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Can Data Recognize Its Parent

by

A. W. Marshall” J.C. Mezat.

Abstract

Distribution?

I. Olkin$

This study is concerned with model selection of lifetime and survival distri-

butions arising in engineering reliability or in the medical sciences. We compare

various distributions, including the gamma, Weibull and lognormal, with a new

distribution called geometric extreme exponential. Except for the lognormal dis-

tribution, the other three distributions all have the exponential distribution as

special cases. A Monte Carlo simulation was performed to determine sample sizes

for which survival distributions can distinguish data generated by their own fam-

ilies. Two methods for decision are by maximum likelihood and by Kolmogorov*

distance. Neither method is uniformly best. The probability of correct selection

with more than one alternative shows some surprising results when the choices.
are close to the exponential distribution.

1. INTRODUCTION

In any parametric analysis of data, the issue of model choice arises. This is particularly

evident when the data is necessarily nonnegative, and the usual Gaussian model is likely

to be inappropriate. Examples of nonnegative data include lifetime and other waiting

time data, earthquake and flood measurements, pollutant concentrations, and material

strengths.

To provide adequate selections of parametric models for various kinds of data, col-

lections of frequency curves for data analysis were developed by Karl Pearson in 1895,

Edgeworth in 1904 and Charlier in 1905. For a detailed and general discussion of frequency

curves, see Elderton and Johnson (1969). Models now commonly used for nonnegative data

include the exponential, gamma, Weibull, lognormal, and inverse Gaussian distributions;

these distributions are discussed in Section 2.
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In some fortunate circumstances, physical considerations alone can identify the appro-

priatefamily of distributions. Thus, when there is “nopremiumf orwaiting” the “lackof

memory” property which characterizes the exponential distributions can identify the fam-

ily of exponential distributions as the appropriate model. More commonly, no compelling

physical considerations point to an appropriate model and so a choice must be made by

other means. Such a choice may be based upon mathematical tractability, or on a feeling

that a particular family is “rich” enough to include a good fit to the data.

Most parametric statistical analyses start with the assumption that a parametric

family has been chosen as the model. The critical question of model choice has received

relatively little attention, although the assumed model is often subjected to a goodness of

fit test.

Another much less commonly used approach is to test the hypothesis that the chosen

family is correct against the alternative hypothesis that a second specified family is correct.

This is often referred to as “testing separate families of hypotheses”; because it is cast in

the hypothesis testing framework, it treats the two families asymmetrically. Here, the work

of Cox (1961, 1962) is basic, but see Pereira (1977) for further references.

There is a third approach that has received even less attention. This procedure is to

choose two or more possible candidate parametric families of distributions, and then use

the data to select the most appropriate candidate. Selection procedures put the alternative

families on equal footings, and they were also discussed by Cox (1961, 1962).

The focus of this paper is on selection procedures for nonnegative data using the

following two methods:

Criterion 1. Maximum ‘likelihood method: For each alternative family un-

der consideration, maximize the likelihood over the parameter values, and select .

the family that yields the largest maximum likelihood.

Criterion 2. Minimum Kolmogorov distance method: For each alterna-

tive family, estimate the parameters by maximum likelihood to select a specific

candidate. Determine the Kolmogorov distance between the specific candidate

and the empirical distribution, and select the family which yields the minimum

distance.

In this paper, these methods are used only for selections where the alternative families have

the same number of parameters. When the alternative families have different numbers of

parameters, the appropriateness of the methods is unclear because the family with’ the
.

greatest number of parameters would perhaps have an unfair advantage. The methods are

certainly inappropriate when one alternative is a sub-family of the other. Such is the case, .

2



e.g., for the exponential and Weibull families, and here, the exponential family could never
. hope to be selected.

Some history of model selection and a discussion of various methods is given in Section
. 3.

How successful are methods 1 and 2 when presented with data from a known distri-

bution and asked to choose between the actual parent parametric family and one or more

alternative? How large must the sample size be to make a correct selection with specified

probability? To investigate these questions, samples of various sizes from known distri-

butions have been computer generated, and the methods for model selection have been

applied. Since the parent distribution is known, the selection can be scored as correct

or not; after repeating the process a large number of times, the probability of a correct

selection can be accurately estimated.

BriefIy, the answer to the question posed in the title of this paper is “yes,” subject

to the qualification that the sample size be sufficiently Iarge — larger than many data

sets encountered in practice. In general, with the understanding that there are many

exceptions and qualifications, a sample size of 200 yields a reasonably high probability of

correct selection. Of course, this is based upon the supposition that the correct family of

distributions is amongst the possible choices.

The numerical work sheds some light on the comparative “richness” of the alternative

families. For example, sometimes data from a gamma distribution is fit by a Weibull

distribution even better than by its parent family, but data from a Weibull distribution is

much less likely to be best fitted to a gamma distribution. This suggests that the family

of Weibull distributions is “richer” than the family of gamma distributions at least in the

range of some parameter values.

The importance of choosing the correct model depends upon the use to be made of

the model. The correct choice is particularly critical if tail behavior is an issue, because

then attempts are made to extrapolate to regions of little or no data.

Studies of the kind reported on here have already been carried out perhaps first by

Bain and Engelhardt (1980), who focus on the gamma and Weibull families. This and

other such studies are briefly discussed in Section 7,

2. CANDIDATE FAMILIES OF DISTRIBUTIONS

* The gamma, Weibull, lognormal, and geometric extreme exponential families of dis-

tributions are included in this study. The first three are perhaps the most familiar and

. most widely used life distributions. The geometric extreme exponential (GE-exponential)

family has been included because it was introduced only recently, and has not been widely

studied. See Marshall and O1kin (1997).
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An absolutely continuous distribution can be described in terms of the distribution

function F’, the survival function ~ = 1 – F, or by the density ~. A distribution can

also be described in terms of the hazard rate r = ~/~. The value ~(z) of the survival

function at the point x gives the probability of survival beyond x whereas AT-(z) is the

conditional probability of failure in the next increment A of time given survival at time x.

The intuitive content of the hazard rate is often useful when model choice is to be made.

All the distributions included in this study have densities with convenient functional

forms. The survival functions and hazard rates of the gamma and lognormal distributions

cannot in general be written in closed form, but they can be qualitatively studied and

evaluated numerically.

Weibull density.

with scale parameter A

exponential density.

Gamma density.

with scale parameter A

exponential density.

The Weibull density is given by

>

f(z) = cA(kz)a-le-(A’)”,

O and shape parameter a

X>o,

> 0. The choice a = 1 yields the

The gamma density is given by

f(%) = “ ‘r(v; , x >0,

> 0 and

GE-exponential density.

shape parameter v > 0. The choice v = 1 yields the

A new density that arises from a stability property is

derived by Marshall and Olkin (1997). Its density is given by

with scale parameter A > 0 and shape parameter -y > 0. Here ~ = 1 – ~. The choice y = 1

yields the exponential density.

Lognormal density. The lognormal density is given by

f(x) = 1 exp [-&ogz-@ ’],
UGX

– ~ exp –~[log(kr)”]2, Z >0,—
fix

“with scale parameter A = e–~ and shape parameter CY= I/a >0.

The Weibull, gamma and GE-exponential distributions all include the exponential dis-

tribution as a special case, and they all have monotone hazard rates. Consequently, they
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are natural competitors when a model selection is to be made. On the other hand, the log-

normal distribution does not include the exponential distribution as a special case. It does

not have a monotone hazard rate, but instead has a unimodal hazard rate (increasing to a

maximum, and then decreasing). Perhaps because of its substantial qualitative differences,.
the Iognormal distribution is ordinarily not a serious competitor when data comes from a

gamma, Weibull, or geometric extreme exponential distribution. On the other hand, the

inverse Gaussian distribution and the F distribution, like the lognormal distribution, both

have unimodal hazard rates. These three distributions may be natural competitors, and

they would be interesting subjects of further simulation studies. Applications where the

lognormal distribution has been used are discussed by Aitchison and Brown (1957) and

Crow and Shimizu (1988); applications of the inverse Gaussian distribution are discussed

by Seshadri (1993). In most of these applications, the reason for choosing the families is

unclear, and alternatives are not often discussed.

3. SELECTION METHODS
.

The problem of choosing a model has been treated in a number of ways, some of which

are described here.
d

Method (i): Maximum likelihood criterion

Method (i) of Section 1, i.e., choose the family which yields the largest maximum

likelihood, is a modification due to Cox (1961) of a classical discrimination method. In

case there are but two alternative famiIies, .3 = {~(z {0)} and G = {g (Z lo ) }, this procedure

can be restated. Let

2 = z log[f(z2/8)/g(zi /(.3)],

where ~ and d are maximum likelihood estimators of the parameters 9 and u. Choose the-

family ~ if ~ <0. The statistic ~ is sometimes called the Cox statistic. It has been shown

by Cox (1962) that, properly normalized, the statistic log ~ is asymptotically normal as

the sample size increases without bound. White (1982) examined the regularity conditions

underlying the asymptotic derivations; see also Loh (1985). The asymptotic normality of

log ~ has been used by Fearn and Nebenzahl (1991) to estimate sample sizes required to

achieve a desired probability of correct selection.

In terms of ~, the described selection procedure is related to a procedure for testing

the hypothesis that the sample came from a distribution in 3 versus that it came from a.
distribution in ~. This testing problem treats the two families asymmetrically (discussed

by COX, 1961, 1962) and so it is slightly different from the selection problem. Although a
.

considerable amount of work has been done on the testing problem, it is not the subject

of this paper and is not treated here.
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Method (ii): Minimum distance criterion

With a sample in hand, it is natural to choose amongst alternative models that one -

which provides the distribution best fitting the empirical distribution according to some

measure of goodness of fit. Here, the goodness of fit measure is taken to be the Kolmogorov

distance
.

D(F, G) = SUp ]~(x) – G(z)].
—Co<z<w

To implement this procedure, a candidate from each parametric family that best fits the

empirical distribution must be determined, then the best fits are compared. Unfortunately,

the first step of this procedure is difficult both from a theoretical and a numerical point of

view. To make the method practical, the candidate from each parametric family is chosen

by maximum likelihood rather than by minimizing the Kolmogorov distance. Then, the

family is chosen that provides the best fit to the empirical distribution in the sense of

Kolmogorov distance.

This hybrid method, mixing maximum likelihood and minimum distance methods has

been utilized by Taylor and Jakeman (1985). They show (Figure 1, p. ) that if the -

exponential distribution is a candidate along with the more general gamma and Weibull

distributions, then with exponential data, the exponential distribution is often chosen. A

This happens only because mixed criteria are used, and it points to a weakness in the

minimum distance method of this paper.

Both the maximum likelihood and minimum distance methods described above can

be regarded as variants of the same approach. First, choose a representative from each

candidate family, then choose the family providing the best candidate. Choice of candidat e

amounts to a choice of parameters, and in this sense, it is similar to estimation. Apart

from maximum likelihood, the choice has been made by a least squares procedure (Pandy,

Ferdous and Uddin, 1991). Various other discrimination procedures are discussed by Dyer

(1973). McDonald, Vance and Gibbons (1995) discuss several methods in the context of

lognormal and Weibull alternatives for emissions data.

Some additional methods

Several methods for choosing from alternative families have been used in the literature;

some of these are briefly described here.

An approach to model selection quite different from those above can be had by utiliz-

ing Bayesian methods. As outlined by COX(1961), the basic idea is to form the likelihoods,

then instead of maximizing over the parameters, integrate the parameters out using a prior

distribution, and then choose the family producing the largest integrated likelihood. Mo-

tivated by invariance considerations rather than Bayesian ideas, Siswadi and Quesenberry

(1982) took this type of approach. A mixed approach is followed by Kent and Quesenberry
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(1982), who, again motivated by considerations of scale invariance, integrate away a scale

parameter using a prior distribution, but use maximum likelihood to determine shape pa-

rameters. For scale and location parameter families, this type of procedure is discussed by

Hogg, Uthoff, Randles and Davenport (1972).

Another approach essentially eliminates the issue of model choice by incorporating all

candidate alternatives as special cases in a super-model. Then the super-model is used and

no model choice is required. This natural idea is proposed by Cox (1961) in the context

of two competing models, say 3 = {F(zIO)} and g = {G(z Iu) }. He notes the possibility

of using as a super-model densities obtained by normalizing geometric means

[f(4fOlm[9(4w-1 0< 7r<1.——

Atkinson (1970) has pointed out that with the geometric mean, the likelihood takes a more

convenient form than it does when an arithmetic mean is used. However, arithmetic means

were used in place of geometric means by Olkin and Spiegelman (1987) to decide between

a parametric and a nonparametric model.

By introducing a third parameter, Prentice (1975) has obtained a family of distribu-

tions that includes variants of the logistic distribution as well as the Weibuil and gamma

distributions as limits. This specialized family can be used in some commonly encountered

areas.

4. NUMERICAL PROCEDURES

The process for determining the probability of correct selection was based on a Monte

Carlo procedure. For each alternative family of the study, we first fixed the scale parameter

so that the expectation was equal to 1. This can be done because the results of the study

do not depend upon the choice of the scale parameter (see the appendix for a proof).

Next we made various choices for the shape parameter and the sample size. For each

combination of these choices, we generated a random sample and computed the maximum

likelihood estimate for the parameters of the parent and alternative families. The family

with the largest maximum likelihood was then chosen as the winner for that combination

of shape parameter and sample size. This procedure was then repeated 100,000 times

and we recorded the proportion of times that each alternative family yielded the best fit.

This entire procedure was then repeated using the minimum Kolmogorov distance as the
. criterion for determining the best fit.

To compute the maximum likelihood estimate it was sometimes necessary to solve an
. optimization problem. In these cases, we used the nonlinear optimization package NPSOL

(Version 4.04) developed by Gill, Murray, Saunders, and Wright (1986). The random

variables were generated using various techniques depending on the families. Random
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numbers from the Weibull and GE-exponential distributions were”generat ed using inversion

of uniform random variables. The lognormal random numbers were generated using the

RNOR algorithm due to Marsaglia and Tsang (1984). The gamma family random numbers

were generated using the GBH algorithm due to Cheng and Feast (1979).

All of the numerical experiments were run on an SGI Power Challenge using double

precision arithmetic. With 100,000 trials, the variance of the estimated probability of a

correct selection is theoretically at most 0.005. In spite of using double precision arithmetic,

some numerical difficult ies were inevitable in instantes where the likelihoods or minimum

Kolmogorov distances of the competing families were nearly equal. This problem may

explain the lack of complete smoothness in some of the figures.

5. SELECTION WITH GAMMA’, WEIBULL AND GE-EXPONENTIAL

DISTRIBUTIONS AS ALTERNATIVES

The families of Weibull, gamma and geometric extreme exponential distributions all

reduce to the exponential distribution when their shape parameter is 1 and they all have

monotone hazard rates, so in many applications these families are natural alternative

models to consider. No matter which family is the source of the data, correct selection is

relatively unlikely when the shape parameters are close to 1.

Exponential data

For data from the exponential distribution, selection of any of the three families can

be regarded as “correct.” With any two of the families of alternatives and the maximum

likelihood selection method, the selection probabilities are close to 0.5; that is, the two

alternatives are equally likely to be selected and the selection method is indifferent. It is

perhaps surprising that with all three families as alternatives, the selection probabilities are

not equal. For samples above 100, the selection probabilities are approximately 0.13 for the

Weibull family, 0.42 for the gamma family, and 0.45 for the GE-exponential family. The

fact that the Weibull family does poorly in a three-way race is reminiscent of a phenomena

long recognized in elections. When entering a race, a third candidate ordinarily takes more

votes from one of the original candidates than the other; in this way the outcome of the

election can be changed even though the third candidate does not win.

Weibull data

If the data is actually from a Weibull distribution, the probability of a correct selection

is less with the Weibull and gamma families as alternatives than it is with the Weibull
.

‘and GE-exponential families as alternatives. With all three families as alternatives, the

GE-exponential family is least likely to be selected when the shape parameter of the parent “

Weibull distribution is not close to 1, but the GE-exponential family becomes more likely

8



to be selected as the Weibull shape parameter moves closer to 1. The rate at which this

change takes place depends upon the sample size. It is interesting to see that with sample

sizes less than 400, and the parent Weibull with shape parameter between 0.9 and 1.1, the

Weibull distribution is the 2east likely of the three alternatives to be selected.

In general, for two-way comparisons, the maximum likelihood works better

minimum Kolmogorov distance method.

Gamma data

than the

For gamma data with shape parameter greater than or equal to 1 and two alternative

families, the Weibull family is a consistently more successful competitor to the gamma

family than is the GE-exponential family. The same is true when all three families are

alternatives unless the data comes from a gamma distribution with shape paremter close

to 1. Then, the GE-exponential distribution begins to be a best fit more often than the

Weibull distribution, first for small sample sizes, and then for all sample sizes. By the time

that the shape parameter reaches 1, the GE-exponential distribution is more often a best

fit than either the gamma or Weibull distribution.

For very small samples and the Weibull family as the only alternative to the gamma

family, the minimum Kolmogorov distance method does better than the maximum likeli-

hood method. But otherwise, the maximum likelihood method is best.

GE-exponential data

Suppose that data comes from a GE-exponential distribution. With one alternative

family, correct selection is much more likely for the gamma as alternative than it is for

the Weibull as alternative family. For all three families as alternatives, this difference in

the gamma and Weibull families is less pronounced except when the data comes from a

GE-exponential distribution with a large shape parameter. When the shape parameter is

close to 1, the gamma family is more likely to be selected than the Weibull family especially

for small sample sizes.

If the Weibull family is the only alternative to the GE-exponential family, the mini-

mum Kolmogorov distance method works best, although the maximum likelihood method

starts to gain for samples sizes greater than 600. If the gamma family is the only alterna-

tive, then the two methods are very close except when that data comes from a distribution

with shape parameter close to 1; then, the minimum Kolmogorov distance is best.
.

6. SELECTION WITH LOGNORMAL, GAMMA, AND WEIBULL
. DISTRIBUTIONS AS ALTERNATIVES

As already noted, the lognormal distribution is somewhat different in character from

the other families of this study because it does not have the exponential distribution as a
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special case, and it does not have a monotone hazard rate. Nevertheless, the lognormal is

often considered as a competitor family when nonnegative data is studied. For this reason

we include it in this study.

Weibull data

With Weibull data and both the Weibull and lognormal families as alternatives, the

probability of a correct selection is independent of the shape parameter. This fact, proved

in an appendix, is due to the fact that the shape parameter Q of the Weibull distribution

and the parameter I/o of the lognormal distribution are both power parameters, i.e., they

appear as an exponent of the argument in the distribution function.

With Weibull and lognormal alternatives and the maximum likelihood method, the

probability of a correct selection is already above 0.95 for samples as small as 100. The

minimum Kolmogorov distance method does even better, and is nearly foolproof with a

sample of size 100.

Gamma data

With gamma data and both the gamma and lognormal families as alternatives, the

probability of correct selection using maximum likelihood as the criterion is decreasing

as the gamma shape parameter increases from 1. This monotonicity is not present when

selection is made by minimum Kolmogorov distance. However, except for values of the

shape parameter close to 1, the minimum Kolmogorov distance method gives a higher

probability of a correct selection than does the maximum likelihood criterion. These

comments apply only to the case of gamma shape parameter greater than or equal to

1, as simulations were not carried out with the shape parameter less than 1.

GE-exponential data

With GE-exponential data and both the GE-exponential and lognormal families as

alternatives, the probability of a correct selection is quite

2, 4 and 8 of the shape parameter for which simulations

minimum Kolmogorov distance gives a higher probability

the maximum likelihood method.

high at least for the values 1,

were carried out. Again, the

of correct selection than does

Lognormal data

With lognormal data and both the lognormal and Weibull families as alternatives, the

probability of a correct selection is independent of the shape parameter for the same reason

that this independence occurs with Weibull data and the same alternatives. With samples

of size at least 100, the probability of a correct selection by the maximum likelihood method

exceeds 0.97, so these alternatives are relatively easily distinguished.

. I
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With the gamma family replacing the Weibull as an alternative, the situation is much

. different. Here, with the maximum likelihood criterion, the probability of a correct selection

is rather rapidly decreasing in the shape parameter of the lognormal data. Although the

probability of a correct selection is quite high for shape parameter values greater than 0.25,

but they approach 0.5 as the shape parameter approaches O. The apparent reason for this

is that with a fixed unit expectation, the weak limit of the lognormal distribution as the

shape parameter goes to Ois degenerate at 1, and this is also the weak limit of the gamma

distribution as the shape parameter goes to m. So in these extreme cases, the lognormal

and gamma distributions are similar and hard to distinguish.

With GE-exponential data and the lognormal as an alternative model, the maximum

likelihood criterion yields a probability of correct selection that is not monotone in the

shape parameter. A sample of size 30 is sufficient to achieve a 0.95 probability of correct

selection for the shape parameters 1 and 5; but at the intermediate value of 1.5, a sample

size of about 300 is required to achieve the same accuracy.

.

7. THE NUMERICAL RESULTS

Several authors have previously run simulations similar to those of this paper. Here,

a brief summary of the earlier studies is offered, together with an outline of the results of

this paper.

Bain and Engelhardt (1980). These authors considered the Weibull and gamma

alternatives and the maximum likelihood selection method. For both families as parents,

shape parameters of 0.5, 1, 2, 4, 8, 16, and sample sizes from 10 to 160, they used 4,000

replications (1000 for sample size 160) to estimate the probabilities of correct selection.

Kappenman (1982). This paper furthers the work of Bain and Engelhardt (1980) by.

considering the lognormal distribution as an alternative family along with the Weibull and

gamma families. Using the maximum likelihood selection method and 1000 replications,

probabilities of correct selection for the triple as well as all of the pairs of the families are

tabulated. Results for 5 values of the shape parameter of the parent distribution and 5

sample sizes (from 10 to 200) are given. There is good agreement withe the results of Bain

and Engelhardt (1980) where the studies overlap.

Taylor and Jakeman (1985). Using both the maximum likelihood method and

the minimum Kohnogorov distance method (also used in this paper), these authors con-

> sider the exponential, Weibull, gamma, and lognormal families as alternatives. They made

calculations with all families as competitors that pass a preliminary goodness of fit test.

They estimate probabilities of correct selection for 4 or 5 shape parameter values and 6.

sample sizes ranging from 10 to 365 using from 1000 to 250 replications. The results, pre-

sented graphically, show that the maximum likelihood method works much better than the

11



minimum Kolmogorov distance method, but for other parent distributions, the difference

between the methods is less pronounced.

Fearn and Nebenzahl (1991). These authors use the asymptotic normality of

(defined in Section 3) to estimate sample sizes required to achieve the correct selection

probability of 0.8. This is done for the Weibull and gamma families as alternatives. Shape

parameter values of 0.5 (O.1) 2.0 are considered.

Graphical Displays

The figures of this paper are organized by parent distribution with the Weibull,

gamma, GE-exponential, and lognormal families abbreviated, respectively, as W, G, GE,

and L. The figures are labeled first by parent distribution, followed by a slash, and then the

alternative families. Finallyj a letter “a” indicates that the selection method is minimum

Kolmogorov distance; the absence of a letter indicates that the selection method is by

maximum likelihood. Thus, Figure W/Ga is for data from a Weibull distribution with the

Weibull and gamma families as alternatives and minimum Kolmogorov distance method for

selection. Figure W/G, GE is for data from a Weibull distribution, with Weibull, gamma

and GE-exponential families as alternatives and maximum likelihood as the selection cri-

terion. Parameter values are indicated by keys on the graphs. For two alternatives, the

graphs show the probability of correct selection for various parameter values, but for three

alternatives, a separate graph is required for each parameter value so that the probabilityy

of selection can be shown for each alternative family. By comparing these various graphs,

it is possible to see how the ranking of the alternatives changes with the parameter values.

.

.

Although the graphs show the probability of selection or correct selection as a function

of sample size, it is easy to determine from them the sample sizes required to achieve a

desired probability of correct selection.
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APPENDIX A
.

In the following {~(.]~, 0)}

are scale parameters, that is

– PARAMETER INDEPENDENCE

and {g(- 11,w) } are families of densities in which ~ and 1

(1) ~(z]A,6) = A~(kz!l,6) and g(z\l, u) = Ig(lx]l, w).

A.1 Theorem. If Xl,. . . . Xn is a random sample from the density ~(” \, JO,6) and

Criterion 1 (maximum likelihood method) is used to select one of the alternative families

{~(”]~, ~)} or {g(l~, u)}, then the probability of a correct selection is independent of AO.

Proofi In the following, Xi N ~(. 1A,0) is used to mean that Xl,. . . . Xn are independent

observations of random variables with density ~ (. IA, (3). It is necessary to prove that

P~~ = P{rn~xrIf(xi\A,6) > ~~IIg(xilA,bJlxi~ f(.p~,oo)}
7 >

. is independent of A.. l?rom (1) it follows that

P~~ = P{ IIl~XIIf(X21~,0) > IIllXHg(XzlA,U) Xz/AO m f(-ll,Oo)}
>,

./1,80)}

1,00)}

)}. mll,e~

by Criterion 2 (minimumA. 2 Theorem. If, in Theorem A. 1, Criterion 1 is replaced

Kolmogorov distance method), the conclusion remains valid.

Notation. A maximum likelihood estimator for A computed from sample values

xl, ..., Xn is denoted by ~(x). Similarly, 8(x), 1(z) and 0(x) are defined. The empirical

distribution based on the sample values xl, . . . . Xn is denoted by &(x]:).

A. 3 Lemma. For any positive constant c,

Ci(m) = i(z), qc@ = !i@).

If the maximum likelihood estimators are not unique, the equalities must be interpreted as

saying that the left-hand side is a maximum likelihood estimator based on x.

.
Proof By definition

15



This says that c~(c~) and ~(c~) are also MLE estimators based on the sample ~.

l%oj of Theorem A..2. Note: l?.(zl~) = F’n(czlc~).

(2)
{

P~.g = P sup lF(z]i(~), !@)) – $’n(zl~)l

; sup lG(z@f),L@)) - Fn(z[:)l Zz ~ .f(. \Ao,eo)}.
z

By applying Lemma A.3 to the right-hand side of (2) it follows that

(3)
{

P~~ = P sup iF(zlci(c~), (@)) – Fn(czlc~)l

; sup lG(z@(c~), &(c~)) – ~n(czlc~)l Xi N j(.l~o, 6.)}
z

{
= P sup lF(czli(c~), P(cx)) – Fn(czlc~)l

z

~ sup lG(czl~(c~),&(c~)) – ~n(czlc~)l Xi N f(”l~o, eo)}.
z

With Yz = AXi, (3) becomes

This completes the proof because nothing has changed except the scale of the distribution ~

from which the sample was obtained. IM

●
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APPENDIX B – LIKELIHOOD EQUATIONS

F’or completeness, some of the necessary computations required for the simulations

and optimization are listed here.

Gamma density

For a data sample of size n, the log likelihood function is given by:

(1) logL=nvlog~ +(v–l)~logz~– A~zz –nlOgr(~)

2=1 i=l

The derivative of the log likelihood function with respect to A yields

t?logL nv n xi

x8A ‘T– “
‘i=l

Setting the derivative equal to zero yields the maximum likelihood estimator (MLE) for A:

(2)

Substituting (2) into (1) and taking the derivative with respect to v yields

(3)
8 log L

n

Ov =

nlogv —n+(v) —nlog Z+ ~lOgZi,
2=1

where ~(v) = 17’(v)/1’(v) is the digamma function. We can now solve for the MLE of v by

finding the unique root of equation (3); uniqueness follows from properties of the digamma

function.

Weibull density

The log likelihood function is given by:

(4) log L=nlogcz +nalog A+(a-l)~logzi –A”~z~,

2=1

. The derivatives of (4) with respect to a ,and A are given by

17



A straightforward calculation shows that the MLE for A is given by

(7)

Substituting (7) into (5) yields

which can be solved numerically for the MLE of cr.

Lognormal density

The MLE are given by

Geometric extreme exponential density

The log likelihood function is given by

(8) 10g.L = nlog(~~) – ~fi Xi – 2 ~log(l – ~e-~’i).

a=l

The derivatives of (8) with respect to ~ and A are given by

Setting the derivatives equal to zero does not lead to closed form solutions, and the MLE

must be obtained numerically.

For this density, the expectation is given by EX = –~ log ~/A~.

.
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with gamma alternative: maximum likelihood criterion
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Figure G/W, GE. Probability of selection for gamma data,
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maximum likelihood criterion
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Figure G/W, GE. Probability of selection for gamma data,
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maximum likelihood criterion
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Figure W/G, GE. Probability of selection for Weibull data,

a= 1.0, with gamma and GE-exponential alternatives:
maximum likelihood criterion
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Figure W/G, GE. Probability of selection for Weibull data,

u = 1.5, with gamma and GE-exponential alternatives:
maximum likelihood criterion

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00
0

7“

I I t I I 1 ,

200 400 600 800 1000

*

Sample Size

. . * .



‘6

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

I Figure W/G, GE. Probability of selection for Weibull data,
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maximum likelihood criterion
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