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Can dispersion modeling of air pollution be improved by
land-use regression? An example from Stockholm, Sweden
Michal Korek1, Christer Johansson2,3, Nina Svensson2, Tomas Lind1,4, Rob Beelen5,6, Gerard Hoek6, Göran Pershagen1,4 and
Tom Bellander1,4

Both dispersion modeling (DM) and land-use regression modeling (LUR) are often used for assessment of long-term air pollution
exposure in epidemiological studies, but seldom in combination. We developed a hybrid DM–LUR model using 93 biweekly
observations of NOx at 31 sites in greater Stockholm (Sweden). The DM was based on spatially resolved topographic, physiographic
and emission data, and hourly meteorological data from a diagnostic wind model. Other data were from land use, meteorology and
routine monitoring of NOx. We built a linear regression model for NOx, using a stepwise forward selection of covariates. The
resulting model predicted observed NOx (R

2 = 0.89) better than the DM without covariates (R2 = 0.68, P-interaction o0.001) and
with minimal apparent bias. The model included (in descending order of importance) DM, traffic intensity on the nearest street,
population (number of inhabitants) within 100 m radius, global radiation (direct sunlight plus diffuse or scattered light) and urban
contribution to NOx levels (routine urban NOx, less routine rural NOx). Our results indicate that there is a potential for improving
estimates of air pollutant concentrations based on DM, by incorporating further spatial characteristics of the immediate
surroundings, possibly accounting for imperfections in the emission data.
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INTRODUCTION
The number of studies on the relation between both long- and
short-term air pollution exposure from road traffic and various
adverse health effects continues to grow.1,2 Over time, develop-
ments in computer technology and exposure modeling have
advanced modern exposure assessment from the use of large
spatial scale exposure estimates based on a few continuous
monitoring sites3 to exposure estimates on much finer "local"
scales, describing intra-urban, cross-sectional,4 as well as tempo-
rally resolved exposure variation.5,6 The need for better modeling
techniques is underlined by documented large intra-urban
variations found in monitoring studies,7 and adequate exposure
assessment is a crucial part of environmental epidemiology with
direct influence on study validity.8

Meteorological dispersion modeling (DM) and land-use regres-
sion modeling (LUR) are alternative methods describing small
scale variations in air pollution levels, and both have been
documented to estimate urban outdoor concentrations of NO2

and NOx well.9 DM’s calculate the geographic distribution of
air pollutants by combining the data on emission (point, line and
area sources), the geophysical properties of the study area
and meteorological conditions. LUR is a multiple linear regress-
ion technique using spatially dispersed monitoring and land-
use data. In contrast to LUR, the DM can calculate concentra-
tions at assigned locations at any time scale by adjusting for the
interacting spatiotemporal effects of sources and meteorology.

It has been shown that LUR modeling may be enhanced by the
use of time-varying traffic data and meteorological data such as
temperature, relative humidity and wind data.10–16 These studies,
however, did not explore the effect of other meteorological
factors such as mixing height. At present, the benefits of a hybrid
DM–LUR model compared with DM and LUR separately have been
little investigated in a metropolitan setting. In addition, the
potential to use LUR to investigate areas of improvement in DM
has not been explored.
The aim of this study is to develop a hybrid spatiotemporal

model for outdoor NOx levels in a large urban area, using NOx

estimates from DM as well as land-use variables, meteorology and
fixed monitoring data while adjusting for street canyon effects. We
evaluated whether the hybrid model predicted better than either
DM or LUR modeling developed separately, and could be used to
identify potential improvement of both dispersion and LUR
modeling.

MATERIALS AND METHODS
Dispersion Models
Two different dispersion models have been applied to the greater
Stockholm area (35 by 35km). Both used a detailed emission inventory
for traffic sources, with annually updated traffic flows reported by the
municipalities. This is a local road network database covering 90% of all the
roads in Stockholm County, including information on traffic intensities
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for every road segment 4500 vehicles/24 h averaged over 1 year.
The proportion of heavy traffic (vehicles ⩾ 3.5 tonnes) per road segment
was estimated by the municipalities to be 4–10% of the total traffic
depending on the road type, although up to 90% at some bus routes. The
road network was digitalized by each municipality (n= 26) separately using
traffic counts for some streets and estimations on the remaining streets.
Emission factors were calculated for street segments as the emission per
vehicle and distance (NOx/vkm), based on the HBEFA model (http://www.
hbefa.net/e/index.html), considering several vehicle-type-related factors
such as the age, type and weight of the vehicle, but also the speed limits
and the driving conditions. The number of vehicles at a street segment was
adjusted for road-type-specific diurnal, weekly and monthly variations of
traffic. These patterns were derived from actual traffic measurements on
different typical road types.17 The inventory also included other sources,17

although the dominant source of NOx in Stockholm County was traffic,18

for which modeling was carried out in this study. To the estimates of both
DMs, corresponding 2-week averages of rural NOx levels from a routine
monitoring station were added. Both models were used to calculate
1-hour-average NOx concentrations at monitoring sites used for the
Stockholm County part of the multinational project "European Study of
Cohorts for Air Pollution Effects" and then averaged to correspond to the
actual 2-week samplings at each site.
A multisource Gaussian dispersion model was used to calculate the

urban background concentrations and for non-canyon traffic sites at a
500 m spatial resolution. The model is part of the SIMAIR modeling system
used by the Swedish Meteorological and Hydrological Institute (Norrköp-
ing, Sweden http//airviro.smhi.se). Meteorological data were obtained from
a 50 m high mast in a suburban district (Högdalen) in southern Stockholm,
and these data were input to a diagnostic wind model to calculate a wind
field over the whole model domain. Within the model domain, buildings,
park trees and so on are parameterized as a rough surface that increases
turbulence. It should be noted that the modeled values represent the
average pollutant levels in a 500 m by 500 m area, whereas the monitored
values are single points within these areas (individual streets or building
effects are not resolved by this model).
The Gaussian model has been used extensively in epidemiological

studies, describing long-term exposure concentrations on address level in
Stockholm County.19–21 Furthermore, the model estimates have shown a
high correlation with monitored annual exposure R2 = 0.74–0.80 over
several years (1998–2005).22

To describe the NOx concentrations at street canyon traffic sites, the
SIMAIR road model was used.23 The domain of the SIMAIR road model
covered greater Stockholm, except the municipalities of Sundbyberg and
Solna. This model calculates concentrations along individual streets with
buildings on both sides of the street. Meteorological data were supplied to
the SIMAIR road model from a system called MESAN (MESoscale Analysis),
which makes use of all available measurement stations, and radar and
satellites combined with a background field forecast providing near-
real-time weather now-casting in 11 × 11 km meter grids.23–25 A brief
description of the Mesan system may be found in the Supplementary
Material.

Spatially Distributed Measurements
The spatially distributed observations of NOx were from the European
Study of Cohorts for Air Pollution Effects project (ESCAPE). Within the
ESCAPE project, a coordinated campaign for the monitoring of study-area-
specific levels of NOx and other pollutants was organized in several
European countries. On the basis of these measurements, area-specific LUR
models were developed. The details of the measurements have been
described elsewhere.7 Briefly, the monitoring campaign in Stockholm
County was conducted from 1 December 2008 until 11 July 2009. The
spatial variation of NOx was measured at 40 monitoring sites distributed to
capture traffic-related exposure scenarios at home addresses in Stockholm
County. Site-specific measurements were obtained for three biweekly
periods. The choice of periods aimed to cover seasonal variations, and up
to 10 sites were monitored simultaneously. NOx was measured using
Ogawa diffusion badges.7 Geographical coordinates were attributed to
each monitoring site by Lantmäteriet, the Swedish mapping, cadastral and
land registration authority in charge of mapping property boundaries in
Sweden.
For the purpose of this study, the following categories and inclusion

criteria for the ESCAPE monitoring sites were successively applied:

1. The site should be within the spatial domains of our DM models. Six
sites were situated outside the area of the models. One of these is a
rural background site (at Norr Malma, ca. 70 km north of Stockholm)
and was used as an estimate of the non-urban source contribution to
the modeled concentrations.

2. To avoid a strong influence from single sites with very high traffic
volumes, only sites with o100,000 vehicles/24 h on the nearest street
were included (one site was excluded).

3. Traffic sites should be located close to the road (⩽15 m), and if situated
on a building, ⩽ 10 m above the street height. The facade should also
face a street with ⩾ 10,000 vehicles/24 h.

a. Street canyon sites were defined as having buildings on both sides of
the street (one street canyon site was outside the domain of the SIMAIR
model and therefore excluded).

The final data set thus included 31 sites: 11 traffic, 16 urban and 4 rural
sites. Each monitored 2-week average was considered as one observation,
and given the three monitoring periods, in total, 93 observations
were used.
The NOx levels at street canyon traffic sites were calculated by the

SIMAIR model. For all other sites, the Gaussian dispersion model was used.
We additionally collected continuous NOx data from three stationary
routine monitoring stations (STATMON) representing the regional back-
ground (Norr Malma, located in a rural area ~ 70 km north of Stockholm
and 1.4 km from the nearest major road), urban background (Torkel
Knutssonsgatan, located on a rooftop 25 m above street level in central
Stockholm) and traffic (Hornsgatan, located in a canyon street with
430,000 vehicles/24 h). The geographic positions of monitors and
directions of nearby streets can be found in Supplementary Figure 1.
Rose plots indicating the distribution of wind direction in the Stockholm
region can be found elsewhere.26 The measurements were provided by the
Environment and Health Administration of Stockholm (www.slb.nu) and
covered the same dates as the monitor-specific 2-week periods. Each
biweekly mean included observations from at least 10 days.
The NOx concentrations observed at Norr Malma (regional background)

were added to the calculated concentrations from DMs as the models
only considered the contributions from the urban traffic sources. A
14-day period "delta urban NOx" predictor was calculated as the difference
between Norr Malma (regional) and Torkel Knutsson (urban), and a "delta
traffic NOx" predictor was calculated as the difference between Torkel
Knutsson (urban) and Hornsgatan (traffic). The last two variables were
offered as predictors in LUR modeling. Descriptive data for the stationary
monitoring and STAT predictors can be found in Supplementary Table 1.

Additional Spatial and Temporal Data
The extraction and definition of the land-use data have been described
elsewhere.27 Briefly, based on coordinates for the study-specific monitor-
ing sites, predictor data were collected in a geographic information system
(ArcMap 9). Predictors based on land-use and population data were
created in the form of buffer zones around monitoring sites, whereas
predictors based on traffic data were also based on distance from the site
to the road.
The traffic variables for Stockholm County were primarily based on the

road network provided by the Eastern Sweden Air Quality Management
Association (www.slb.nu/lvf), that is, the same database used for the DM.
For LUR, predictors were calculated as the inverse distance and the inverse
distance squared to nearest road and nearest major road (m− 1, m− 2). The
total length of roads (m) based on all roads and major roads only, were
calculated in buffers of 25, 50, 100, 300, 500 and 1000 m radii. A major road
was defined as a road with 45000 vehicles/24 h. The buffer sizes were
selected as to describe near sources and sources of urban background
levels.28 For the same buffer sizes, the "traffic load" on the nearest roads
was calculated as the sum of the lengths of road segments multiplied by
the traffic intensity attributed to each segment. The same calculations
were then carried out using the heavy traffic intensities only.
To adjust for missing roads, particularly for rural locations, we comple-

mented the road network with the Euro streets digital road network
version 3.1. This road network is based on the TeleAtlas MultiNet TM from
the year 2008. The MultiNet TM road network covers roads in Stockholm
County with traffic intensities of o500 vehicles/24 h, but lacks information
on traffic intensity. The additional road information allowed us to better
estimate the distance from all monitors to the nearest road. Furthermore,
fixed values of 500 vehicles/24 h and 0 heavy vehicles/24 h were attributed
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to these roads. These values were only used for predictors based on the
distance to the road.
Land-use data were extracted from the CORINE (Coordination and

Information on the Environmental program) land cover data 2000
(CLC2000), governed by the European Environmental Agency. The data
were originally based on raster images from the Landsat-7 satellite,
although used in vector form in this study. The minimum mapping unit
(size of area vector) was 25 ha, corresponding example to a 500× 500 m
square. Final predictor variables covered urban green, seminatural areas,
forest areas, high-density residential land, low-density residential land,
industry and ports. Each predictor was based on the amount of surface
area in buffer zones with radii of 100, 300, 500, 1000 and 5000 m.
Population was modeled as the number of individuals within the buffer
zones using a 100× 100 m grid map with counts of citizens attached to
each grid for the year 2005. The amount of surface water within buffer
zones was registered using a terrain map from the Swedish mapping,
cadastral and land registration authority for the year 2005 with an accuracy
of +/− 10 m.
Meteorological predictors (MET) used in the LUR modeling included

temperature, relative humidity, global radiation and wind vectors. Wind
vectors were computed as eastern and northern wind direction
components together, with a separate variable for wind speed. All
meteorological measurements were obtained at a stationary monitoring
station positioned at rooftop level in central Stockholm (Torkel Knutssons-
gatan). The MET predictors represented 2-week averages covering the
same periods as the monitored NOx concentrations. A descriptive table
of the MET predictors can be found in the (Supplementary Table 1 and
Table 2).

Regression Model Development
Using multiple linear regression, two LUR models were developed, a
standard LUR model — "LUR" based on the above mentioned spatially
land-use variables and a LUR model denoted "LUR+MET+STATMON", also
including the temporally defined MET and STATMON data. For both
models, first a univariate ordinary least squares regression model was
developed for each predictor. The model best explaining the observed
variance (R2) was kept. To this model, all the remaining predictors were
added separately using a repeated stepwise forward regression method,
and in each turn, the predictor adding the most additional explained
variance was included. Predictors entering the model had to add at least
1% explained variance while having a coefficient with the correct
predefined direction of effect. Furthermore, the new predictor should
not influence the direction of effect of other predictors.29 We allowed for
more than one buffer size of the same predictor to enter the model.
Whenever two of the same predictors were preserved, the larger buffer
was rewritten into a "doughnut- shaped" buffer form in order to exclude
the inner buffer area. From the final model, predictors with a P-value 40.1
(using two-tailed significance testing) were removed.
The hybrid model (DM+LUR+MET+STATMON) was based on the same

predictor data and modeling technique as the LUR+MET+STATMON
model, with the addition of DM exposure estimates offered as a potential
predictor. As an intermediate step, a DM+MET+STATMON model was
developed, similar to the above LUR+MET+STATMON model. For all
models, the residuals vs fit plots indicated a random distribution of errors.
There was however a general weak trend toward larger variance at higher-
fitted values. The variance in the regression models was estimated with a
cluster robust method30 to avoid the underestimation of variance because
of repeated sampling. Potential multicolinearity between the predictors in
the final models was investigated using the variance inflation factor test
(VIF), however, all variables had a VIF o3 and were therefore kept in the
models.
The performance of all models was assessed and compared by the

model-specific proportion of explained variability (R2), the root mean
square error (RMSE) and the best visual fit. To estimate the model
robustness, leave-one-out cross-validation (LOOCV) was applied on all the
models.7 Differences in model performance were also tested for statistical
significance using the Wald test. To assess the degree of association
between monitored NOx and predictors separately in the final hybrid
model, partial R2 were calculated.

RESULTS
During a 12-month period including the monitoring campaign
(Figure 1), the annual NOx level derived from stationary

monitoring (biweekly standard deviation) in the rural background
was 3.0, (SD 1.0) μg/m3, whereas the delta urban (rooftop less
rural) was 12.0, (SD 5.0) μg/m3 and the delta street (street-less
rooftop) was 100.0, (SD 21.0) μg/m3 (Figure 1). During our
monitoring campaign, performed at a total of 93 2-week periods,
the corresponding levels were 3.3 (SD 1.36) μg/m3 for rural, 12.3
(4.7) μg/m3 for urban-less rural and 102.4 (15.4) μg/m3 for street-
less urban.
Comparing the spatially distributed measured NOx values with

the DM shows that DM performed well with an R2 of 0.68, a RMSE
of 12 μg/m3 and a regression slope of 1.14 (Table 1). At NOx levels
below about 30 μg/m3, there was a tendency of overestimation,
and for higher levels, a tendency of underestimation. The basic
LUR model (without any temporal variables) explained 58% of the
variability within the measured NOx (R

2 = 0.58, RMSE 13.9 μg/m3)
(Table 1). Similar to the DM, low levels were overestimated
and high levels were underestimated (Figure 2). The predictors
included in this model were population within a radius of 300 m
and the total number of vehicles per 24 h at the nearest street
(Table 1).
Both DM and LUR explained measured values significantly

better when also temporal variables were included. In the DM
+MET+STATMON model, the DM estimates were complemented
with the meteorological predictor global radiation and delta urban
NOx (urban–rural). Global radiation levels had a clear annual
pattern with peak levels in the end of April until September
(Figure 1). The inclusion of these predictors increased model
performance (R2 = 0.82, RMSE = 9.14 (Table 1, Figure 3)). The LUR
+MET+STATMON model included similar variables: the delta urban
NOx (urban–rural), traffic intensity on the nearest street, popula-
tion within a radius of 100 m and global radiation. The model
performance was also similar to the DM+MET+STATMON model,
(R2 = 0.80, RMSE = 9.70, (Table 1, Figure 3)).
We found the hybrid model (DM+LUR+MET+STATMON) to

perform better than any other model. The model captured 89%
of the variance in the monitored concentrations (R2 = 0.89) and
had the lowest model RMSE value (7.14). Furthermore, the predic-
ted NOx estimates seemed more accurate across the whole
exposure range (Table 1, Figure 3). The Wald test indicated that
the difference in performance by the hybrid model compared with
the DM+MET+STATMON and LUR+MET+STATMON was significant
(Po0.01). The hybrid model included the following predictors: the
DM estimates, traffic intensity on the nearest street, population
within 100 m, global radiation and delta urban NOx (urban–rural)
background (Table 1). Except for the DM estimate, traffic intensity
on the nearest street was found to be the most correlated predic-
tor according to the partial R2 (Supplementary Table 3).
The VIF test for multicolinearity did not indicate any strong

correlation (VIF43) between predictors in any of the models,
although a strong correlation could have led to unreliable regress-
ion coefficients. In the LOOCV analysis, the models explained
between 2–3% less variance, indicating good model robustness
(Table 1).

DISCUSSION
We demonstrated the possibility to improve DM using a LUR
framework and to evaluate areas of improvement in the DM. As
expected, we found the final hybrid model to perform better than
the DM and LUR models separately.
A similar result was found in another study,15 where the

performance of a LUR–DM hybrid was compared with LUR and
DM models at monitoring sites, describing biweekly near-road
exposure gradients. The performance of the best hybrid model
for NOx in that study was somewhat lower compared with our
model (R2 = 0.71), but some differences between the hybrid
models could be found. The dispersion model output was
retrieved from a simplified version of the Caline 3 model and
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explained 26% of the variance in the data (compared with 68% in
our study). Furthermore, the monitors were positioned as to
exclude infrastructural influences on meteorology by high-rise
buildings and street canyons, therefore omitting exposure
scenarios for living conditions common to many people in the
city centers and similar areas. Finally, in our model, LUR predictors
based on meteorological data and stationary monitoring were also
included. A similar hybrid modeling approach that included
meteorological LUR data was performed in Boston.16 LUR model-
ing was complemented with traffic-derived NO2 levels calculated
by a version of the Caline 3 model. The authors reported that the
DM component improved the LUR models by 3–10% (cross-
validated R2). The modeling differed to our approach by:
not adjusting for street canyon effects, focusing on the winter
season, assigning one fleet-wide-specific NOX emission factor for
all vehicle and road types, and not including global radiation as a
LUR predictor. Most of the variance (spatial and temporal) in the
monitored data was covered by the DM, but the model had a
tendency to overestimate the lowest NOx levels while under-
estimating high concentrations. A similar performance was found
for the Dutch DM tool "CAR" when used to model annual small
scale variations in NO2 in the city of Amsterdam.31 This model
mostly underestimated the local traffic contribution and displayed
the least accuracy for the highest concentrations. This was in part

explained by the authors as a difficulty to model complicated
traffic situations, such as, for example, often congested heavily
trafficked roads. Several earlier studies have reported that real-
world emissions are underestimated particularly for some types of
vehicles.32 As clearly seen from the graph in Figure 3, our hybrid
model performed well at all concentration ranges, possibly owing
to the incorporation of very local land-use characteristics.
The addition of global radiation was found to be important.

Global radiation is a measure of the incoming direct sunlight
as well as diffuse and scattered light and is inversely related to
the ground levels of air pollutants emitted below the boundary
layer.33 In an earlier validation of the Gaussian dispersion models
used here for urban sites (and open space traffic sites),
discrepancies between monitored and modeled daily averages
of NOx were proposed to relate to deficiencies in the model’s
parameterization of mixing processes in the planetary boundary
layer. For example, if the mixing is underestimated in the
afternoon, the dilution of the emissions will be underestimated,
resulting in too high estimates of pollutant concentration.34 The
model with global radiation seemed to provide a better fit at low
levels, but there were not observations enough to formally test
whether global radiation is less relevant at higher concentrations,
as for example, in highly trafficked street canyons. The perfor-
mance of the LUR model (R2 = 0.58) compared with the DM

Figure 1. Mean levels of daily NOx observed at a rural, urban and traffic site, and the daily mean global radiation during the years of the
monitoring campaign in Stockholm County.

Table 1. Performance evaluation (coefficient of determination/root means square error and leave-one-out cross-validation) and model structures of
the DM, LUR and hybrid model, explaining observed levels of NOx.

Multivariate linear regression LOOCV

Model Intercept+(slope(standard error) × predictors) R2a RMSEb R2a RMSEb

DM 9.67+(1.14(0.13) ×DM) 0.68 12.05 0.66 12.4
LUR 10.132+(0.004(0.007) ×population 300 m)+(0.001(0.001) × traffic in the nearest street) 0.58 13.90 0.55 14.2
DM+MET+STATMON 9.29+(1.10(0.1) ×DM)+(−0.059(0.01) × global radiation)+(0.70(0.3) × delta urban NOx(urban–rural)) 0.82 9.14 0.80 9.5
LUR+MET+STATMON 1.00+(1.40(0.5) × delta urban NOx(urban–rural))+(0.001(0.0001) × traffic in the nearest street)+(0.02

(0.006) ×population 100 m)+(−0.046(0.02) × global radiation)
0.80 9.7 0.77 10.1

Hybrid 2.92+(0.67(0.09) ×DM)+(−0.054(0.007) × global radiation)+(0.0008(0.0001) × traffic in the nearest
street)+(0.02(0.004) × population 100 m)+(0.99(0.3) × delta urban NOx(urban–rural)

0.89 7.15 0.87 7.6

Abbreviations: DM, dispersion-modeled NOx estimates; LOOCV, leave-one-out cross-validation; LUR, land-use regression data, final models included
population, number of individuals within buffers with specified radii and traffic intensity; MET, meteorological predictors, final models included levels of global
radiation from continuous monitoring; RMSE, root mean square error; STATMON, NOx levels from continuous monitoring, final models included delta urban
NOx (urban–rural).

aCoefficient of determination. bRoot mean square error.
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(R2 = 68) was good considering that only spatially related
predictors were used to explain a 2-week average. However, we
demonstrated that the model could be improved substantially by
also including time-varying meteorological and routine monitor-
ing data. In earlier LUR models, meteorological components such
as temperature, relative humidity, wind speed, wind vectors and
cloud cover were used on different time scales, but not global
radiation.10–14,35

The traffic- and population-based LUR predictors used in our
hybrid model are commonly used in LUR modeling.36 The traffic
predictor "traffic intensity on the nearest street" may reflect the
difficulties to account for the influence of very near traffic lack or
indicate an underprediction of vehicle emissions.
The predictor "population" has been described as a marker of

air pollution variability related to the differences in urban and rural
living environments including sources of traffic and home
heating.37 In Stockholm, this may act as a marker of the amount

of traffic in the neighborhood including public transport and
commercial activities, but could perhaps also reflect other aspects
of urbanicity, as for example, street configuration and use of off-
road machinery.
Finally, a description of the temporal NOx variability on an urban

scale "delta NOx (urban–rural)" was found to contribute signifi-
cantly to the hybrid model. This may indicate that the dispersion-
modeled 2-week mean levels did not fully incorporate the
temporal changes of all NOx sources. The traffic-related NOx

contribution is estimated to be about 60% in this region,38 but the
measured urban background (less rural background) was only
weakly correlated to the DM estimates that included traffic-related
NOx sources and the rural contribution (R2 = 0.10, data not shown).
Therefore, it is possible that the time variations in urban
background (less rural background) represent influence of non-
traffic NOx sources as energy production, off-road machinery and
shipping. Our study indicates that future improvements in the DM

Figure 2. Dispersion and land-use regression-modeled predictions of NOx concentrations related to 93 biweekly monitored NOx observations
by univariate regression. DM, Airviro Gauss and SIMAIR road dispersion model; LUR, land-use regression model.

Figure 3. Comparison of model-specific NOx predictions from three modeling scenarios; 1, dispersion modeling with additional information
on global radiation, 2, land-use regression modeling including global radiation and 3, a hybrid model including dispersion modeling, global
radiation and LUR components. DM, Airviro Gauss and SIMAIR road dispersion model; LUR, land-use regression model; MET, meterological
variables, (global radiation); STATMON, stationary monitoring, delta urban NOx (urban–rural).
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could decrease exposure misclassification both for long- and
short-term exposure assessment.
This type of hybrid model development needs DM, routine

monitoring, land-use data and a campaign of spatially distributed
measurements, and is therefore, data- and computation-intense.
Ideally, spatial models trained on observed air pollution data
should be evaluated with completely separate sets of observed air
pollution measurement data. We did not have monitoring data for
this kind of comparison and therefore used the LOOCV technique.
The LOOCV method has been suggested to give overly optimistic
R2 statistics compared with validations on external data sets for
the same models, but the gap between validation and LOOCV R2

has been reported to be modest, when using 80 or more
observations.39 One mechanism that may contribute to an inflated
R2 is when a good model fit is obtained by including many
predictors in relation to the number of observations for which
variance should be explained by the model. It has been suggested
that linear regression models may be free from such overfitting
when the number of observations is 2–10 times the number of
predictors, depending of type of predictor.40–42 Our models were
developed on 93 observations from 31 different sites, during 12
different time periods (up to 10 sites could be monitored in
parallel). In the final model, three spatial and three temporal
predictors (DM counted in both categories) were included, while
there might be some overfitting for the temporal variables, but
probably not for the spatial variables. Some of the limitations of
our study could be addressed in future work, for example, by
using a denser monitoring to capture the differences in air
pollution levels at especially traffic sites, considering also
ventilation effects due to street orientation. Furthermore, as our
and other models indicate the largest uncertainty exist in the tails
of the modeled concentration range, an oversampling of extreme
sites might prove helpful. A larger variation in sites would also
provide the possibility to better define when to use DMs of
different resolution across the study domain. Future studies might
also gain from monitoring campaigns covering more of the
temporal variations within one or between even several years. The
quality of data is always paramount and more detailed data on
traffic and heavy traffic intensities on streets with o500 vehicles/
24 h could have improved our modeling. However, these streets
are typically within residential areas, which is why we decided to
attribute zero heavy traffic. Future studies could evaluate the
uncertainties in the HBFA database by using measurements in
controlled environments such as tunnels.

CONCLUSIONS
A hybrid spatiotemporal model, combining DM, local land use,
and centrally monitored pollutants and meteorology, explained
variation of 2-week average NOx concentrations within a metro-
politan area significantly better than DM alone. This indicates that
there is a potential for improving long-term estimates of air
pollutant concentrations based on DM by incorporating further
spatial characteristics of the immediate surroundings. In addition,
our results suggest that the inclusion of data from routine air
pollution monitoring and meteorology may improve both DM and
LUR in spatially resolved short-term assessment.
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