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�is paper applies deep convolutional neural network (CNN) to identify tomato leaf disease by transfer learning. AlexNet,
GoogLeNet, and ResNet were used as backbone of the CNN.�e best combinedmodel was utilized to change the structure, aiming
at exploring the performance of full training and 	ne-tuning of CNN. �e highest accuracy of 97.28% for identifying tomato leaf
disease is achieved by the optimal model ResNet with stochastic gradient descent (SGD), the number of batch size of 16, the number
of iterations of 4992, and the training layers from the 37 layer to the fully connected layer (denote as “fc”).�e experimental results
show that the proposed technique is eective in identifying tomato leaf disease and could be generalized to identify other plant
diseases.

1. Introduction

Tomato is a widely cultivated crop throughout the world,
which contains rich nutrition, unique taste, and health eects,
so it plays an important role in the agricultural production
and trade around the world. Given the importance of tomato
in the economic context, it is necessary to maximize produc-
tivity and product quality by using techniques. Corynespora
leaf spot disease, early blight, late blight, leaf mold disease,
septoria leaf spot, two-spotted spider mite, virus disease, and
yellow leaf curl disease are 8 common diseases in tomato [1–
8]; thus, a real time and precise recognition technology is
essential.

Recently, since CNN has the self-learned mechanism,
that is, extracting features and classifying images in the one
procedure [9], CNN has been successfully applied in various
applications, such as writer identi	cation [10], salient object
detection [11, 12], scene text detection [13, 14], truncated
inference learning [15], road crack detection [16, 17], biomed-
ical image analysis [18], predicting face attributes from web
images [19], and pedestrian detection [20], and achieved
the better performance. In addition, CNN is able to extract
more robust and discriminative features with considering
the global context information of regions [10], and CNN is
scarcely aected by the shadow, distortion, and brightness

of the natural images. With the rapid development of CNN,
many powerful architectures of CNN emerged, such as
AlexNet [21], GoogLeNet [22], VGGNet [23], Inception-V3
[24], Inception-V4 [25], ResNet [26], and DenseNets [27].

Training deep neural networks from scratch needs
amounts of data and expensive computational resources.
Meanwhile, we sometimes have a classi	cation task in one
domain, but we only have enough data in other domains.
Fortunately, transfer learning can improve the performance
of deep neural networks by avoiding complex data mining
and data-labeling eorts [28]. In practice, transfer learning
consists of two ways [29]. One option is to 	ne-tune the
networks weights by using our data as input; it is worth
nothing that the new data must be resized to the input size of
the pretrained network. Another way is to obtain the learned
weights from the pretrained network and apply the weights
to the target network.

In this work, 	rst, we compared the performance between
SGD [30] and Adaptive Moment Estimation (Adam) [30,
31] in identifying tomato leaf disease. �ese optimization
methods are based on the pretrained networks AlexNet
[21], GoogLeNet [22], and ResNet [26]. �en, the network
architecture with the highest performance was selected and
experiments on eect of two hyperparameters (i.e., batch size
and number of iterations) on accuracy were carried out. Next,
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Figure 1: Proposed work�ow diagram.

we utilized the network with the suitable hyperparameters,
which was obtained from the previous experiments, to dis-
cuss the impact of dierent network structures on recognition
tasks.We believe thismakes sense for researchers who choose
to 	ne-tune pretrained systems for other similar issues.

�e rest of this paper is organized as follows. Section 2
displays an overview of related works. Section 3 introduces
the dataset and three deep convolutional neural networks,
i.e., AlexNet, GoogLeNet, and ResNet. Section 4 presents the
experiments and results in this work. Section 5 concludes the
paper.

2. Related Work

�e research of agricultural disease identi	cation based on
computer vision has been a hot topic. In the early years, the
traditional machine learning methods and shallow networks
were extensively adopted in the agricultural 	eld.

Sannakki et al. [32] proposed to use k-means based
clustering performed on each image pixel to isolate the
infected spot. �ey obtained the result that the Grading
System they built by machine vision and fuzzy logic is very
useful for grading the plant disease. Samanta et al. [33]
proposed a novel histogram based scab diseases detection
of potato and applied color image segmentation technique
to exact intensity pattern. �ey got the best classi	cation
accuracy of 97.5%. Pedro et al. [34] applied fuzzy decision-
making to identify weed shape, with fuzzy multicriteria
decision-making strategy; they achieved the best accuracy
of 92.9%. Cheng and Matson [35] adopted Decision Tree,
Support Vector Machine (SVM), and Neural Network to
identify weed and rice; the best accuracy they achieved is
98.2% by using Decision Tree. Sankaran and Ehsani [36]
used quadratic discriminant analysis (QDA) and k-nearest
neighbour (kNN) to classify citrus leaves infectedwith canker
and Huanglongbing (HLB) from healthy citrus leaves; they
got the highest overall accuracy of 99.9% by kNN.

Recently, deep learning methods have been applied in
identifying plant disease widely. Cheng et al. [37] used

ResNet and AlexNet to identify agricultural pests. At the
same time, they carried out comparative experiments with
SVM and BP neural networks; 	nally, they got the best
accuracy of 98.67%byResNet-101. Ferreiraa et al. [38] utilized
ConvNets to perform weed detection in soybean crop images
and classify these weeds among grass and broadleaf. �e
best accuracy they achieved is 99.5%. Sladojevic et al. [39]
built a deep convolutional neural network to automati-
cally classify and detect 15 categories of plant leaf diseases.
Meanwhile, their model was able to distinguish plants from
their surroundings. �ey got an average accuracy of 96.3%.
Mohanty et al. [40] trained a deep convolutional neural
network based on the pretrained AlexNet and GoogLeNet
to identify 14 crop species and 26 diseases. �ey achieved
an accuracy of 99.35% on a held-out test set. Sa et al.
[41] proposed a novel approach to fruit detection by using
deep convolutional neural networks. �ey adapted Faster
Region-based CNN (Faster R-CNN)model, through transfer
learning. �ey got the F1 score with 0.83 in a 	eld farm
dataset.

3. Materials and Methods

�is paper concentrates on identifying tomato leaf disease
by deep learning. In this section, the abstract mathematical
model about identifying tomato leaf disease is displayed at
	rst. Meanwhile, the process of typical CNN is described
with formulas. �en, the dataset and data augmentation are
presented. Finally, we introduced three powerful deep neural
networks adopted in this paper, i.e., AlexNet, GoogLeNet,
and ResNet.

�e main process of tomato leaf disease identi	cation in
this work can be abstracted as a mathematical model (see
Figure 1). First, we assume themapping function from tomato
leaves to diseases is � : � �→ � and then send the training
samples to the optimization method. �e hypothesis set �
means possible objective functions with dierent parameters;
through a series of parameters update, we can get the 	nal
assumption � ≈ �.
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Figure 2: Raw tomato leaf images.

�e typical CNN process can be represented with fol-
lowing formulas. Firstly, send the training samples (i.e.,
training tomato leaf images) to the classi	er (i.e., AlexNet,
GoogLeNet, and ResNet). �en, convolution operation is
carried out; that is, a number of 	lters slide over the feature
map of the previous layer, and the weight matrices do dot
product.


�� = �(∑
�∈��


�−1� ∗ ��� + ���) (1)

where �(⋅) is activation function, typically a Recti	er Linear
Unit (ReLU) [42] function:

� (�) = max (�, 0) (2)

�� is the number of kernels of the certain layer,
�−1� repre-

sents the feature map of the previous layer, ��� is the weight
matrix, and ��� is the bias term.

Max-pooling or average pooling is conducted a�er the
convolution operation. Furthermore, the learned features are
sent to the fully connected layer. �e so�max regression
always follows the 	nal fully connected layer, an input � will
get the probability of belonging to class �.

� (� = � | �; �) = ���� �
∑	�=1 ���� � (3)

where � is the response variable (i.e., predict label), � is the
number of categories, and � is the parameters of our model.

3.1. Raw Dataset. �e raw tomato leaf dataset utilized in
this work comes from an open access repository of images,
which focus on plant health [43]. Health and other 8 diseases
categories are included (see Table 1, Figure 2), i.e., early blight
(pathogen: Alternaria solani) [1], yellow leaf curl disease
(pathogen: Tomato Yellow Leaf Curl Virus (Tylcv), Family
Geminiviridae, Genus Begomovirus) [2], corynespora leaf
spot disease (pathogen: Corynespora cassiicola) [3], leafmold
disease (pathogen: Fulvia fulva) [4], virus disease (pathogen:
Tomato Mosaic Virus) [5], late blight (pathogen: Phytoph-
thora Infestans)[6], septoria leaf spot (pathogen: Septoria
lycopersici) [7], and two-spotted spider mite (pathogen:
Tetranychus urticae) [8]. �e total dataset is 5550.

3.2. Data Augmentation. Deep convolutional neural net-
works contain millions of parameters; thus, massive amounts
of data is required. Otherwise, the deep neural network may
be over	tting or not robust. �e most common method to
reduce over	tting on image dataset is to enlarge the dataset
manually and conduct label-preserving transformations [21,
44].

In this work, at 	rst, the raw image dataset was divided
into 80% training samples and 20% testing samples, and then
the data augmentation procedure was conducted: (1) �ipping
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Table 1: �e raw tomato leaf dataset.

Label Category Number Leaf symptoms Illustration

1
Corynespora

leaf spot disease
547

Small brown spots
appear, leaf spots have

yellow halo.

See Figure 1 	rst row
No.1-No.5

2 Early blight 405

Black or brown spots
appear, leaf spots o�en
have yellow or green

concentric ring pattern.

See Figure 1 	rst row
No.6-No.10

4 Late blight 726

Water-soaked area
appears and rapidly
enlarges to form
purple-brown,

oily-appearing blotches.

See Figure 1 second row
No.1-No.5

5
Leaf mold
disease

480
Irregular yellow or green

area appears.
See Figure 1 second row

No.6-No.10

6
Septoria leaf

spot
734

Round spots, marginal
brown, chlorotic yellow,

appear.

See Figure 1 third row
No.1-No.5

7
Two-spotted
spider mite

720
Show white or yellow

spots, blade back netting.
See Figure 1 third row

No.6-No.10

8 Virus disease 481
Develop yellow or green,

slightly shrinking.
See Figure 1 forth row

No.1-No.5

9
Yellow leaf curl

disease
814

Develop small and curl
upward, crumpling, and
marginal yellowing,
bushy appearance.

See Figure 1 forth row
No.6-No.10

3 Health 643 See Figure 1 	�h row

Total 5550

the image from le� to right; (2) �ipping the image from top
to bottom; (3) �ipping the image diagonally; (4) adjusting the
brightness of image, setting the max delta to 0.4; (5) adjusting
the contrast of image, setting the ratio from 0.2 to 1.5; (6)
adjusting the hue of image, setting the max delta to 0.5; (7)
adjusting the saturation of image, setting the ratio from 0.2 to
1.5; (8) rotating the image by 90∘ and 270∘, respectively. �e
	nal dataset is shown in Table 2, and the label in the 	rst row
represents the disease categories which are given in Table 1.

3.3. Deep Learning Models

3.3.1. AlexNet. AlexNet is the winner of ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) 2012, a deep
convolutional neural network, which has 60 million param-
eters and 650,000 neurons [21]. �e architecture of AlexNet
utilized in this paper is displayed in Figure 3. �e AlexNet
architecture consists of 	ve convolutional layers (i.e., conv1,
conv2, and so on), some of which are followed by max-
pooling layers (i.e., pool1, pool2, and pool5), three fully
connected layers (i.e., fc6, fc7, and fc8), and a liner layer with
so�max activation in output. In order to reduce over	tting
in the fully connected layers, a regularization method called
“dropout” is used (i.e., drop6, drop7) [21]. �e ReLU activa-
tion function is applied to each of the 	rst seven layers (i.e.,
relu1, relu2, and so on) [45]. In Figure 3, the notation�×�×�
in each convolutional layer represents the size of the feature

map for each layer, 4096 represents the number of neurons of
the 	rst two fully connected layers. �e number of neurons
of the 	nal fully connected layer was modi	ed to 9, since
the classi	cation problem in this work has 9 categories. In
addition, the size of input imagesmust be shaped to 227×227,
which meets the input pixel size requirement of AlexNet.

3.3.2. GoogLeNet. GoogLeNet is an inception architecture
[22], which is the winner of ILSVRC 2014 and owns roughly
6.8 million parameters. �e architecture of GoogLeNet is
presented in Figure 4. �e inception module is inspired by
the network in network [46] and uses a parallel combination
of 1 × 1, 3 × 3, and 5 × 5 convolutional layer along with3 × 3 max-pooling layer [45]; the 1 × 1 convolutional layer
before 3 × 3 and 5 × 5 convolutional layer reduces the spatial
dimension and limits the size of GoogLeNet. �e whole
architecture of GoogLeNet is stacked by inception module
on top of each other (See Figure 4), which has nine inception
modules, two convolutional layers, four max-pooling layers,
one average pooling layer, one fully connected layer, and a
linear layer with so�max function in the output. GoogLeNet
uses dropout regularization in the fully connected layer
and applies the ReLU activation function in all of the
convolutional layers [29]. In this work, the last three layers
of GoogLeNet were replaced by a fully connected layer, a
so�max layer, and a classi	cation layer; the fully connected
layer was modi	ed to 9 neurons, which is equal to the
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Table 2: �e 	nal tomato leaf dataset.

Labels Label1 Label2 Label3 Label4 Label5 Label6 Label7 Label8 Label9 Total

Training set 3933 2916 4626 5229 3456 5283 5184 3465 5859 39951

Testing set 110 81 129 145 96 147 144 161 163 1176

Figure 3: �e architecture of AlexNet in this work.

categories in the tomato leaf disease identi	cation problem.
�e size requested of input image of GoogLeNet is 224× 224.
3.3.3. ResNet. �e deep residual learning framework is pro-
posed for addressing the degradation problem. ResNet con-
sists of many stacked residual units, which won the 	rst place
in ILSVRC 2015 and COCO 2015 classi	cation challenge with
error rate of 3.57% [26]. Each unit can be expressed in the
following formulas [47]:

�� = ℎ (��) +  (��,!�) (4)

��+1 = � (��) (5)

where �� and ��+1 are input and output of the l-th unit, and  
is a residual function. In [26]ℎ(��) = �� is an identity mapping
and � is a ReLU function [42]. A “bottleneck” building block
is designed for ResNet (See Figure 5) and comprises two 1×1
convolutions with a 3 × 3 convolution in between and a
direct skip connection bypassing input and output. �e 1 × 1
layers are responsible for changing in dimensions. ResNet
model has three types of layers with 50, 101, and 152. For
saving computing resources and training time, we choose the
ResNet50, which also has high performance. In this work, at
	rst, the last three layers of ResNet were modi	ed by a fully
connected layer, a so�max layer, and a classi	cation layer,
the fully connected layer was replaced to 9 neurons, which is
equal to the categories of the tomato leaf disease. We changed
the structure of ResNet subsequently. �e size of input image
of ResNet should satisfy 224 × 224.
4. Experiments and Results

In this section, we reveal the experiments and discuss the
experimental results. All the experiments were implemented
in Matlab under Windows 10, using the GPU NVIDIA
GTX1050 with 4G video memory or NVIDIA GTX1080Ti
with 11G video memory. In this paper, overall accuracy was
regarded as the evaluation metric in every experiment on

tomato leaf disease detection, which means the percentage of
samples that are correctly classi	ed:

accuracy = true positive + true negative

positive + negative
(6)

where “true positive” is the number of instances that are pos-
itive and classi	ed as positive, “true negative” is the number
of instances that are negative and classi	ed as negative, and
the denominator represents the total number of samples. In
addition, the training time was regarded as an additional
performance metric of the network structure experiment.

4.1. Experiments on Optimization Methods. �e 	rst exper-
iment is designed for seeking the suitable optimization
method between SGD [30] and Adam [30, 31] in identifying
tomato leaf diseases, combining with the pretrained net-
work AlexNet, GoogLeNet, and ResNet, respectively. In this
experiment, the hyperparameters were set as follows for each
network: the batch size was set to 32, the initial learning rate
was set to 0.001 and dropped by a factor of 0.5 every 2 epochs,
and the max epoch was set to 5; i.e., the number of iterations
is 6240. So far as SGD optimization method, the momentum
was set to 0.9. For Adam, the gradient decay rate "1 was set to
0.9, the squared gradient decay rate "2 was set to 0.999, and

the denominator oset # was set to 10−8 [31]. �e accuracy
of dierent networks is displayed in Table 3. In addition, we
choose the better results in each deep neural network to show
the training loss against number of iterations during the 	ne-
tuning process (See Figure 6). �e words inside parenthesis
indicate the corresponding optimization method.

In Table 3, the ResNet with SGD optimization method
gets the highest test accuracy 96.51%. In identifying tomato
leaf diseases, the performance of Adam optimization method
is inferior to the SGD optimization method, especially in
combining with AlexNet. In the following paper, AlexNet
(SGD), GoogLeNet (SGD), and ResNet (SGD) are referred to
as AlexNet, GoogLeNet, and ResNet, respectively.

As it can be seen in Figure 6, the training loss of ResNet
drops rapidly in the earlier iterations and tends to stable a�er
3000 iterations. Consistent with Table 3, the performance of
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Table 3: Model recognition accuracy.

Model Accuracy

AlexNet (SGD) 95.83%

AlexNet (Adam) 13.86%

GoogLeNet (SGD) 95.66%

GoogLeNet (Adam) 94.06%

ResNet (SGD) 96.51%

ResNet (Adam) 94.39%

AlexNet and GoogLeNet is similar and both inferior to the
ResNet.

4.2. Experiments on Batch Size and Number of Iterations.
From the experiment on optimization methods, the ResNet
obtains the highest classi	cation accuracy. Next, we evaluated
the eects of batch size and the number of iterations on the
performance of the ResNet. �e batch size was set to 16, 32,
and 64, respectively. Meanwhile, the number of iterations was
set to 2496, 4992, and 9984. �e classi	cation accuracy of
dierent training scenarios is given in Table 4. At the same
time, the classi	cation accuracy of each label's representative
leaf disease category (See Table 1) is given. In this experiment,
the initial learning rate was set to 0.001 and dropped by a
factor of 0.5 every 2496 iterations.

In Table 4, the best overall classi	cation accuracy 97.19%
is got by the ResNet combining with batch size 16 and

T
ra

in
in

g
 L

o
ss

Number of Iterations

AlexNet

GoogLeNet

ResNet

3

2.5

2

1.5

1

0.5

0
0 1000 2000 3000 4000 5000 6000

Figure 6: �e training loss during the 	ne-tuning process.

iterations 4992. As shown in Table 4, whether increasing
the number of iterations or batch size, the performance of
corresponding models has not been improved signi	cantly
in identifying tomato leaf disease. A small batch size with
a medium number of iterations is quite eective in this
work. Moreover, a larger batch size and number of iterations
increases the training duration. We have not tried higher or
lower values for the attempted parameters, since dierent
classi	cation task may have various suitable parameters, and
it is hard to give a certain rule in setting hyperparameters.

4.3. Experiments on Full Training and Fine-Tuning of ResNet.
�is section is designed for exploring the performance of
CNN by changing the structure of the models. In practical,
a deep CNN always owns a large size which means a large
number of parameters. �us, full training of a deep CNN
requires extensive computational resources and is time-
consuming. In addition, full training of a deep CNN may
led to over	tting when the training data is limited. So we
compared the performance of the pretrained CNN through
full training and 	ne-tuning their structures.

We changed the structure of ResNet, and combination of
the best parameters from the front experiments was utilized.
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Table 4: Classi	cation accuracies with dierent parameters during 	ne-tuning of the ResNet.�e numbers inside parenthesis indicate batch
size and number of iterations.

Networks label1 label2 label3 label4 label5 label6 label7 label8 label9 overall

ResNet (16,2496) 90.91% 88.89% 100% 100% 96.88% 100% 90.28% 88.20% 97.55% 94.98%

ResNet (16,4992) 98.18% 98.77% 100% 98.62% 96.88% 100% 96.53% 88.82% 98.77% 97.19%

ResNet (16,9984) 98.18% 97.53% 100% 98.62% 96.88% 100% 97.22% 86.96% 98.77% 96.94%

ResNet (32,2496) 97.27% 95.06% 100% 97.93% 96.88% 100% 95.14% 86.34% 99.39% 96.34%

ResNet (32,4992) 97.27% 95.06% 100% 97.24% 96.88% 100% 96.53% 86.96% 99.39% 96.51%

ResNet (32,9984) 96.36% 96.30% 100% 99.31% 96.88% 100% 94.44% 88.20% 98.77% 96.60%

ResNet (64,2496) 93.64% 93.83% 100% 97.24% 96.88% 100% 94.44% 87.58% 99.39% 95.92%

ResNet (64,4992) 94.55% 95.29% 100% 96.55% 95.83% 100% 95.83% 86.96% 99.39% 95.83%

ResNet (64,9984) 95.45% 93.83% 100% 97.93% 96.88% 100% 94.44% 87.58% 99.39% 96.17%

ResNet50 has 177 layers if the layers for each building block
and connection are calculated. In this experiment, the last
three layers of ResNet were modi	ed to a fully connected
layer (denoted as “fc”), a so�max layer, and a classi	cation
layer, and the fully connected layer owns 9 neurons. �e
structure was changed by freezing the weights of a certain
number of layers in the network by setting the learning rate
in those layers to zero. During training, the parameters of
the frozen layers are not updated. Full training and 	ne-
tuning are de	ned by the number of training layers, i.e., full
training (1-“fc”), 	ne-tuning (37-“fc”, 79-“fc”, 111-“fc”, 141-
“fc”, 163-“fc”). �e accuracy and training time of dierent
network structure are presented in Table 5. At 	rst, the batch
size and 4992 iterations were combined, the initial learning
rate was set to 0.001 and dropped by a factor of 0.1 every
2496 iterations. In order to get more convincing conclusions,
ResNet (16, 9984), which gets the second place in Table 4, was
also used to execute the experiments.

In Table 5, the accuracy and training time of dierent
network structures are presented. In two cases, i.e., the 4992
iterations and 9984 iterations of ResNet, the accuracy of the
model from the 37 layer 	ne-tuning structure are higher
than that of the full training model. In the case where the
number of iterations is 4992, the accuracy of the model from
the 79 layer 	ne-tuning structure is equal to that of the full
training model.�e 	nal column of the Table 5 represents the
training time of the corresponding network, and it is clear
that the training time of the 	ne-tuning models is greatly
lowered than the full training model. Because the gradients
of the frozen layers do not need to be computed, freezing
the weights of initial layers can speed up network training.
We observe that the moderate 	ne-tuning models (37-“fc”,
79-“fc”, 111-“fc”) always led to a performance superior or
approximately equal to the full training models. �us, we
suggest that, for practical application, the moderate 	ne-
tuning models may be a good choice. Especially for the
researcher who holds massive data, the 	ne-tuning models
may achieve good performance while saving computational
resources and time.

Moreover, the features of the 	nal fully connected layer
of ResNet (16, 4992, 37-“fc”) were examined by utilizing
the t-distributed Stochastic Neighbour Embedding (t-SNE)
algorithm (see Figure 7) [48]. 1176 test images were used to

label1 label2 label3 label4 label5

label6 label7 label8 label9

Figure 7: Two-dimensional scatter plot of high-dimensional fea-
tures generated with t-SNE.

extract the features. In Figure 7, dierent colors represent
dierent labels; the corresponding disease categories of the
labels were listed in Table 1. As shown in Figure 7, 9 dierent
color points are clearly separated, which indicates that the
features learned from the ResNet with the optimal structure
can be used to classify the tomato leaf disease precisely.

5. Conclusion

�is paper concentrates on identifying tomato leaf disease
using deep convolutional neural networks by transfer learn-
ing. �e utilized networks are based on the pretrained deep
learning models of AlexNet, GoogLeNet, and ResNet. First
we compared the relative performance of these networks
by using SGD and Adam optimization method, revealing
that the ResNet with SGD optimization method obtains
the highest result with the best accuracy, 96.51%. �en,
the performance evaluation of batch size and number of
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Table 5: Accuracies and training time in dierent network structures.�e values inside parenthesis denote batch size, number of iterations,
and training layers.

Network topology Accuracy Time (min:sec)

ResNet (16, 4992, 1-“fc”) 96.43% 59min 30sec

ResNet (16, 4992, 37-“fc”) 97.28% 44min 13sec

ResNet (16, 4992, 79-“fc”) 96.43% 37min 27sec

ResNet (16, 4992, 111-“fc”) 95.75% 30min 6sec

ResNet (16, 4992, 141-“fc”) 95.32% 24min 15sec

ResNet (16, 4992, 163-“fc”) 92.69% 19min 31sec

ResNet (16, 9984, 1-“fc”) 96.94% 118min 32sec

ResNet (16, 9984, 37-“fc”) 97.02% 92min 53sec

ResNet (16, 9984, 79-“fc”) 96.77% 72min 23sec

ResNet (16, 9984, 111-“fc”) 96.26% 58min 40sec

ResNet (16, 9984, 141-“fc”) 95.75% 47min 22sec

ResNet (16, 9984, 163-“fc”) 93.96% 39min 32sec

iterations aecting the transfer learning of the ResNet was
conducted. A small batch size of 16 combining a moderate
number of iterations of 4992 is the optimal choice in this
work. Our 	ndings suggest that, for a particular task, neither
large batch size nor large number of iterations may improve
the accuracy of the target model.�e setting of batch size and
number of iterations depends on your data set and the utilized
network. Next, the best combined model was used to 	ne-
tune the structure. Fine-tuning ResNet layers from 37 to “fc”
obtained the highest accuracy 97.28% in identifying tomato
leaf disease. Based on the amount of available data, layer-wise
	ne-tuning may provide a practical way to achieve the best
performance of the application at hand. We believe that the
results obtained in this work will bring some inspiration to
other similar visual recognition problems, and the practical
study of this work can be easily extended to other plant leaf
disease identi	cation problems.
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