point is 
learly impos-

sible.

An example of the dark energy whi
h seems to be

equivalent to the �isentropi
� �uid is the simple model

des
ribed by the Lagrangian p = p(X) depending only

on X . Let us further assume that there are some values

Xc, where w(Xc) = −1. If Eq. (II.4) is solvable with

respe
t to X in the neighborhoods of these points Xc,

then one 
an �nd X(ε) and therefore the pressure is a

fun
tion only of energy density p(ε) ≡ p [X(ε)]. Thus

the system is equivalent to the �isentropi
� �uid, Xc are

�xed points, and the transition through w = −1 is im-

possible. It remains to 
onsider the 
onditions on the

fun
tion ε(X) under whi
h Eq. (II.4) is solvable with re-

spe
t toX . From the theorem about the inverse fun
tion,

Eq. (II.4) is solvable with respe
t to X if

ε,X(Xc) = [2Xp,XX(Xc) + p,X(Xc)] 6= 0. (III.4)

One 
an see dire
tly from the equation of motion (II.13)

and 
ondition (III.4) that Xc are �xed point solutions. In

fa
t, as it was shown in Ref. [23℄, there generally exists

the solution X(t) ≡ Xc and moreover it is an attra
tor in

an expanding Friedmann universe. Thus, the transition

is generally forbidden for systems des
ribed by purely

kineti
 Lagrangians p(X).
In the general 
ase when p = p(ϕ,X), the pressure


annot be expressed only in terms of ε, sin
e ϕ and X
are independent.

A. Transition at points Xc = 0

Here we will analyze the possibility of the transition

in the 
ase (A) ϕ̇c = 0. Namely, we are going to study

the properties of the solutions ϕ(t) in the neighborhood

of the line ϕ̇c = 0. Di�erentiating the equation of state

parameter with respe
t to the time, we have

ẇ =
2Ẋ

ε
p,X +

2X

ε
˙p,X − 2X

ε2
p,X ε̇. (III.5)

At the points under 
onsideration we have ẇc = 0 be-


ause Xc = 0 and, respe
tively, Ẋc = ϕ̇cϕ̈c = 0. More-

over, the time derivatives in the se
ond and third sum-

mands vanish at these points as well due to the 
ontinuity

equation (II.11) and the formula

˙p,X = ϕ̇ (p,ϕX + ϕ̈p,XX) . (III.6)

Let us di�erentiate the ẇ on
e more with respe
t to the

time. The only term whi
h survives from the formula

(III.5) at the points Xc = 0 is the �rst term. Hen
e, we

have

ẅc =

[

2Ẍ

ε
p,X

]

c

=

[

2ϕ̈2

ε
p,X

]

c

. (III.7)

Using the equation of motion (II.13), we 
an express ϕ̈
through the p and its derivatives

ϕ̈cε,X(tc) = −ε,ϕ(tc). (III.8)

As follows from Eq. (II.4), ε,X(tc) = p,X(tc) at the time

tc when the system 
rosses Xc = 0. Provided ε,ϕ(tc) 6= 0
and p,X(tc) 6= 0, we infer from Eq. (III.7) and (III.8) that

the equation of state parameter w(t) has either a mini-

mum or a maximum at the point tc. Thus, the transition
is impossible in this 
ase.

If ε,ϕ(tc) = 0 and ε,X(tc) 6= 0, then it follows from

relation (III.8) that ϕ̈(tc) = 0. Therefore the 
onsidered
solution ϕ(t) for whi
h w [ϕ(tc)ϕ̇(tc)] = −1 is a �xed

point solution ϕ(t) ≡ ϕc ≡ const and the transition is

impossible. Sin
e ε > 0, we see that this �xed point is

obviously the de Sitter solution.

If not only Xc = 0 but also ε,X(tc) ≡ p,X(tc) = 0,
then ε,ϕ(tc) = 0 and it follows from the formula (II.4)

that p,ϕ(tc) = 0. Moreover, the equation of motion

(II.13) is not solved with respe
t to the highest deriva-

tives (namely, with respe
t to ϕ̈ ) and therefore does not

ne
essarily have a unique solution. It happens be
ause

the point (ϕc, 0) on the phase plot (ϕ, ϕ̇) does not deter-
mine the ϕ̈ via the equation of motion (II.13). It is 
lear

that, in this 
ase, the pointlike (on the phase plot) solu-

tion ϕ(t) ≡ ϕc ≡ const is a solution, but not ne
essary a

unique one.

Below, we will give a more general 
onsideration of the

geometry of phase 
urves in the neighborhood of the ϕ
axis. The phase �ows are dire
ted from right to left for

the lower part of the phase plot ϕ̇ < 0 and from left to

right for the upper part ϕ̇ > 0, see Fig 1. Therefore the

system 
an pass the ϕ axis only if the point of interse
tion

is a turning point (
urves 1 and 6 on Fig 1). Otherwise

the 
rossing is a �xed point (or a singularity). If there is

a smooth phase 
urve on whi
h the system pass through

the ϕ axis, then in a su�
iently small neighborhood of

the turning point we have (ϕ− ϕc) ∼ ϕ̇2n ∼ Xn
where

n ≥ 1. Restri
ted to this 
urve, the fun
tion Xp,X(ϕ,X)
depends only on X and in the absen
e of a bran
hing

point the sign of this fun
tion above and below the ϕ
axis is the same. Then it follows from the formula (III.2)

that the system 
annot 
hange the sign of (w + 1) while

rossing the ϕ axis.

If a smooth phase 
urve does not 
ross but tou
hes

the ϕ axis at a point ϕc (see Fig. 1, traje
tories 3 and

4), then the following asymptoti
 holds: ϕ̇ ∼ (ϕ− ϕc)
2n
,

where n ≥ 1. Let us �nd the time needed for the system
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Figure 1: Possible phase 
urves in the neighborhood of the

ϕ−axis. Only on the 
urves 1 and 6, the system 
rosses the

ϕ axis. Curves 2, 3, 4 and 7 have an attra
tor as a shared

point with the ϕ axis, whereas 
urves 5 and 8 have a repulsor.

These attra
tors and repulsors 
an be �xed-point solutions or

singularities.

to rea
h the tangent point (ϕc, 0) in this 
ase. We have

t ≡
∫ ϕc

ϕin

dϕ

ϕ̇(ϕ)
∼
∫ ϕc

ϕin

dϕ

(ϕ− ϕc)
2n , (III.9)

where ϕin is a starting point on the phase 
urve. The

last integral is obviously divergent. Therefore the system


annot rea
h the tangent point in a �nite time

Finally, we 
ome to the 
on
lusion that in the frame-

work under 
onsideration it is impossible to build a model

with the desirable transition through the points Xc = 0.

B. Transition at points Ψc: p,X(Ψc) = 0,
ε,X(Ψc) 6= 0, Xc 6= 0

In the neighborhood of a point Ψc, at whi
h the 
on-

dition ε,X(Ψc) 6= 0 holds, one 
an �nd a fun
tion ϕ̇c(ϕc):
p,X [ϕc, ϕ̇c(ϕc)] = 0. This follows from the theorem

about the impli
it fun
tion. One would anti
ipate that

on the phase 
urves interse
ting the 
urve ϕ̇c(ϕc) the

state of the dark energy 
hanges to the phantom one

(or vise versa). Let us express p,X from Eq. (III.2) and

substitute it into formula (II.14) for the sound speed of

perturbations:

c2s =
(w + 1)ε

2Xε,X
. (III.10)

For the stability with respe
t to the general metri
 and

matter perturbations the 
ondition c2s ≥ 0 is ne
essary

(see [19℄). Indeed the in
rement of instability is inversely

proportional to the wavelength of the perturbations, and

hen
e the ba
kground models for that c2s < 0 are vio-

lently unstable and do not have any physi
al signi�
an
e.

Be
ause of the 
ontinuity of ε,X , there exists a neighbor-

hood of the point Ψc where ε,X 6= 0. Therefore, from the

above expression for the sound speed (III.10) it follows

that if (w + 1) 
hange a sign then c2s should 
hange a sign

as well. If this is the 
ase, then the traje
tories, realiz-

ing the transition, violate the stability 
ondition c2s ≥ 0.
Therefore the model of the transition is not realisti
.

C. Transition at points Ψc: p,X(Ψc) = 0,
ε,X(Ψc) = 0, Xc 6= 0

As we have already mentioned at the beginning of this

se
tion, the points Ψc generally form the 
urves in the

phase spa
e (ϕ, ϕ̇). The sub
lass of the points Ψc, whi
h

we are going to 
onsider in this subse
tion, is generally a


olle
tion of the isolated points given by the solutions of

the system,

p,X(ϕ, ϕ̇) = 0, ε,X(ϕ, ϕ̇) = 0. (III.11)

Only for spe
i�
 models, the solutions of this system are

not isolated points. An example when these solutions

form a line is 
onsidered in se
tion IV. Usually the phase


urves passing through the isolated points build a set of

the zero measure. Therefore it is physi
ally implausi-

ble to observe the pro
esses realized on these solutions.

The only reason to study the behaviour of the system

around these points is their singular 
hara
ter. The point

is that the equation of motion (II.13) is not solved with

respe
t to the highest derivatives at this points. In su
h

points there 
an be more than one phase 
urve passing

through ea
h point. Moreover, the set of solutions ϕ(t),
whi
h pass through Ψc with di�erent ϕ̈, 
ould have a

non-zero measure. On the other hand, the equation of

motion does not ne
essarily have a solution ϕ(t) su
h

that (ϕ(tc), ϕ̇(tc)) = Ψc at some moment of time tc, or
there exists the desirable solution ϕ(t) but it does not

possess the se
ond derivative with respe
t to time at the

pointΨc. Below we will analyze the behavior of the phase


urves in the neighborhoods of the points Ψc.

The equation of motion (II.13) 
an be rewritten as a

system of two di�erential equations of the �rst order:

dϕ̇

dt
= −ϕ̇

p,X
ε,X

√
3ε− ε,ϕ

ε,X
, (III.12)

dϕ

dt
= ϕ̇.

The phase 
urves of this dynami
al system are given by

the following di�erential equation:

dϕ̇

dϕ
= − ϕ̇p,X

√
3ε+ ε,ϕ

ϕ̇ε,X
. (III.13)

This equation follows from the system (III.12) and there-

fore all phase 
urves 
orresponding to the integral 
urves

of system (III.12) are integral 
urves of the di�erential

equation (III.13). But the reverse statement is false, so

ea
h integral 
urve of Eq. (III.13) does not ne
essarily


orrespond to a solution ϕ(t) of the equation of motion

(or of the system (III.12)). In the neighborhoods of the

points where ε,X 6= 0, it is 
onvenient to introdu
e a new
auxiliary time variable τ de�ned by

dt ≡ ε,Xdτ. (III.14)
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The system (III.12) is equivalent to the τ system:

dϕ̇

dτ
= −ϕ̇p,X

√
3ε− ε,ϕ, (III.15)

dϕ

dτ
= ϕ̇ε,X .

The auxiliary time variable τ 
hange the dire
tion if ε,X

hange the sign. Note that the system (III.15) always

possesses the same phase 
urves as the equation of motion

(III.12).

In the 
ase under 
onsideration we have ϕ̇c 6= 0 and

from the formula

dϕ̇

dϕ
=

ϕ̈

ϕ̇
(III.16)

we infer that dϕ̇/dϕ(tc) should be �nite, if ϕ̈(tc) is �nite.
As one 
an see from the equation determining the phase


urves (III.13), in order to obtain a �nite dϕ̇/dϕ(tc) it

is ne
essary that at least ε,ϕ(Ψc) = 0. In the 
ase if

ε,ϕ(Ψc) 6= 0, the solution ϕ(t) does not possess the se
-

ond t derivative at the point tc. Usually this 
an be seen

as unphysi
al situation. But nevertheless this does not

ne
essarily lead to the unphysi
al in
ontinuity in the ob-

served quantities ε, p, H , and ϕ, ϕ̇. One may probably

fa
e problems with the stability of su
h solutions, but

let us �rst of all investigate the behavior of the phase


urves in the 
ase ε,ϕ(Ψc) 6= 0. From Eq. (III.13), we

obtain dϕ/dϕ̇ = 0 at Ψc. Further we 
an parameterize

the phase 
urve as ϕ = ϕ(ϕ̇) and bring the equation for

phase 
urves (III.13) to the form

dϕ

dϕ̇
= ε,X(ϕ, ϕ̇)F (ϕ, ϕ̇), (III.17)

where we denote

F (ϕ, ϕ̇) ≡ − ϕ̇

ϕ̇p,X
√
3ε+ ε,ϕ

. (III.18)

If, as we have assumed, ε,ϕ(Ψc) 6= 0 and ε(Ψc) 6= 0, then
F (ϕ, ϕ̇) is di�erentiable in the neighborhood of the point

Ψc and F (Ψc) = −ϕ̇/ε,ϕ. For the se
ond ϕ̇ derivative at

the point Ψc, one obtains

d2ϕ

d2ϕ̇
= − ϕ̇2

ε,ϕ
ε,XX . (III.19)

That is why the point Ψc is a minimum or a maximum for

the fun
tion ϕ(ϕ̇). In this 
ase Ψc is su
h an ex
eptional

point on the phase plot, where the solution ϕ(t) 
annot
have 
ontinuous ϕ̇(t) and the phase 
urve terminates (see

points ξ in Figs. 2 and 3). This happens be
ause the di-

re
tion of the phase �ow is preserved in the neighborhood

of Ψc. If ε,XX(Ψc) = 0, then one 
an �nd the third ϕ̇
derivative of ϕ(ϕ̇) at the point Ψc:

d3ϕ

d3ϕ̇
= − ϕ̇3

ε,ϕ
ε,XXX . (III.20)

In this 
ase there 
an exist a 
ontinuous solution ϕ(t)
su
h that (ϕ(tc), ϕ̇(tc)) = Ψc at some moment of time tc
and the only bad thing happening in this point is that

ϕ̈(tc) does not exist. Let us now investigate what hap-

pens with the equation of state at this point of time. Dif-

ferentiating both sides of the de�nition (II.7) of w yields

at tc

ẇc =

[

ϕ̇

ε

(

p,ϕ − c2sε,ϕ
)

]

c

, (III.21)

where we have used the equation of motion (II.13) at

the point tc and the de�nition (II.14) of c2s. Applying

the l'H�pital rule for the c2s(tc) = lim
t→tc

p,X/ε,X , we �nd

that c2s(tc) = 0. Moreover, using the l'H�pital rule

for the derivative of c2s at the point Ψc, one 
an �nd

that dc2s/dϕ̇ ∼ p,ϕ/ε,ϕ. Thus, if p,ϕ 6= 0 the transition


ould o

ur but it 
hanges a sign of the sound speed c2s.
Therefore, if the stability 
riteria are appli
able to this


ase, then the transition leads to instability.

The ne
essary 
ondition for the existen
e of ϕ̈ during

the transition is

ε,ϕ(Ψc) = 2Xcp,Xϕ(Ψc)− p,ϕ(Ψc) = 0. (III.22)

This 
ondition drasti
ally redu
es the set of the points

Ψc, where the transition is possible. Namely, they are

the 
riti
al points of the fun
tion ε(ϕ,X) and, on the

other hand, they are the �xed points of the auxiliary

τ system (III.15). These �xed points are additional

to the �xed points of the system (III.12) de�ned by

ϕ̇ = 0 , ε,ϕ(ϕ, 0) = 0, and ε,X(ϕ, 0) 6= 0. From now

on, we will 
onsider only those points Ψ+
c where the


ondition (III.22) holds. From the relation (III.22), it

follows that if p,ϕ(ϕc, Xc) = 0 then p,Xϕ(ϕc, Xc) = 0.
Otherwise Xc = 0, and as we have already seen the

transition 
annot happen via the points Xc = 0. Note

that if p,ϕ(Ψ
+
c ) = 0, then the points Ψ+

c are 
ommon


riti
al points of the pressure p(ϕ, ϕ̇), energy density

ε(ϕ, ϕ̇), and p,X(ϕ, ϕ̇). From 
ondition (III.22) follows

that points Ψ+
c are singular points of Eq. (III.13). In

su
h points there 
an be more than one phase 
urve

passing through this point. Moreover, as we have already

mentioned, the set of solutions ϕ(t), whi
h pass through

Ψ+
c with di�erent ϕ̈, 
ould have a nonzero measure.

For example, if Ψ+
c were a nodal point (see Fig. 4),

there would be a 
ontinuous amount of the solutions

passing through this point and therefore there would be

a 
ontinuous amount of solutions on whi
h the transition


ould o

ur.

Let us investigate the type of the singular points Ψ+
c .

This will tell us about the amount of the solutions ϕ(t) on
whi
h the transition is possible and their stability. For

this analysis, one 
an use the te
hnique des
ribed, for

example, in [21℄, and 
onsider the integral 
urves of the

equation (III.13). Here we pro
eed with this analysis in
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a more 
onvenient way, namely, using the auxiliary τ sys-

tem (III.15). It is 
onvenient be
ause for this system the

singular points Ψ+
c are usual �xed points. As we have

already mentioned, both systems have the same phase


urves and therefore the analysis to perform is also ap-

pli
able to the phase 
urves of the system (III.12). The

only thing we should not forget is the di�eren
e in the di-

re
tions of the phase �ows of these systems. If ε(Ψ+
c ) 6= 0,

then one 
an linearize the right-hand side of the τ system

in the neighborhood of a point Ψ+
c : (ϕ

+
c + δϕ, ϕ̇+

c + δϕ̇).
The linearized τ system (III.15) is

d

dτ
V = AV, (III.23)

where we denote

V =

(

δϕ
δϕ̇

)

, A =

(

a b
c g

)

, (III.24)

and elements of the matrix A are given by the formulas

a = ε,Xϕϕ̇, (III.25)

b = 2Xε,XX,

c = − (3Hϕ̇p,Xϕ + ε,ϕϕ) ,

g = −ε,Xϕϕ̇,

where all quantities are 
al
ulated at Ψ+
c . Here we have

used the Friedmann equation (II.10). If Ψ+
c is an iso-

lated �xed point of the τ system (III.15) (or equivalently

the singular point of system (III.12)), then the following


ondition holds

detA = ag − bc 6= 0. (III.26)

The type of the �xed point depends on the eigenvalues

λ of the matrix A (for details see, for example, [22℄). In

the 
ase under 
onsideration a = −g and therefore we

have

λ2 = bc+ a2 = − detA. (III.27)

If bc + a2 > 0, then eigenvalues λ are real and of the

opposite signs. In a

ordan
e with the 
lassi�
ation of

the singular points, Ψ+
c is a saddle point (see Fig. 2).

Therefore the transition is absolutely unstable; there are

only two solutions ϕ(t) on whi
h the transition is allowed

to o

ur.

If bc + a2 < 0 then λ are pure imaginary. Here the

situation is a little bit more 
ompli
ated: In a

ordan
e

with [21℄, this �xed point of a nonlinear system 
an be

either a fo
us or a 
enter. In these 
ases, as one 
an see

from Fig. 3, there no solutions ϕ(t) passing through the

point Ψ+
c . Therefore, from now on we will 
onsider only

the �rst 
ase - real λ of the opposite signs.

It is 
onvenient to rewrite the expression for λ into

a simpler form. Di�erentiating the 
ontinuity equation

(II.11) yields

ε̈c = −3Hcṗc. (III.28)

ϕ

0 ϕ

Γ

ξξ

ξξ

Figure 2: Phase 
urves in the neighborhood of the singular

point Ψ+
c are plotted for the 
ase of the real λ. At the points

ξ, the solutions ϕ(t) do not exist. These points together with
Ψ+

c form the 
urve Γ on whi
h ε,X(Γ) = 0.

0 ϕ

ϕ

Γ
ξ ξ ξ ξ

Figure 3: Phase 
urves in the neighborhood of the singular

point Ψ+
c are plotted for the 
ase of the pure imaginary λ.

Here we assume that the singular point is a fo
us.

Remember that the index c denotes quantities taken at tc
or in this subse
tion at Ψ+

c . Di�erentiating the pressure

p as a 
omposite fun
tion, we have ṗ = p,ϕϕ̇ + p,XẊ.

Assuming that ϕ̈c is �nite, we obtain that ṗc = pc,ϕϕ̇c.

Thus the formula for ε̈c is

ε̈c = −3Hcp
c
,ϕϕ̇c. (III.29)

Using the 
ondition (III.22) and the last equation, we

bring the element c of the matrix A to the following

form:

c = −εc,ϕϕ +
ε̈c
2Xc

. (III.30)

This relation allows one to rewrite the formula (III.27)

as follows:

λ2 = 2Xc

(

(

εc,Xϕ

)2 − εc,ϕϕε
c
,XX

)

+ ε̈cε
c
,XX . (III.31)
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ϕ

0 ϕ

Figure 4: If A had the eigenvalues λ1 = λ2, then the singu-

lar point Ψ+
c would be a nodal point and there would be a


ontinuous set of traje
tories passing through it. To illustrate

this we plot here the phase 
urves in the parti
ular 
ase of a

degenerate nodal point. The form of the equation of motion

(II.13) ex
ludes su
h types of singular points and therefore

prevents the possibility of su
h transitions.

Here it is interesting to note that the expression

εc,ϕϕε
c
,XX −

(

εc,Xϕ

)2
from the previous formula is the de-

terminant of the quadrati
 form arising in the Taylor set

of ε in the neighborhood of the 
riti
al point Ψ+
c . If this

determinant is positive, then the fun
tion ε(ϕ,X) has

either a minimum or a maximum at point Ψ+
c . Other-

wise there is either one 
urve of 
onstant energy density

ε(
urve) = ε(Ψ+
c ) with a singular turning point at Ψ+

c

in the neighborhood of Ψ+
c ore two interse
ting at Ψ+

c


urves of 
onstant ε (see [20℄) . On the other hand, dif-

ferentiating ε as a 
omposite fun
tion we �nd

ε̈c = 2Xc

(

εc,ϕϕ + 2εc,Xϕϕ̈c + εc,XXϕ̈2
c

)

. (III.32)

Substituting this relation into the previous formula

(III.31) for λ yields

λ2 = 2Xc

(

εc,XXϕ̈c + εc,Xϕ

)2
. (III.33)

This formula provides the relation between ϕ̈c at the mo-

ment of transition and λ. Note that λ depends on ϕ̈c only

in the 
ase when ε,XX(tc) ≡ 2Xcp,XXX(tc) 6= 0. More-

over, 
omparing formulas (III.29) and (III.32) for ε̈c, one

an obtain the equation on ϕ̈c:

εc,XX ϕ̇cϕ̈
2
c +2εc,Xϕϕ̇cϕ̈c + ϕ̇cε

c
,ϕϕ +3Hcp

c
,ϕ = 0. (III.34)

This equation is solvable in real numbers if the dis
rim-

inant is positive. As one 
an prove, the dis
riminant is

exa
tly the 4λ2
and therefore positive if we 
onsider the

saddle point. The same 
an be seen from relation (III.33)

as well.

Let us denote the positive and negative eigenvalues and

the 
orresponding eigenve
tors of A as λ+, λ− = −λ+

and a+, a−, respe
tively.

If b 6= 0 ( or equivalently εc,XX 6= 0), then the eigen-

ve
tors 
an be 
hosen as a+ = (1, (λ+ − a)/b) and

a− = (1,−(λ+ + a)/b). Therefore the separatri
es form-

ing the saddle are

δϕ̇+ =
λ+ − a

b
δϕ and δϕ̇− = −λ+ + a

b
δϕ.

The general solution for the phase 
urves in the neigh-

borhood of Ψ+
c is

(

δϕ̇− λ+ − a

b
δϕ

)(

δϕ̇+
λ+ + a

b
δϕ

)

= const.

(III.35)

If b = 0 and additionally a > 0, then we have λ+ =
a = ε,Xϕϕ̇, and one 
an 
hoose the eigenve
tors as

a+ = (1, c/2a) and a− = (0, 1) . For a negative a, one

an obtain the eigenve
tors and eigenvalues by 
hanging

λ+ ↔ λ− and a+ ↔ a−. The separatri
es then read

δϕ = 0 and δϕ̇ =
c

2a
δϕ.

Thus, similarly to the previous 
ase, the phase 
urves are

given by

δϕ
(

δϕ̇− c

2a
δϕ
)

= const. (III.36)

As we have already mentioned from the formula

dϕ̇/dϕ= ϕ̈/ϕ̇, follows that, at the points where the

phase 
urves are parallel to the ϕ̇ axis and where ϕ̇ 6= 0,
the se
ond t derivative of the �eld does not exist. If

we look at the equations (III.35) and (III.36) providing

the phase 
urves in the neighborhood of Ψ+
c , then we

�nd that in the �rst 
ase (when εc,XX 6= 0) the phase


urves lying on the right- and left- hand sides of both

separatri
es should have a point ξ where they are par-

allel to the ϕ̇ axis (see Fig. 2). Therefore ea
h of these

phase 
urves 
onsists of two solutions of the equation

of motion (II.13) and the ex
eptional point ξ where the

solution ϕ(t) does not exist. The same statement holds

in the 
ase of the pure imaginary λ (see Fig. 3). This

behavior is not forbidden be
ause, as one 
an easily

prove, the ex
eptional points ξ lie exa
tly on the 
urve

Γ on whi
h ε,X(Γ) = 0 and the equation of motion is

not solved with respe
t to the highest derivatives. Note

that we have already assumed λ 6= 0, and from this


ondition it follows that εc,XX and εc,Xϕ 
annot vanish

simultaneously. Therefore in the neighborhood of the

point Ψ+
c there exists an impli
it fun
tion ϕ̇(ϕ) (or

ϕ(ϕ̇)) and its plot gives the above-mentioned 
urve Γ on

whi
h ε,X(Γ) = 0. In the 
ase εc,XX = 0, the separatrix

δϕ = 0 lo
ally 
oin
ides with Γ, and therefore, this

integral 
urve of Eq. (III.13) does not 
orrespond to any

solution ϕ(t) of the equation of motion. Nevertheless,

in virtue of the existen
e theorem, all phase 
urves

obtained in the neighborhood of the separatrix δϕ = 0

orrespond to the solutions of the equation of motion.

Moreover, if εc,XX = 0 and pc,Xϕ 6= 0 then the 
urves

on whi
h p,X = 0 and ε,X = 0 lo
ally 
oin
ide with
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ea
h other and with the 
urve δϕ = 0. The only phase


urve interse
ting the 
urve δϕ = 0 at Ψ+
c is the se
ond

separatrix δϕ̇ = cδϕ/2a. Thus the only solution ϕ(t)
on whi
h the transition happens in the neighborhood of

Ψ+
c 
orresponds to the separatrix δϕ̇ = cδϕ/2a. This


an also be seen from the equation (III.34) whi
h has

only one root ϕ̈c in this 
ase. In the Se
. (IV) we will

illustrate this with a numeri
al example (see Fig. 5).

It is worthwhile to dis
uss 
ases whi
h fall out from

the 
onsideration made above. We have assumed that

λ 6= 0 and therefore Ψ+
c is an isolated singular point

of Eq. (III.13). The most natural possibilities to drop

out this 
ondition are εc,Xϕ = 0 and either εc,XX = 0 or

ϕ̇c3Hcp
c
,Xϕ + εc,ϕϕ = 0. In the �rst 
ase Ψ+

c is a 
riti
al

point not only of the fun
tion ε but of the fun
tion

ε,X as well. This 
an be obtained either for a very

spe
ial kind of fun
tion p namely, su
h that p,X = 0,
p,XX = 0, p,XXX = 0, and

[

p− 4X2p,XX

]

,ϕ
= 0 at Ψ+

c

or imposing the 
ondition that the point Ψ+
c is a 
riti
al

point not only of p but also of the fun
tions p,X and

p,XX : p,X = 0, p,ϕ = 0, p,XX = 0, p,Xϕ = 0, p,XXφ = 0,
and �nally p,XXX = 0 at Ψ+

c . In the se
ond 
ase Ψ+
c

is a 
ommon 
riti
al point for the fun
tions ε and ε,ϕ.
In terms of p, this 
ondition is as follows: p,X = 0,
p,ϕ = 0, p,Xϕ = 0, p,XX = 0, p,ϕϕ = 0, p,XXϕ = 0,
and �nally p,Xϕϕ = 0 at Ψ+

c . Thus, the point Ψ+
c is a


ommon 
riti
al point of p, p,X and p,Xϕ. Of 
ourse, the

analysis performed above does not work in the 
ase if

the fun
tion p(ϕ,X) does not have a su�
ient amount of

derivatives. It is 
lear that all these 
ases are not general.

Let us sum up the results obtained in this se
tion. In

the general 
ase of linearizable fun
tions ε,X , ε,ϕ, and
p,X , the 
onsidered transitions either o

ur through the

points Ψ+
c , where p,X = 0, ε,X = 0, ε,ϕ = 0, and

ϕ̇
[(

ε2,Xϕ − ε,ϕϕε,XX

)

ϕ̇− 3Hε,XXp,ϕ
]

> 0

or lead to an una

eptable instability with respe
t to

the 
osmologi
al perturbations of the ba
kground. The

points Ψ+
c are 
riti
al points of the energy density and

are the singular points of the equation of motion of the

�eld ϕ as well. These singular points are saddle points

and the transition is realized by the repulsive separatrix

solutions, whi
h form the saddle. Therefore the measure

of these solutions is zero in the set of traje
tories and the

dynami
al transitions from the states where w > −1 to

w < −1 or vise versa are physi
ally implausible.

IV. LAGRANGIANS LINEAR IN X

The simplest 
lass of models, for that one 
ould anti
-

ipate the existen
e of dynami
al transitions, is the dark

energy des
ribed by Lagrangians p(ϕ,X) linear in X :

p(ϕ,X) = KX − 1

2
V ≡ 1

2
(K(ϕ)∇µϕ∇µϕ− V (ϕ)) .

(IV.1)

In the isotropi
 and homogeneous Friedmann universe,

the Lagrangian is then

p(ϕ, ϕ̇) =
1

2

(

K(ϕ)ϕ̇2 − V (ϕ)
)

. (IV.2)

For these models, we always have c2s = 1 and therefore, as
follows from our analysis, the transitions 
ould o

ur only

through the points where ε,X = 0. The energy density

for this model is

ε(ϕ, ϕ̇) =
1

2

(

K(ϕ)ϕ̇2 + V (ϕ)
)

. (IV.3)

If one takes K(ϕ) ≡ 1, then the Lagrangian (IV.2) is

the usual Lagrangian density for s
alar �eld with a self-

intera
tion. If we take K(ϕ) ≡ −1, then we obtain the

so-
alled �Phantom �eld� from [13℄ and [11℄. The 
ase

K(ϕ) > 0 
orresponds to w ≥ −1, whereas K(ϕ) < 0

orresponds to w ≤ −1. The equation of motion (II.13)

takes in our 
ase the following form:

ϕ̈K + ϕ̇K
√
3ε+ ε,ϕ = 0. (IV.4)

While the equation determining the phase 
urves (III.13)

reads in this parti
ular 
ase

dϕ̇

dϕ
+
√
3ε+

1

ϕ̇K
ε,ϕ = 0. (IV.5)

If K(ϕ) is a sign-preserving fun
tion, one 
an rede�ne

�eld ϕ:
√

|K(ϕ)|dϕ = dφ (see also Ref. [16℄). The equa-

tion of motion for the new �eld φ 
an be obtained from

Eq. (IV.4), through the formal substitutions ϕ → φ,

V (ϕ) → Ṽ (φ) ≡ V (ϕ(φ)), and K(ϕ) → ±1, where the

upper sign 
orresponds to a positive K(ϕ) and the lower

one to a negative K(ϕ). After these substitutions, the

equation of motion (IV.4) looks more 
onventionally

φ̈+ φ̇

√

3

2

(

±φ̇2 + Ṽ (φ)
)

± 1

2

(

∂Ṽ (φ)

∂φ

)

= 0. (IV.6)

Moreover, this equations is easier to dial with, be
ause

one 
an visualize the dynami
 determined by it, as 1D


lassi
al me
hani
s of a point parti
le in a potential

±Ṽ (φ)/2 with a little bit unusual fri
tion for
e. If we

were able to solve the equation of motion (IV.6) for all

possible Ṽ (φ) and initial data, we 
ould solve the problem
of 
osmologi
al evolution for all linear in X Lagrangians

with sign-preserving K(ϕ).
If the fun
tion K(ϕ) is not sign-preserving, then at

�rst sight it seems that the dark energy, des
ribed by

su
h a Lagrangian, 
an realize the desirable transition.

The fun
tion K(ϕ) generally 
an 
hange the sign in two

ways: In the 
ontinuous one, then the fun
tion K(ϕ)
takes the value zero for some values of �eld ϕ or in a

dis
ontinuous polelike way.
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A. Linearizable K(ϕ)

Without loss of generality, one 
an assume that

K(0) ≡ Kc = 0, K(ϕ) < 0 for the negative values of

ϕ and K(ϕ) > 0 for ϕ > 0. The line ϕ = 0 on the

phase plot (ϕ, ϕ̇) we will 
all the �
riti
al� line for the

given 
lass of Lagrangians. The phantom states (ϕ, ϕ̇)
of the s
alar �eld lie on the left-hand side, while the

usual states with w ≥ −1 are on the right-hand side of

the 
riti
al line. If there exists a solution ϕ(t) whose

phase 
urve passes through the �
riti
al� line, then the

dark energy 
an 
hange the sign of (w + 1) during the


osmologi
al evolution. From now on, we will investigate

the behavior of the phase 
urves of the system in the

neighborhood of the 
riti
al line.

First of all, it is worth 
onsidering the fun
tions K(ϕ)
su
h that K ′

c > 0 (here we have denoted K ,ϕ(0) ≡ K ′
c),

be
ause in this 
ase we 
an dire
tly apply the out
ome of

our previous analysis made in the Se
. III A. Condition

(III.22) is for the linear in X Lagrangians as follows:

ϕ̇2
cK

′

c + V ′

c = 0. (IV.7)

As we have already assumed K ′
c > 0, therefore, if V ′

c > 0,
then, as follows from 
ondition (IV.7), there are no twi
e

di�erentiable solutions ϕ(t) whose phase 
urves would

interse
t or tou
h the 
riti
al line. Further (see formula

(IV.15) and below) we will show that, for the linear in X
Lagrangians, 
ondition (III.22) (or in our 
ase 
ondition

(IV.7) is ne
essary not only for the existen
e of the se
ond

t derivative ϕ̈ at the point of interse
tion with the 
riti
al

line but for the existen
e of a solution ϕ(t) at this point
as well. Thus, we 
ome to the 
on
lusion that, if V ′

c > 0,
then two regions ϕ < 0, and ϕ > 0 on the phase plot are

not 
onne
ted by any phase 
urves and a

ordingly the

dark energy does not 
hange the sign of (w + 1) during
the 
osmologi
al evolution.

In the 
ase V ′
c < 0, we 
an solve Eq. (IV.7) with respe
t

to ϕ̇c :

ϕ̇c = u± ≡ ±
√

− V ′
c

K ′
c

. (IV.8)

The phase 
urves, lying in the neighborhoods of the sin-

gular points Ψ+
c = (0, u±), are to obtain from the relation

(III.36), whi
h gives:

ϕ

(

ϕ̇− u± − A±

2
ϕ

)

= const, (IV.9)

where

A± = −3Hc +
V ′
cK

′′
c − V ′′

c K ′
c

2u± (K ′
c)

2 . (IV.10)

For ea
h singular point (0, u±), there is a 
orresponding

solution ϕ±(t) whose phase 
urve is the separatrix

ϕ̇± = u± +
A±

2
ϕ, (IV.11)

whi
h interse
ts the 
riti
al line. These phase 
urves


orrespond to the const = 0 in the right-hand side

of Eq. (IV.9). Another 
urve, whi
h 
orresponds to

const = 0 is ϕ = 0. As we have already mentioned at the

end of the previous subse
tion, this 
urve does not 
or-

respond to any solutions ϕ(t) of the equation of motion

(IV.4).

Considering the phase �ow in the neighborhoods of

Ψ+
c = (0, u±) (see Fig. 5), we infer that the separatri
es

ϕ̇± are repulsors immediately before they interse
t the


riti
al line and attra
tors after the 
rossing. Hen
e, the

measure of the initial 
onditions (ϕ, ϕ̇) leading to the

transition to phantom �eld (or vi
e versa) is zero. In this

sense the dark energy 
annot 
hange the sign of K(ϕ) (or
equivalently the sign of (w + 1)) during the 
osmologi
al

evolution.

The typi
al behavior of the phase 
urves in the neigh-

borhood of the singular points (0, u±), for the models

under 
onsideration (K ′
c > 0, V ′

c < 0), is shown in Fig. 5.

Here, as an example, we have plotted the phase 
urves

obtained numeri
ally for a toy model with the Lagrangian

density p = 1
2ϕϕ̇

2− 1
2

(

(ϕ− 1)
2
+ 1

3

)

. For this model we

have u± = ±1, A+ = − 3
2 , and A− = − 1

2 .

Let us now 
onsider su
h potentials V (ϕ) that V ′
c = 0.

If K(ϕ) is a di�erentiable fun
tion, then, in the 
ase un-

der 
onsideration, the equation of motion (IV.4) obvi-

ously has a �xed-point solution ϕ(t) ≡ 0 but this solu-

tion is not ne
essarily the unique one. When V ′
c = 0 and

K ′
c > 0, then, as follows from the 
ondition (III.22), the

only value ϕ̇, where a phase 
urve 
ould have 
oin
iding

points with the 
riti
al line, is ϕ̇ = 0. From the analy-

sis made in Se
. III A, we have already learned that the

transition is impossible in this 
ase. Nevertheless it is

worth to showing expli
itly how the phase 
urves look

at this 
ase. Taking into 
onsideration only the leading

order in the numerator and denominator of Eq. (IV.5)

and assuming that V ′′
c 6= 0, we obtain

dϕ̇

dϕ
≃ − V ′′

c

2ϕ̇K ′
c

. (IV.12)

The solution of this equation, going through the point

(0, 0) on the phase plot, is

ϕs = −ϕ̇2

(

K ′
c

V ′′
c

)

. (IV.13)

In Fig. 6 we have plotted the phase 
urves obtained

numeri
ally for a toy model with the Lagrangian density

p = 1
2ϕϕ̇

2 − 1
2

(

ϕ2 + 2
)

. As one 
an see from Fig. 6,

the parabolalike phase 
urve ϕs, given by the formula

(IV.13), is the separatrix going through the �xed-point

solution ϕ(t) ≡ 0. Moreover, this �gure 
on�rms that

there are no phase 
urves interse
ting the 
riti
al line by

�nite ϕ̇.
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+

−u

u
0

ϕ

ϕ

.

Figure 5: The typi
al behavior of the phase 
urves in the

neighborhood of the 
riti
al line where K(ϕ) = 0 (here ϕ̇ axis

) is plotted for the 
ase when K′
c > 0 and V ′

c < 0. Horizontal
dashed lines are the analyti
ally obtained separatri
es ϕ̇± and

(0, u±) are the points of transition.

0

.ϕ

ϕ

Figure 6: The typi
al behavior of the phase 
urves in the

neighborhood of the 
riti
al line where K(ϕ) = 0 (here ϕ̇ axis

) is plotted for the 
ase when K′
c > 0, V ′

c = 0, and V ′′
c > 0.

B. General di�erentiable K(ϕ)

The models we are going to dis
uss below belong to

the more general 
lass of models for whi
h the fun
tion

K(ϕ) has zero of an odd order 2n + 1 (where n ≥ 0)
at ϕ = 0. For the linear in X Lagrangians, we have

ε,XX ≡ 0; therefore, if n > 0 then K ′
c = 0 and εc,ϕX = 0.

That is why the general analysis made in the Se
. III C

does not work for this 
ase. Therefore it is interesting to

investigate on this simple example whether the desired

transition 
ould be possible for models not 
overed by

our former analysis. If K(ϕ) is a su�
ient many times

di�erentiable fun
tion, then for |ϕ| ≪ 1 we have

K(ϕ) ≃ K
(2n+1)
c

(2n+ 1)!
ϕ2n+1, (IV.14)

where K
(2n+1)
c is the (2n + 1)th ϕ derivative of K at

ϕ = 0. If there is a phase 
urve, 
rossing the 
riti
al line

at a �nite nonvanishing ϕ̇c, then integrating both sides

of the equation of motion (IV.4) we obtain

ϕ̇c − ϕ̇in = −3

∫ 0

ϕin

H(ϕ)dϕ−
∫ 0

ϕin

ε,ϕ
ϕ̇K

dϕ. (IV.15)

Here (ϕin, ϕ̇in) is a point on the phase 
urve in the neigh-

borhood of the 
riti
al line. The �rst integral on the

right-hand side of Eq. (IV.15) is always �nite, whereas,

as follows from the relation (IV.14), the se
ond integral

is de�nitely divergent, if εc,ϕ 6= 0. This divergen
e 
on-

tradi
ts to our initial assumption: ϕ̇c - �nite. There-

fore we again obtain the 
ondition (III.22), whi
h re-

stri
ts the possible interse
tion points on the 
riti
al line

in the sense that in the other points, where the 
ondi-

tion does not hold, not only the se
ond derivative ϕ̈ does

not exist, but there are no solutions ϕ(t) at all. More-

over, it is 
lear that the 
ondition (IV.7) is not enough

for the existen
e of the solutions interse
ting the 
riti
al

line. Thus, if the order of V ′(ϕ) ex
eeds the order on ϕ
of K ′(ϕ) for |ϕ| ≪ 1, then one 
an negle
t V ′(ϕ) and

the integral (IV.15) has the logarithmi
 divergen
e (note

that we do not 
onsider the points ϕ̇c = 0 be
ause as

we already know the transition does not o

ur via these

points). When the order of V ′(ϕ) is lower than K ′(ϕ)
(and therefore lower than the order of K(ϕ)), we 
an ne-

gle
t ϕ̇2K ′(ϕ) and the integral (IV.15) has a power-low

divergen
e. Finally, if the fun
tions K ′(ϕ) and V ′(ϕ)
have the same order on ϕ for |ϕ| ≪ 1 and are of opposite

signs in a su�
ient small neighborhood of ϕ = 0, then
one 
an �nd an appropriate �nite value ϕ̇2

c 6= 0 for whi
h

the divergen
e on the right-hand side of Eq. (IV.15) is


an
eled. One would expe
t that at this point the phase


urves interse
t the �
riti
al� line and the dark energy


hanges the sign of (w + 1). Below, we give the dire
t


al
ulation of these ϕ̇c and the phase 
urves in a neigh-

borhood of them. Suppose that the order of the fun
tions

(V (ϕ)− Vc) and K(ϕ) is (2n + 1) and there exist their

derivatives of the order (2n+ 2). Then for the ϕ deriva-

tive of the energy density we have in the neighborhood

of the supposed interse
tion point (0, ϕ̇c):

ε,ϕ ≃ 1

2

ϕ2n

(2n)!

[(

ϕ̇2
cK

(2n+1)
c + V (2n+1)

c

)

+ 2ϕ̇cK
(2n+1)
c δϕ̇

+
ϕ

(2n+ 1)

(

ϕ̇2
cK

(2n+2)
c + V (2n+2)

c

)]

, (IV.16)

whereas the denominator ϕ̇K(ϕ) of the se
ond integral on
the right-hand side of Eq. (IV.15) has the order (2n+1)
on ϕ. The only possibility to get rid of the divergen
e

in the integral under 
onsideration is to assume that the
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�rst term in the bra
kets in the asymptoti
 (IV.16) for

ε,ϕ is zero. Therefore the possible 
rossing points are

given by

ϕ̇c = u± = ±

√

− V
(2n+1)
c

K
(2n+1)
c

. (IV.17)

Taking into a

ount only the leading order on ϕ and δϕ̇
in the denominator and the numerator of Eq. (IV.5), we

obtain di�erential equation for the phase 
urves in the

neighborhoods of the interse
tion points (0, u±):

dδϕ̇

dϕ
= A± − (2n+ 1)

δϕ̇

ϕ
, (IV.18)

where

A± = −3Hc +
K

(2n+2)
c V

(2n+1)
c −K

(2n+1)
c V

(2n+2)
c

2
[

K
(2n+1)
c

]2

u±

.

(IV.19)

The solutions of this equation are given by the formula

(

δϕ̇− A±

2n+ 2
ϕ

)

ϕ2n+1 = const, (IV.20)

whi
h is a generalization of formula (IV.9). Similarly to

the 
ase n = 0 (K ′
c > 0) the solutions, on whi
h the tran-

sition o

urs, have the measure zero in the phase 
urves

set. Therefore we infer that the dynami
al transition

from the phantom states with w ≤ −1 to the usual with

w ≥ −1 (or vi
e versa) is impossible.

Now we would like to mention the models, for whi
h

V ′(ϕ) is one order higher on ϕ than K ′(ϕ) for small ϕ.
From the asymptoti
 expression for ε,ϕ (IV.16) and the

relation, giving the possible values of ϕ̇c (IV.15), we see

that the only point on the 
riti
al line whi
h 
ould be

rea
hed in a �nite time is ϕ̇c = 0. Therefore, as we have
seen in Se
. III A, the transition is impossible. The phase


urve going trough the �xed-point solution ϕ(t) ≡ 0 is a

parabola given by the generalization of Eq. (IV.13) :

ϕ ≃ −ϕ̇2

[

K
(2n+1)
c

V
(2n+2)
c

]

. (IV.21)

If V ′(ϕ) is more than one order higher on ϕ than K ′(ϕ),
then as we have already mentioned ϕ̇c = 0 and the tran-

sition is impossible as well.

C. Pole-like K(ϕ)

In this subse
tion, we brie�y 
onsider the 
ase when

the fun
tion K(ϕ) has a pole of an odd order, so

K ∼ ϕ−2n−1
, where n > 0, for |ϕ| ≪ 1. This kind of

fun
tions K(ϕ) is often dis
ussed in the literature in


onne
tion with the k−essen
e models (see [10℄). Let

us keep the same notation as in subse
tion IVA. The

potential V (ϕ) 
an not have a pole at the point ϕ = 0,
be
ause, if it were the 
ase, either the energy density ε
or the pressure p would be in�nite on the 
riti
al line.

In order to obtain �nite values of the energy density

ε and pressure p, it is ne
essary to assume that the

system interse
ts the 
riti
al line at ϕ̇ = 0. But, as

we have already seen in Se
. III A, the dark energy


annot 
hange the the sign of (w + 1) at the points ϕ̇ = 0.

Thus, we have shown that in the parti
ular 
ase of

the theories des
ribed by the linear in X Lagrangians

p(ϕ,X) = K(ϕ)X − V (ϕ), whi
h are di�erentiable in

the neighborhood of Ψ+
c (K(ϕ) and V (ϕ) di�erentiable

but not ne
essary linearizable) the results, obtained for

linearizable fun
tions ε,X , ε,ϕ, and p,X , hold as well. This
gives rise to hope that the same statement is true for the

general nonlinear in X Lagrangians as well. Espe
ially

we have proven that, if the 
onstru
tion of the linear in

X Lagrangian allows the transition, then the transitions

always realize on a pair of the phase 
urves. One phase


urve 
orresponds to the transition from w > −1 to w <
−1 while another one realizes the inverse transition. This
pair of phase 
urves obviously has the measure zero in the

set of traje
tories of the system. Therefore we infer that

the 
onsidered transition is physi
ally implausible in this


ase.

V. SCALAR DARK ENERGY IN OPEN AND

CLOSED UNIVERSES IN THE PRESENCE OF

OTHER FORMS OF MATTER

In the previous se
tions, we have seen that the desir-

able transition from w > −1 to w < −1 is either impos-

sible or dynami
ally unstable in the 
ase when the s
alar

dark energy is a dominating sour
e of gravity in the �at

Friedmann universe. Let us now investigate whether this

statement is true in the presen
e of other forms of matter

and in the 
ases when the Friedmann universe has open

and 
losed topology.

Following Ref. [19℄, the e�e
tive sound speed cs is given
by the same Eq. (II.14) for the �at, open, and 
losed uni-

verses. Therefore, if the dark energy is the dominating

sour
e of gravitation (in parti
ular this means that the

energy density of the dark energy ε 6= 0 ), then the anal-

ysis made in Se
. III B is appli
able to open and 
losed

universes as well as to the �at universe.

If the dark energy under 
onsideration intera
ts

with ordinary forms of matter only through indire
t

gravitational-strength 
ouplings, then the equation of

motion (II.13) 
an be written in the following form:

ϕ̈ε,X + 3ϕ̇Hp,X + ε,ϕ = 0, (V.1)

where merely the Hubble parameter depends on the spa-

tial 
urvature and other forms of matter. This depen-

den
e is given by the Friedmann equation:

H2 +
k

a2
=

1

3

(

ε+
∑

εi

)

, (V.2)
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where

∑

εi is the total energy density. It is obvious that

the points on the plot (ϕ, ϕ̇) 
onsidered in the most of

this paper do not de�ne the whole dynami
s of the sys-

tem anymore and therefore do not de�ne the states of

the whole system. The analysis made in Se
s. III A,

III C, and IV leans only on the behavior of the s
alar

�led ϕ and its �rst t derivative ϕ̇ in the neighborhoods

of their sele
ted values, namely, su
h as where some of

the 
onditions p,X = 0, ϕ̇ = 0, or ε,X = 0 et
. hold.

For these 
onditions, the 
ontributions into the equation

of motion (V.1) 
oming from the other forms of mat-

ter and spatial 
urvature would be of a higher order and

therefore are not important for the lo
al behavior of ϕ
and the problem as a whole. In fa
t, the value of the

Hubble parameter did not 
hange the qualitative futures

of the phase 
urves 
onsidered in Se
s. III A,III C, and

IV. To illustrate this statement, we plot the traje
tories

of the system p = 1
2ϕϕ̇

2 − 1
2

(

(ϕ− 1)
2
+ 1

3

)

(it is the

same system that we 
onsidered in previous subse
tion)

in presen
e of dust matter for various values of the initial

energy densities of the dust (see Fig. 7). The only thing

that is important is that H 6= 0. The universe should not


hange the expansion to the 
ollapse and the plot of the

s
ale fa
tor a(t) should not have a 
usp dire
tly at the

time of the transition. Thus, we infer that the most of

our analysis is appli
able to a more general physi
al situ-

ation of a Friedmann universe �lled with various kinds of

usual matter, whi
h intera
t with the dark energy only

through indire
t gravitational-strength 
ouplings. More-

over, if the intera
tion between the dark energy �eld ϕ
and other �elds does not in
lude 
oupling to the deriva-

tives ∇µϕ, then the obtained result holds as well.

VI. CONCLUSIONS AND DISCUSSION

In this paper we have found that the transitions from

w > −1 to w < −1 (or vi
e versa) of the dark energy

des
ribed by a general s
alar-�eld Lagrangian p(ϕ,∇µϕ)
are either unstable with respe
t to the 
osmologi
al per-

turbations or realized on the traje
tories of the measure

zero. If the dark energy dominates in the universe, this

result is still robust in the presen
e of other energy 
om-

ponents intera
ting with the dark energy through nonk-

ineti
 
ouplings. In parti
ular, we have shown that, un-

der this assumption about intera
tion, the dark energy

des
ribed by Lagrangians linear in (∇µϕ)
2

annot yield

su
h transitions even if it is a subdominant sour
e of

gravitation.

Let us now dis
uss the 
onsequen
es of these results. If

further observations 
on�rm the evolution of the dark en-

ergy dominating in the universe, from w ≥ −1 in the 
lose
past to w < −1 to date, then it is impossible to explain

this phenomenon by the 
lassi
al dynami
s given by an

e�e
tive s
alar-�eld Lagrangian p(ϕ,∇µϕ). In fa
t, the

models whi
h allow su
h transitions have been already

proposed (see e.g., [31, 32, 36℄ and other models from the

.
ϕ ΩmΩϕ

ϕ

10

0

=

.
ϕ

ϕ
0

mΩϕΩ =

.
ϕ ΩmΩϕ

0

0.1=

ϕ

Figure 7: Numeri
ally obtained traje
tories of the dark energy

des
ribed by a Lagrangian linear inX are plotted for the 
ases

Ωϕ = 10Ωm, Ωϕ = Ωm, and Ωϕ = 0.1Ωm.

Ref. [24℄) but they in
orporate more 
ompli
ated physi
s

then the 
lassi
al dynami
s of a one s
alar �eld.

If observations reveal that w < −1 now and if we dis-

regard the possibility of the transitions, then the energy

density of the dark energy should grow rapidly during

the expansion of the universe and therefore the 
oin
i-

den
e problem be
omes even more di�
ult. Thus, from

this point of view the transitions 
onsidered in this pa-

per would be rather desirable for the history of the uni-

verse. As we have shown, to explain the transition under

the minimal assumptions of the nonkineti
 intera
tion of

dark energy and other matter one should suppose that
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the dark energy was subdominating and des
ribed by a

nonlinear in (∇µϕ)
2
Lagrangian. Thus, some nonlinear

(or probably quantum) physi
s must be invoked to ex-

plain the value w < −1 in models with one s
alar �eld.

The se
ond appli
ation of our analysis is the problem of

the 
osmologi
al singularity. To obtain a boun
e instead

of 
ollapse, the s
alar �eld ϕ must 
hange its equation of

state to the phantom one before the boun
e and should

dominate in the universe at the moment of transition.

Otherwise, if the s
alar �eld was subdominant then it is

still subdominant after the transition as well, be
ause its

energy density de
reases during the 
ollapse, while the

other nonphantom forms of matter in
rease their energy

densities. The disappearing energy density of ϕ does not

a�e
t the gravitational dynami
s and therefore does not

lead to the boun
e. On the other hand, as we have al-

ready proved, a dominant s
alar �eld ϕ des
ribed by the

a
tion without kineti
 
ouplings and higher derivatives


annot smoothly evolve to the phantom with w < −1.
Therefore we infer that a smooth boun
e of the non
losed

Friedmann universe 
annot be realized in this framework.
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