
COMMUNICATIONS OF THE ACM October 2006/Vol. 49, No. 10 41

lobal sourcing and distributed software development have
become a common business reality. Moreover, the current
dynamic business environment requires organizations to
develop and evolve software systems at Internet speed. As a
consequence of these major trends, software development
organizations have been striving to blend agile software
development methods like Extreme Programming
and distributed development to reap the benefits of both.
However, agile and distributed development approaches
differ significantly in their key tenets. For example, while
agile methods mainly rely on informal processes to facili-

tate coordination, distributed software development typically relies on formal
mechanisms.

CAN DISTRIBUTED SOFTWARE
DEVELOPMENT BE AGILE?

G

By BALASUBRAMANIAM RAMESH, LAN CAO, KANNAN MOHAN,
and PENG XU

Three organizations studied here suggest the answer is “yes,” when the
unique characteristics of both environments are successfully blended.

42 October 2006/Vol. 49, No. 10 COMMUNICATIONS OF THE ACM

Can such differences be recon-
ciled to support agile distributed
software development? What are
the challenges that arise from
blending agility with distributed
development? How can these chal-
lenges be addressed? We investi-
gated these questions by studying
three organizations that have
adapted their practices to support
such development.

The table here summarizes the
challenges to distributed develop-
ment and identifies how adopting
an agile approach creates a new set
of challenges to agile distributed
development.

CHALLENGES IN AGILE DISTRIBUTED

DEVELOPMENT

Communication need vs. communication impedance.
Distributed software development relies on formal
mechanisms such as detailed architectural design
and plans to address impediments to team commu-
nication that result from geographical separation.
As agile development relies more on informal inter-
actions than explicit documentation, it poses a real
challenge in a distributed environment. How can
we achieve a balance in formality of communica-
tion in agile distributed environments?

Fixed vs. evolving quality requirements. Due to the
limited ability to control activities of remotely
located teams, distributed development often relies
on fixed, upfront commitments on quality require-
ments. In contrast, agile development relies on ongo-
ing negotiations between the developer and the
customer for determining the acceptable levels of
quality at various stages of development. How can we
achieve a balance between the fixed and evolving
quality requirements?

People- vs. process-oriented control. In distributed
development environments, control is often achieved
by establishing formal processes. Agile environments,
on the other hand, are more people-oriented and
control is established through informal processes.
What would be the appropriate balance between
people- and process-oriented control in agile distrib-
uted development?

Formal vs. informal agreement. Contracts in agile
environments are loosely and informally defined. In
contrast, distributed development relies on explicit
targets, milestones, and detailed specification of
requirements. What is the appropriate level of for-
mality in developing contractual agreements in agile

distributed development?
Lack of team cohesion. In distributed development,

participants at different sites are less likely to perceive
themselves as part of the same team when compared
to co-located participants. Lack of cohesiveness and
shared view of goals are problems in such an envi-
ronment. These problems are even more pronounced
in agile development, which emphasizes constant
cooperation on all aspects of the project. How can
team cohesion be improved given the constraints of
a distributed environment?

Project teams involved in agile distributed devel-
opment must adopt practices that address these ques-
tions. We present some successful practices observed
in three organizations we refer to here as Telco,
Manco, and Consult (see the sidebar for details on
how the multi-site case study was conducted). These
practices leverage the unique characteristics of agile
and distributed development to form a successful
blend.

THE BALANCING ACT: PRACTICES TO ACHIEVE

DISTRIBUTION AND AGILITY

The practices that may be characterized as agile but
disciplined have evolved in the three organizations
after repeated experimentation. These practices are
in the spirit of “lightweight” methods, but have
been adapted to meet the competing demands of
distributed development as well. We have classified
these practices into five groups.

1. Continuously adjust the process. Instead of
strictly following the agile development practices as
commonly defined, the companies continuously
tweak them to fit the evolving needs of their projects.

Planning iterations to finalize requirements and
develop designs. Skeptical of agile development that
does not include adequate upfront design, both
Manco and Consult devoted the first two or three
iterations of a project to finalize critical require-
ments and develop a high-level architecture. Con-

Ramesh table 1 (10/06)

Challenges in
Distributed

Development [2,3,5]

New Challenges
in Agile Distributed

Development

• Difficult to initiate communication
• Misunderstanding/miscommunication
• Dramatically decreased frequency
 of communication
• Increased communication cost—
 time, money, and staff
• Time difference

• Difficult to control process
 and quality across distributed
 teams

• Lack of trust between distributed
 team members
• Lack of team morale

Communication need
vs. communication
impedance

Fixed vs. evolving quality
requirements

People vs. process
oriented control

Formal vs. informal
agreement

Lack of team cohesion

Characteristics
of Agile

Development [1,4]

• Lack of formal
 communication
• Increased demand for
 informal communication

• Lightweight process
• Ongoing negotiation
• Reliance on skilled
 people

• Cohesive team
• Trust built progressively
• Short commitment

Communication
challenges

Lack of control

Lack of trust

Impact of agility
on challenges to

distributed
development.

sult used a SCRUM-like process during two upfront
design cycles for this purpose.

Documenting requirements at different levels of for-
mality. Telco and Manco altered their requirements
analysis process significantly for agile distributed
development. Short use cases and user stories were
employed instead of detailed use case specifications.
Also, product managers and customer representatives
were encouraged to clarify requirements by sketching
out acceptance tests. At Telco, the offshore team felt
that such minimally documented requirements were
more helpful than just informal communication.

2. Facilitate knowledge sharing. Knowledge shar-
ing between and within teams was supported to
enhance developers’ shared understanding of the
application and business domains. Processes and
tools were developed to minimize the overhead to
participants in knowledge-sharing activities.

Maintain product/process repository. Rather than
relying exclusively on informal means for project
tracking and monitoring, Manco and Telco devel-
oped a database to help teams report issues, assign
priorities, and track project status. However, in the
spirit of an agile process, only minimal documenta-
tion was created.

Focus on well-understood functionality rather than
critical new functionality. Agile methods emphasize
delivering value to the customer early in the process

and therefore often advocate the development of fea-
tures prioritized as critical by the customer. However,
in Manco, the project manager first wanted to build
an atmosphere in which both the developers and the
client representatives were acclimatized to the
processes, tools, and the application. Therefore, the
team worked on well understood functionality in the
early iterations to ease the learning curve rather than
on complex requirements even when they were prior-
itized to be more critical.

Short cycle but not time-boxed development. A com-
mon characteristic of most agile development proj-
ects is time-boxed development. Telco and Consult
realized early on that this approach, while successfully
practiced in their co-located teams, was not very suc-
cessful with distributed development. In Telco, early
iterations in three previous projects encountered dif-
ficulties because the development team did not have
sufficient understanding of the business needs of the
customers. In Consult, critical requirements identi-
fied by the clients in the first iteration were too broad
in scope to be implemented within a short iteration.
Both the organizations adopted a flexible short-cycle
approach in which two to three development cycles
were allowed to take two-to-four weeks each,
depending on the complexity of the functionality
and the setup time needed to understand the business
domain.

COMMUNICATIONS OF THE ACM October 2006/Vol. 49, No. 10 43

HOW THE STUDY WAS
CONDUCTED
We conducted detailed case studies of
agile, distributed development in three
companies (referred to here as Telco,
Manco, and Consult) that have software
development operations in India sup-
porting customers located in the U.S.
The objective was to understand the difficulties faced in managing such a development process and the
practices designed to address them.

Data collection was carried out through open-ended (semi-structured) interviewing. We interviewed a
total of 18 software developers, project managers, and customer representatives—one to three times
each—from both locations in these companies over a period of nine months. We used grounded theory methodology [6] to
analyze the data. This analysis identified five groups of practices and how they address challenges in distributed, agile devel-
opment.

Telco is a large telecommunication company that is embarking on large-scale offshore development and maintenance of
its applications. At the time of the study, the organization was completing several pilot projects aimed at identifying practices
that can be rolled out throughout the organization.

Manco is a large manufacturing company that had just finished a project in its offshore development center. The project
extended the functionality of a complex supply chain system.

Consult is a veteran in the global delivery model using offshore development. It was working with a U.S.-based client to
develop a CRM system to support a complex customer network. It had dedicated a small facility exclusively for the U.S. cus-
tomer, with the expectation of a significant long term partnership. The table here lists some of the salient characteristics of
the companies and projects studied. c

Details about the
companies and projects

studied.

Ramesh sidebar table (10/06)

Company Characteristics

Company

Typical Project Characteristics

Telco

Manco

Consult

Domain

Tele-
communications

Supply chain

CRM

Average
project

duration
(months)

6

10

7

Number
of

customer
locations

2

5

3

Application
complexity

Moderate

High

Moderate

Number of
development

sites

2

3

3

Number of
completed/ongoing

agile distributed
projects

6

4

3

Average
development

team size
(people)

16

14

15

3. Improve communication.
The companies adopted several
ways to improve the quality of
communication among the team
members.

Synchronized work hours. While
24x7 development is sometimes
claimed to be a benefit of distrib-
uted development, this was
far from reality in the three orga-
nizations. Separation by nine
time zones created serious com-
munication bottlenecks. Asyn-
chronous work was found to be
quite inconsistent with the con-
stant communication needed for
agile development. In order to
“share the pain” of synchronizing
work schedules, early morning
meetings for onshore customer
representatives and product man-
agers and late evening shifts for
offshore developers were the norm
in all the three organizations.

Informal communication but
through formal channels. There
were several incidents of miscom-
munication among the distrib-
uted teams in Manco. These were
attributed to over reliance on informal communica-
tion. To minimize this problem, one project lead was
designated as the primary point of contact for each
location. They were responsible for facilitating com-
munication across the teams. Also, the organizational
culture in Telco that values formal channels for com-
munication demanded a very similar structure. In
both organizations, informal communication among
the team members was facilitated through formal
channels.

Balanced coordination. Whereas typical agile devel-
opment teams rely on minimal coordination of the
team’s activities by project managers, in all the three
organizations, the coordination roles of project man-
agers/leads were significantly more important. In
Telco, the management maintained a formal struc-
ture of reporting and responsibility. Project leads and
champions were expected to coordinate the activities
of the offshore and onshore teams to help achieve
project goals.

Constant communication. A variety of mechanisms
were used in each organization to maintain constant
communication. At Telco, short morning meetings
were held each workday to identify issues, track proj-
ect status and invite ideas and critiques. Also, the

teams used online chat and Short Message Service
(SMS) extensively. Project leads and champions at
Consult were on call almost round-the-clock via
their Blackberries. The instant availability, while con-
sidered beneficial, also was a significant burden to
these individuals who were the designated gatekeep-
ers of communication channels. Further, at both
Telco and Manco, senior managers used videoconfer-
encing on a weekly basis to initiate new development
cycles, assess progress at the end of each cycle, and
discuss critical issues.

4. Build trust. The companies realized that trust
between teams is very essential in an agile distributed
environment because there was minimal formal con-
trol. Several practices were used to build the trust
between the teams.

Frequent visits by distributed partners. All three
companies organized regular visits by customers or
surrogates (product managers) with the development
team. Consult instituted a practice of having a small
group of analysts and developers in their customer
sites. Telco and Manco organized visits to customer
sites by developer representatives. In Manco, the
complexity of the application required many more
and longer visits than either group had anticipated.
In Telco, key customer representatives spent several
weeks in their offshore development center. In fact,
one group stayed at the development center for four
complete iterations. These visits were more intense in

44 October 2006/Vol. 49, No. 10 COMMUNICATIONS OF THE ACM

Ramesh figure (10/06)

Challenges

Communication need
vs. communication
impedance

Practices

Improve communication
• Synchronized work hours
• Informal communication but through formal channels
• Balanced coordination
• Constant communication

Facilitate knowledge sharing
• Maintain product/process repository
• Focus on well understood functionality rather than critical
 new functionality
• Short cycle but not time-boxed development

Trust but verify
• Distributed QA
• Supplement informal communication with documentation

Continuously adjust process
• Planning iterations to finalize requirements and develop
 designs
• Documenting requirements at different levels of formality

Build trust
• Frequent visits by distributed partners
• Sponsor visits
• Build cohesive team culture

People vs. process-
oriented control

Fixed vs. evolving
quality reguirements

Formal vs. informal
agreement

Lack of team cohesion

Mapping between
challenges and

practices that
address them.

the early development cycles as well as when major
changes were implemented.

Sponsor visits. Senior managers of the sponsoring
organizations also visited the development teams at
the beginning of the project to establish ground rules
and finalize contractual arrangements (in Consult),
and evaluate project progress at predetermined criti-
cal milestones (in Telco and Manco). These visits also
helped establish trust among the senior members of
the teams.

Build cohesive team culture. Telco created a cohe-
sive team culture by requiring that each team was
made up of members who had developed prior work-
ing relationships with each other and collectively pos-
sessed all the required expertise. The management
insisted on such an arrangement to minimize what
they perceived as chaos in agile approaches. Consult
adopted a similar strategy and created high-perfor-
mance teams. In all three organizations, the tremen-
dous demand for qualified developers posed a
significant challenge in retaining a cohesive team
throughout the project.

5. Trust but verify. Deviating from agile methods,
the companies introduced several practices to for-
mally verify process and product quality.

Distributed QA. The senior management of
Manco insisted that the onshore QA team be
involved in ensuring that the practices followed by
the offshore development team were of acceptable
quality. During each iteration, this QA team
reviewed the test procedures created by the offshore
development team. In Telco, the onsite technical per-
sonnel participated in design reviews to ensure that
the offsite development met their quality standards.

Supplement informal communication with docu-
mentation. In the spirit of agile development, even
Telco, which traditionally favors a formal structure,
adopted an informal atmosphere to facilitate collabo-
ration among the geographically distributed team

members. However, the management insisted on
supplementing informal communication with docu-
mentation of critical artifacts. A similar practice was
also considered necessary at Consult to formalize the
vendor-client relationship. Often many documents
were developed after the actual work was completed;
for example, requirements documents were finalized
toward the end of the development cycles rather than
at the beginning so that they represent the actually
implemented functionality rather than the initially
conceptualized requirements that invariably changed
during development.

MAPPING CHALLENGES TO PRACTICES

Each group of practices discussed here addresses the
challenges faced while incorporating agility in dis-
tributed software development. Even though each
group of practices addresses each of the challenges
to a varying degree, here we illustrate how each
challenge is addressed by the most relevant groups
of practices. A summary of this mapping is provided
in the figure on the previous page.

The communication need vs. communication
impedance challenge is addressed by two groups of
practices: improve communication and facilitate
knowledge sharing. Improved communication
achieved through a wide range of balanced channels
for anytime anyplace access was the key to mitigating
this challenge. These practices helped increase the
efficiency and effectiveness of informal communica-
tion that was a challenge in a distributed environ-
ment. A limited amount of structure imposed on this
communication was also useful in enhancing coordi-
nation among team members. The practices that
facilitated knowledge sharing helped developers gain
a shared understanding of the business domain and
the functionalities required.

The fixed vs. evolving quality requirements chal-
lenge is addressed primarily by the trust but verify

COMMUNICATIONS OF THE ACM October 2006/Vol. 49, No. 10 45

THE PRACTICES THAT FACILITATED
KNOWLEDGE SHARING HELPED DEVELOPERS GAIN A SHARED

UNDERSTANDING OF THE BUSINESS DOMAIN AND THE
FUNCTIONALITIES REQUIRED.

group of practices. Distributed QA provides control
over the quality of the system without a detailed con-
tract upfront. Also, documentation of critical deliv-
erables and processes helped ensure the evolving
needs of quality were adequately addressed by the
flexible process.

The people- vs. process-oriented control challenge
is addressed by two groups of practices: continuously
adjust the process and trust but verify. Continuous
adjustments to the processes help ensure they are
“just enough” for the current needs, without unduly
constraining the development to a fixed process.
Planned iterations helped in setting direction and in
understanding the initial set of requirements.
Requirements were documented at different levels of
formality to provide a balance between the need for
structure demanded by the distributed nature of
development and the needs of agile project manage-
ment.

The trust but verify practice allowed the organiza-
tions to keep a level of control that was considered
essential to satisfy organizational norms and policies
while at the same time providing necessary flexibility.
The three organizations allowed the development to
progress with the level of informality demanded by
high-speed development, but built checks and bal-
ances to ensure that the process was under control.

The formal vs. informal agreement challenge is
addressed by the build trust group of practices. The
trust built between the teams helped in limiting the
formality with which agreements were specified and
thus enabled the development teams to rapidly adapt
to the changing needs of the project.

The lack of team cohesion challenge is addressed by
the build trust group of practices. While the site visits
by sponsors and distributed partners added a signifi-
cant overhead, they helped the customers and devel-
opers understand and trust the informal processes
followed during development and build a cohesive
team. Also, efforts to foster a cohesive team culture
helped the teams operate with a common purpose
even though they were geographically distributed.

CONCLUSION

Returning to the questions that guided our study,
we conclude that careful incorporation of agility in
distributed software development environments is
essential in addressing several challenges to commu-
nication, control, and trust across distributed
teams. The practices presented here demonstrate
how a balance between agile and distributed
approaches can help meet these challenges.

REFERENCES
1. Beck, K. Extreme Programming Explained: Embrace Change. Addison-

Wesley, Boston, 2000.
2. Ebert, C. and Neve, P.D. Surviving global software development. IEEE

Software 18, 2 (Mar./Apr. 2001), 62–69.
3. Herbsleb, J.D. and Mockus, A. An empirical study of speed and com-

munication in globally distributed software development. IEEE Trans.
on Software Engineering 29, 6 (June 2003), 481–494.

4. Highsmith, J. and Cockburn, A. Agile software development: The busi-
ness of innovation. IEEE Computer 34, 9 (Sept. 2001), 120–122.

5. Matloff, N. Offshoring: What can go wrong? IT Professional (July/Aug.
2005), 39–45.

6. Strauss, A. and Corbin, J. Grounded theory methodology: An overview.
Handbook of Qualitative Research. N.K. Denzin and Y.S. Lincoln, Eds.
Sage, London, 1994.

Balasubramaniam Ramesh (bramesh@gsu.edu) is a professor
in the Department of Computer Information Systems, Georgia State
University, Atlanta.
Lan Cao (lcao@odu.edu) is an assistant professor in the
Department of Information Technology and Decision Sciences,
Old Dominion University, Norfolk, VA.
Kannan Mohan (Kannan_mohan@baruch.cuny.edu) is an
assistant professor in the Department of Computer Information
Systems, Zicklin School of Business, Baruch College, New York City.
Peng Xu (peng.xu@umb.edu) is an assistant professor in the
Department of Management Science and Information Systems,
University of Massachusetts, Boston.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/1000 $5.00

46 October 2006/Vol. 49, No. 10 COMMUNICATIONS OF THE ACM

THE TRUST BUILT BETWEEN THE TEAMS
HELPED IN LIMITING THE FORMALITY WITH WHICH AGREEMENTS WERE
SPECIFIED AND THUS ENABLED THE DEVELOPMENT TEAMS TO RAPIDLY

ADAPT TO THE CHANGING NEEDS OF THE PROJECT.

