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Abstract 

 

Data shortages mean that conservation priorities can be highly sensitive to historical patterns 

of exploration. Here, we investigate the potential of regionally focussed species distribution 

models to elucidate fine-scale patterns of richness, rarity and endemism in the Eastern Arc 

Mountains (Tanzania and Kenya). Generalised additive models and land cover data are used 

to estimate the distributions of 452 forest plant taxa (trees, lianas, shrubs and herbs). 

Presence records from a newly compiled database are regressed against environmental 

variables in a stepwise multimodel. Estimates of occurrence in forest patches are collated 

across target groups and analysed alongside inventory-based estimates of conservation 

priority. We find that predicted richness is higher than observed richness, with the biggest 

disparities in regions that have had the least research. North Pare and Nguu in particular are 

predicted to be more important than the inventory data suggest. Environmental conditions in 

parts of Nguru could support as many range-restricted and endemic taxa as Uluguru, 

although realised niches are subject to unknown colonisation histories. Concentrations of 
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rare plants are especially high in the Usambaras, a pattern mediated in models by moisture 

indices, whilst overall richness is better explained by temperature gradients. Tree data 

dominate the botanical inventory; we find that priorities based on other growth forms might 

favour the mountains in a different order. We conclude that distribution models can provide 

conservation planning with high-resolution estimates of richness in well-researched areas, 

and predictive estimates of conservation importance elsewhere. Spatial and taxonomic biases 

in the data are essential considerations, as is the spatial scale used for models. We caution 

that predictive estimates are most uncertain for the species of highest conservation concern, 

and advocate using models and targeted field assessments iteratively to refine our 

understanding of which areas should be prioritised for conservation. 

 

Keywords: biodiversity; conservation planning; endemism; rare species; sampling bias; spatial prediction. 

 

 

Introduction 

 

Limited resources for conservation dictate identification of priority regions to achieve 

effective conservation action (Margules and Pressey, 2000; Myers et al., 2000; Eken et al., 

2004; Wilson et al., 2006). A major constraint, particularly at the site scale, is the scarcity of 

fine-scale data on the distribution of biodiversity (da Fonseca et al., 2000; Küper et al., 

2006). Given the urgency of conservation action and the fact that much-needed biodiversity 

inventories are costly and underfunded (Lawton et al., 1998), the application of distribution 

models to species occurrence data could provide a practical way forward. 

 

Conservation action is most often driven by decisions at the site scale (Mace et al., 2000; 

Ferrier, 2002). Such prioritisations can be highly sensitive to the inventory data available at 

the time, resulting in bias towards sites with a good history of biological exploration (Reddy 

and Davalos, 2003). Early explorations in the Eastern Arc Mountains (hereafter, EAMs) 

focused almost exclusively on the Uluguru and Usambara ranges (1880–1980). Over the last 

30 years, funding has continued to be spread unevenly, favouring some mountain blocs such 

as the Usambaras and Udzungwas, whilst others such as North Pare and Nguu remain under-

surveyed (Ahrends et al., 2011 in Appendix I). Recent investment in the Nguru and Rubeho 

Mountains has resulted in the discovery of new species, altering conservation priorities still 

further (Doggart et al., 2006; Menegon et al., 2008). Spatially referenced inventory data for 

regions such as the EAMs have become increasingly accessible in recent years (e.g., 

http://www.tropicos.org); however, for use in a modelling framework, it is necessary to 
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consider the historical, artifactual and biological processes that underlie them (Graham et al., 

2004). For instance, inventory data are often biased not only in geographical space but also 

towards particular taxonomic groups – in the case of vascular plants, trees tend to be the 

dominant growth form recorded. Since plant diversity is sometimes employed as an indicator 

of overall biodiversity value (Bladt et al., 2008; Larsen et al., 2009), it is important to 

consider whether models predict similar patterns for the different growth forms within this 

group. 

 

Historical habitat and climate configurations are also important for understanding species 

distributions, especially for endemic taxa (Jetz et al., 2004; Possingham and Wilson, 2005; 

Graham et al., 2006). Climatic conditions in the EAMs are thought to have been relatively 

stable, their proximity to the Indian Ocean providing a buffer against global trends in climate 

(Lovett, 1990; Marchant et al., 2007). Similar ecoclimatic stability is evident in other 

regions where highland habitats abut warm tropical oceans, such as the Atlantic rainforests 

in South America and the Queensland rainforests in Australia (Lovett et al., 2005) and has 

been suggested as a key driver of endemism in biodiversity hotspots (Fjeldså et al., 1997). 

Historical and evolutionary processes are particularly pertinent in the EAMs, which are 

geologically much older than adjacent mountains (Griffiths, 1993; Schlüter, 1997). Recently, 

however, they have suffered significant deforestation, reducing forest cover by around 70% 

(Burgess et al., 2007; Hall et al., 2009). 

 

The aims of this article are to investigate the extent to which modelled richness is affected 

by historical and taxonomic bias in inventory data and to highlight the potential conservation 

importance of under-researched areas. Present-day climatic conditions, topography and soil 

parameters are combined with remotely sensed land cover data to estimate the spatial 

distributions of 452 plant taxa (species, subspecies, varieties), including 71 that are endemic 

to the EAMs and/or threatened with extinction. Our discussion of results explores the 

potential of distribution models to help refine conservation priorities in a region where 

confounding factors are typical of those found in many biodiversity hotspots. 

 

 

Methods 

 

Study region 

 

The EAMs are part of the Eastern Afromontane Biodiversity Hotspot (Mittermeier et al., 
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2004), extending from the Taita Hills in south-east Kenya to the Makambako Gap in south- 

central Tanzania (Fig. 4.1 and Table 4.1). Around 500 vascular plant species are putatively 

endemic, of which over 80 are trees. Endemism amongst birds is also high (ICBP, 1992; 

Stattersfield et al., 1998) and a number of mammals and amphibians are endemic or near-

endemic (Burgess et al., 2007; Poynton et al., 2007). Preservation of this region is a priority 

for biodiversity conservation (Olson and Dinerstein, 1998; Brooks et al., 2002) and crucial 

to Tanzania’s population, for whom the forests provide ecosystem services such as water, 

electricity, building materials, medicine and revenue from tourism (Mwakalila et al., 2009). 

 

 

 

 

 

Figure 4.1. Map of the 13 mountain blocs that comprise the Eastern Arc chain, including forest cover at 1-ha 

resolution (see also Table 4.1). Projection (except inset) is UTM zone 37 south. Note that forest estimates and 

boundary placement pre-date Chapter 2, although divisions between blocs are consistent – the delineation 

pictured is a topologically simpler version of Fig. 2.4. 
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Plant inventory data 

 

The plant database (c. 70,000 records) combines our own field data with two large datasets 

contributed by the Missouri Botanical Garden (http://www.tropicos.org) and Frontier- 

Tanzania (http://www.frontier.ac.uk). Botanical identifications were verified by herbaria 

(Royal Botanic Gardens, Kew, Missouri Botanical Garden, and the University of Dar es 

Salaam); nomenclature was standardised by reference to the African Flowering Plants 

Database (AFPD, 2009). Threatened and potentially threatened taxa were identified 

according to an ongoing assessment of the conservation status of the combined EAM and 

Coastal Forest flora (Gereau et al., 2010). Endemism in the context of this article refers to 

taxa that have been found only in the EAMs at and above 500 m elevation. We modelled all 

taxa with records of occurrence in ten or more distinct 1 km or 2 km grid squares, favouring 

the higher resolution where specimen locality data allowed (Appendix 4A). The modelling 

subset targets 452 taxa in 90 plant families: 304 trees, 12 lianas, 62 shrubs and 74 herbs. Of 

these, 319 were modelled at 1 km resolution and 133 at 2 km resolution; 68 are threatened, 

and 25 are endemic. 

 

Environmental data 

 

Point patterns observed for our target taxa were regressed against twelve predictor variables, 

each representing an aspect of the environment thought to directly affect plant distributions 

in the EAMs (Tables 1 and 2). For temperature, we used interpolated climate surfaces based 

on records from the period 1950-2000 (Hijmans et al., 2005). These data provide monthly 

temperature means and extremes at a spatial resolution of 1 km, from which we derived the 

annual mean and range, potential evapotranspiration (Thornthwaite, 1948) and an associated 

moisture index (annual rainfall / potential evapotranspiration). Rainfall grids were based on 

analysis of data from the Tropical Rainfall Measuring Mission (TRMM 2B31 combined PR, 

TMI profile): first, mean monthly 1 km gridded atmosphere rainfall was calculated from 

observations spanning the period 1997-2006 (Mulligan, 2006a); surface-received orographic 

rainfall was then modelled using wind velocity, slope, aspect and topographic exposure 

(Mulligan and Burke, 2005). Maximum water deficit represents the length and severity of 

the dry season and was calculated as the highest cumulative deficit in mean monthly rainfall, 

where a deficit is less than 100 mm month-1
. Estimates of cloud frequency were based on a 1 

km climatology derived from the MODIS MOD35 Cloud Mask Product (Mulligan, 2006b). 

 

Beside climate, we also considered topographic and edaphic factors. From a high-resolution 
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(three arc-sec) digital elevation model (CIAT-CSI SRTM; Jarvis et al., 2008), we derived 

gradient of the slope and two cosine transformations of slope aspect, the latter being oriented 

such that slopes facing towards prevailing winds (dry season, south-easterly; wet season, 

northerly) were allocated the highest values, and opposing slopes the lowest. Soil parameters 

were obtained from the Soil and Terrain Digital Database (SOTER) and include soil reaction 

(pH), cation exchange capacity and available water capacity (Batje, 2004). 

 

 

 

 

Table 4.1. Forest area, including number of patches (> 1 km apart) and spatial variations in altitude, temperature 

and rainfall (mean values in parentheses). Estimates of forest cover in Tanzania are based on those of MNRT 

(1997), updated using expert knowledge and imagery from 2000 onwards by the Remote Sensing and GIS 

Laboratory, Sokoine University of Agriculture. Forests in Kenya were identified from SPOT multi-spectral 

satellite images (Clark and Pellikka, 2009). These data pre-date Chapter 2, in which estimated forest area is 

revised to 4346 km2. 

 

Mountain bloc 
(north to south) 

Forest 
(km2) 

No. 
patches 

Altitude (m) 
Mean annual 

temperature (°C) 
Mean annual 

rainfall (mm/year) 

               

Taita Hills 7.0 14 1102 – 2208* (1585) 16 – 22 (19) 253 – 1208 (630) 

North Pare 147.0 2 755 – 2099 (1274) 16 – 24 (20) 158 – 1677 (770) 

South Pare 331.0 6 541 – 2454 (1384) 13 – 24 (20) 359 – 2947 (1100) 

West Usambara 528.8 14 408 – 2294 (1365) 13 – 25 (18) 393 – 3126 (1005) 

East Usambara 391.4 5 124 – 1484 (628) 17 – 26 (22) 529 – 2788 (1176) 

Nguu 416.8 13 709 – 1998 (1232) 16 – 23 (20) 333 – 3543 (1243) 

Nguru 471.8 7 350 – 2382 (1243) 14 – 26 (20) 222 – 3814 (1706) 

Ukaguru 197.3 6 885 – 2259 (1693) 15 – 23 (18) 634 – 2352 (1537) 

Uluguru 308.5 9 255 – 2636 (1691) 12 – 27 (18) 579 – 2352 (1482) 

Malundwe 2.3 1 793 – 1259 (1054) 20 – 23 (21) 978 – 1469 (1132) 

Rubeho 530.7 16 565 – 2334 (1700) 15 – 25 (18) 281 – 1415 (822) 

Udzungwa 1673.2 32 278 – 2555 (1390) 13 – 26 (20) 388 – 2470 (1346) 

Mahenge 70.5 3 347 – 1478 (749) 18 – 26 (23) 1100 – 3238 (1813) 

               

All EAMs 5076.4 130 124 – 2636 (1352) 12 – 27 (20) 158 – 3814 (1257) 

               

* Pellikka et al. (2009) 

 

 



 

 

Table 4.2. Environmental predictor variables used for modelling plant distributions. Correlation matrix shows Pearson coefficients (1 km resolution, bloc extent plus 25 km buffer to include all 

data points); bold values indicate highly correlated variables that were separated prior to model selection. Spearman rho correlations were similar, as were those calculated at 2 km resolution. 

Far right columns summarise the contribution of predictors in explanatory models (forward-backward selection): times chosen and median decrease in explained deviance with predictor 

removed (↓D2). 

 

Environmental predictor 1 2 3 4 5 6 7 8 9 10 11 
All taxa Endemics 

Chosen ↓D2 Chosen ↓D2 

                 

1 Mean annual temperature            
[ 

149 
112 

0.13 
0.16 

15 
12 

0.16 
0.17 2 Potential evapotranspiration 0.96           

3 Annual temperature range -0.42 -0.52          197 0.12 18 0.16 

4 Annual moisture index -0.43 -0.36 -0.19         141 0.13 19 0.16 

5 Maximum water deficit -0.09 -0.18 0.43 -0.58        121 0.10 13 0.04 

6 Cloud frequency 0.39 0.44 -0.61 0.31 -0.56       130 0.11 16 0.15 

7 Soil: pH -0.07 -0.07 0.27 -0.11 0.20 -0.18      64 0.16 9 0.19 

8 Soil: cation exchange capacity 0.09 0.10 0.18 -0.19 0.15 -0.02 0.49     118 0.11 12 0.15 

9 Soil: available water capacity -0.01 0.00 0.03 0.00 -0.04 -0.02 0.19 0.45    106 0.10 15 0.13 

10 Slope: angle from horizontal -0.32 -0.33 0.00 0.39 -0.23 0.06 0.03 -0.13 0.06   107 0.09 15 0.06 

11 Slope: orientation, northness -0.02 -0.01 -0.03 -0.04 0.07 -0.13 0.02 0.04 0.05 -0.05  
[ 

73 

50 

0.09 

0.10 

9 

11 

0.08 

0.11 12 Slope: orientation, south-eastness 0.10 0.11 -0.05 0.04 -0.09 0.22 0.01 0.03 -0.04 0.02 -0.72 
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Model calibration 

 

Spatial data were projected to UTM zone 37 south and resampled to 1 km or 2 km, 

depending on the taxon. Observed distributions were related to environmental predictors 

using generalised additive models (GAMs), calibrated using logit link functions and 

binomial error terms and allowing between one and four degrees of freedom for smoothers 

(Yee and Mitchell, 1991). For statistical calculations and the manipulation of map layers, we 

used R 2.10.0 (R-Development-Core-Team, 2009) and GRASS GIS 6.3.0 (GRASS-

Development-Team, 2009). 

 

Background data 

 

As is often the case when working with plot and herbarium data, ground-truthed absences 

were not available. Instead, we generated pseudo-absence (background) data to constrain the 

models. Because presence localities were spatially biased, it was appropriate to impose 

similar bias on the background data (Phillips et al., 2009). In a previous application of this 

approach, we targeted pseudo-absences for EAM tree species towards locations known to 

have been surveyed using similar methods (Chapter 3). Here, we extend this methodology to 

consider separately the four different growth forms of plants – tree data are more plentiful 

than herb data, for example, not because tree species are necessarily more abundant but 

because vegetation plot assessments (c. 70% of our data) often target plants of a minimum 

size (e.g., ≥ 10 cm diameter at breast height c. 1.3 m). Thus, background data were placed 

only in locations where a matching growth form of plant has been sampled in the past 

(excluding presence sites for that taxon), using a ratio of five absence points for every 

presence point (Appendix 4B). 

 

Predictor selection 

 

Two pairs of predictors were strongly collinear: mean annual temperature vs. potential 

evapotranspiration, and aspect north vs. aspect south-east (Table 4.2). These were reduced 

prior to modelling by constructing additive models separately for each taxon-predictor pair 

and retaining whichever yielded the strongest prediction. Minimal predictor sets were then 

identified using forward–backward selection, beginning with a null model and adding or 

removing terms iteratively according to Akaike Information Criterion. Next, we sought 

alternative solutions using backward–forward selection, beginning with a full model and 

removing or adding terms according to Bayesian Information Criterion. In each case, the 



Distribution Models and Conservation Priority | 111 

 

most powerful predictive model was selected by cross-validating the area under the receiver-

operating characteristic curve (AUC) – a threshold independent measure that incorporates 

both type I and type II error rates (Green and Swets, 1974). We used a five-fold cross-

validation procedure (80:20 training:testing split) stratified with respect to prevalence and 

averaged over ten independent runs (Parker et al., 2007). These ‘best-model’ solutions were 

combined in performance-weighted averages to give multimodel estimates of occurrence. 

 

Spatial autocorrelation 

 

A common problem with using regression techniques in ecology is that environmental 

variables are rarely sufficient to explain fully spatial dependence in species data (Dormann 

et al., 2007; Miller et al., 2007). Consequently, model residuals exhibit spatial structure, 

violating the statistical assumption that they are independent and identically distributed. 

Spatial autocorrelation in model predictions was parameterised by appending autocovariate 

terms to the GAM formulae (Augustin et al., 1996): 

 

innn

i

i auto
p

p
covcovcov

1
log 111 +++++=








−

βββα   

 

where pi is the probability of occurrence in focal cell i, and autocovi is a distance-weighted 

average of occurrence probabilities in surrounding grid cells (neighbourhood size = 10 km). 

There is a risk, however, that autocovariate models may underestimate environmental 

controls on species distributions, resulting in less stable predictions (Dormann, 2007a; 

Chapter 3). Autocovariate terms were therefore retained if and only if they improved 

predictive performance on unseen data (five-fold AUC). 

 

Testing and validation 

 

In addition to the measures of model performance employed during calibration, final model 

predictions were further validated using a fully independent test set. These presence data 

were omitted from calibration because of low or uncertain spatial accuracy but remained 

useful for gauging the sensitivity of predictions, and in particular the ability of models to 

predict occurrence in novel mountain blocs, i.e., those within a plant’s documented range but 

that were not represented in the presence data for that taxon. Test data accurate to c. 2 km 

were available for 286 taxa (1956 records); data with lower spatial accuracy were available 

for 341 (1578) and were assumed accurate only at the mountain bloc resolution. 
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The extent to which sampling distributions captured the range of environmental conditions 

in EAM forests was investigated using envelope uncertainty maps – spatial representations 

of where and to what extent particular models were extrapolated beyond the niche-breadth of 

the training data (Appendix 4C; see also Chapter 3). 

 

Richness estimates 

 

Plant richness was calculated by summing maps of estimated presence-absence over all taxa 

in a target group (e.g., trees or endemics). Distribution models predicted occurrence on a 

continuous scale, from 0 to 1; these predictions were dichotomised using taxon-specific 

occurrence thresholds, chosen by maximising the sum of sensitivity and specificity 

(Appendix 4B). 

 

Because of uncertain colonisation histories, we produced three versions of each richness 

map. First, model predictions were extrapolated to all forested grid squares, regardless of 

location. Richness maps derived from these estimates are tentative predictions, because they 

assume no historical barriers to dispersal. Second, models were extrapolated only to 

mountain blocs within a plant’s documented range. Derived richness is less speculative but 

biased by the level of research. Third, we map the disparity between predicted and 

confirmed richness, giving an indication of which areas should be prioritised for future 

exploration. 

 

 

Results 

 

Model performance 

 

According to validation statistics, models performed well and were rarely forced to 

extrapolate far beyond the niche-breadth used for calibration (Table 4.3 and Appendix 4C). 

The balance of errors favoured correctly predicted presences (higher sensitivity), which is 

preferable because presence locations have been ground-truthed whereas background data 

are likely to contain genuine misclassifications. Even so, fully independent tests revealed 

that models for endemic taxa often failed to predict known occurrences accurately (median 

error = 4.24 km), especially in blocs beyond the spatial range of training data (Table 4.3). 

The sensitivity of novel-bloc predictions was also comparatively low for threatened taxa. 

 



Distribution Models and Conservation Priority | 113 

 

When training data were reused for testing, models calibrated at 2 km resolution 

outperformed those calibrated at 1 km resolution, but for unseen data 1 km models were 

significantly better (five-fold AUC, P < 0.001; Wilcoxon rank sum). The pattern was similar 

across growth forms, but only significant for trees. Tree models were particularly stable, 

retaining significantly more of the AUC under cross-validation than models for lianas, 

shrubs or herbs (Appendix 4C). 

 

 

Table 4.3. Summary of model performance: explained deviance (D2), area under the receiver-operator 

characteristic curve (AUC) including a five-fold cross-validation, and the proportion of presences (sensitivity) 

and pseudo-absences (specificity) classified correctly. Figures shown are median values because of negative 

skew. Using high-resolution independent test data (c. 2 km accuracy), we present the median distance to the 

nearest predicted occurrence (km). Using all available test data (bloc-level accuracy), we assess the ability of 

models to predict occurrence successfully in novel mountain blocs (those with no presence points in the training 

data): mean sensitivity ± one standard deviation (medians = 1). See also Appendix 4C. 

 

 N D2 AUC* 
5-fold 
AUC Sens. Spec. 

Independent test data 

Distance to 
occurrence 

Novel-bloc 
sensitivity 

         

Trees 302 0.66 0.95 0.87 0.94 0.87 1.00 0.91 ± 0.25 

Lianas 12 0.60 0.94 0.82 0.90 0.91 0.00 1.00 ± 0.00 

Shrubs 62 0.67 0.95 0.83 0.94 0.92 0.00 0.92 ± 0.25 

Herbs 74 0.62 0.93 0.79 0.93 0.89 0.00 0.94 ± 0.20 

         

Endemic 25 0.73 0.98 0.89 1.00 0.89 4.24 0.87 ± 0.26 

Threatened 68 0.71 0.96 0.88 0.99 0.91 1.00 0.85 ± 0.30 

         

All species 452 0.65 0.95 0.86 0.94 0.89 1.00 0.92 ± 0.24 

         

* AUC: 0.5-0.7, better than chance; 0.7-0.9, good performance; 0.9-1.0, excellent performance (Swets, 1988) 

 

 

The two alternative stepwise models frequently returned different solutions (21% 

agreement), but predictive performance was similar. On average, forward–backward models 

were smaller than backward–forward models (mean number of predictors = 3 and 4, 

respectively) and so were preferred for inferring causal relationships (Table 4.2). 

Temperature variables were the most often selected, reflecting the importance of altitude in 

determining species distributions in mountainous regions. Predictors of moisture availability, 

including cloud frequency, were also important, as were slope orientation and cation 

exchange capacity. The least selected predictor was soil acidity, although it contributed 
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highly when included (Table 4.2). Response shapes for soil variables were not always 

sensible, indicating that they captured broad geographical patterns rather than functional 

relationships (see also Appendix 4E). 

 

Spatial autocovariates were retained in 30% of cases, more often in larger (backward–

forward selection) and more stable (1 km) models. The median increase in explained 

deviance was only 6%, so environmental constraints were well represented alongside spatial 

terms. 

 

Sampling bias 

 

Bias in exploration history was quantified by survey intensity, which we calculated at bloc 

level using all available data. The East Usambaras and Udzungwas are by far the best-

researched blocs, each with 20,000-30,000 data points. There is a steep drop to the Ulugurus 

and West Usambaras (6000-8000), followed by Nguru and Rubeho (3000-4000), South Pare, 

Mahenge then Ukaguru (1000-3000). The Taita Hills, North Pare, Nguu and Malundwe have 

fewer than 500 records amongst them. Tree species dominate the data, accounting for over 

80% of specimens in most blocs (60% in Taita and South Pare); the remainder is mainly 

shrub and herb records, with lianas accounting for less than 5%. 

 

The relationship between the numbers of modelled taxa observed in each mountain bloc and 

the number predicted to have potential niche-space was highly significant (Fig. 4.2a), 

reflecting both genuine biogeographical patterns and spatial bias in exploration history. 

Survey intensity explained 89% of the deviance in observed plant richness (log-linear 

relationship). The fit was lower for predicted richness (66%) with a shallower gradient, but 

still highly significant; Malundwe Mountain was an outlier with models predicting fewer 

taxa than expected (Cook’s distance = 1.2). 

 

For species of conservation concern, the fit was stronger for predicted richness than for 

observed richness, and the gradient of the slope remained comparatively steep (Fig. 4.2c). 

This may be a consequence of non-climatic factors such as isolation: survey intensity and 

environmental correlates predict similar richness in Rubeho and South Pare, yet observed 

richness is very different. Combined with lower performance in independent tests (Table 

4.3), we find endemic and narrow-ranged taxa to be particularly sensitive to sampling bias. 
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Figure 4.2. Scatter plots comparing (a) observed 

richness from surveys vs. predicted richness from 

models, and (b, c) logarithmic relationship 

between survey intensity and richness based on the 

number of modelled taxa observed (filled circles, 

solid lines) and predicted (open circles, dashed 

lines). Bracketed points were removed from F-

tests due to high Cook’s distance (≥1). 

Abbreviations: Ta, Taita; nP, North Pare; sP, 

South Pare; wU, West Usambara; eU, East 

Usambara; Nu, Nguu; Nr, Nguru; Uk, Ukaguru; 

Ul, Uluguru; Ml, Malundwe; Ru, Rubeho; Ud, 

Udzungwa; Mh, Mahenge. 

 

 

 

Richness 

 

Confirmed at bloc level 

 

Extrapolating predictions within but not between mountain blocs, Fig. 4.3a shows a clear 

bias towards better-studied regions, especially the East Usambaras and Udzungwas. 

Localised richness was also high in parts of South Pare, Uluguru and Rubeho. Average 

richness across grid cells in West Usambara was comparatively low given that it ranked 

second at the bloc resolution (modelling subset, Table 4.4). Fig. 4.4 shows that many taxa in 

this bloc were not predicted to be widespread in larger forests, suggesting high species 
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turnover. The same may be true of Nguru, which is also ranked higher than the 1 km map 

suggests (cf. Fig. 4.3a and Table 4.4). In South Pare, richness was concentrated mainly in 

Chome Forest Reserve, reflecting a bias in collection localities. 

 

Endemic and threatened taxa were most prevalent across grid cells in the Uluguru and 

Usambara Mountains (Fig. 4.3b), with the South Pares and parts of Udzungwa also 

important. Compared with overall richness, relative concentrations were higher in Nguru and 

Ukaguru, and lower in Rubeho and Udzungwa, although the bloc total for Udzungwa was 

still high (ranked fourth in Table 4.4). In Table 4.5, we provide details of 18 taxa that are 

both endemic to the EAMs and threatened with extinction, including area-based 

recommendations for the IUCN Red List. 

 

Predictive estimates 

 

Predicted richness was greater than observed richness in all cases, with the size of the 

disparity showing a negative correlation with survey intensity (Fig. 4.2b-c). Unconfirmed 

but potentially suitable habitat was therefore most common in Taita, North Pare, Nguu and 

Malundwe. Environmental conditions in Nguru, Ukaguru, Rubeho and Mahenge suggest 

these areas could also support higher concentrations of species than currently documented 

(Figs 4.3 and 4.4). 

 

Compared with observed richness at the bloc level, predicted richness ranked the Nguru and 

Rubeho Mountains above South Pare (Table 4.4). Also, North Pare and Nguu were ranked 

above Ukaguru and Mahenge despite sampling bias in favour of the latter. Predictive 

rankings for endemic and threatened taxa followed a similar pattern, except that the 

Ulugurus were ranked slightly lower, and the importance of Mahenge is predicted to be 

higher than inventory data suggest (Table 4.4 and Appendix 4D). 

 

Growth form 

 

Fig. 4.5 shows patterns of richness to be similar across growth forms, with the notable 

exception that tree richness is highest in the two most researched mountain blocs (East 

Usambara and Udzungwa), whereas lianas, shrubs and herbs have equally high (confirmed) 

or higher (predicted) richness in other areas, particularly the West Usambara and Rubeho 

Mountains. 
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Figure 4.3. Spatial estimates of plant richness calculated across (a) all taxa and (b) taxa of conservation concern. 

Scale bars show the number of taxa predicted to have potential niche-space in 1 km grid squares. In the left panel, 

modelled distributions are extrapolated to all forest patches with suitable environmental conditions. In the centre 

panel, predictions are restricted to just those mountain blocs where the respective taxa have been confirmed 

present. The right panel shows predictions of occurrence in unconfirmed blocs (left panel minus centre panel) – 

we suggest this map can be helpful in selecting future sites for exploration. 



 

 

Figure 4.4. Histograms showing patterns of within-bloc patch occupancy. Horizontal axes represent the largest contiguous area of forest providing environmentally suitable conditions for a 

particular taxon. Vertical axes show the number of taxa in each 30 km2 patch size interval. Filled bars relate to confirmed occurrence at the bloc level; open bars relate to predictions of 

occurrence in novel mountain blocs. Total forest area in each bloc shown in parentheses (km2). Patterns for endemic/threatened taxa are presented in Appendix 4D. 

 



 

 

Table 4.4. Conservation priorities, based on the number of plant taxa confirmed or predicted in each mountain bloc. These rankings are not corrected for forest area, and therefore favour larger 

mountain blocs such as Udzungwa. See Figs 4.3 and 4.4 for fine-scale richness estimates. 

 

 All taxa Endemic and/or threatened taxa 

Rank Full inventory Modelled taxa (confirmed) Modelled taxa (predicted) Full inventory Modelled taxa (confirmed) Modelled taxa (predicted) 

             

1 Udzungwa 2546 Udzungwa 382 Udzungwa 425 Udzungwa 319 E. Usambara 51 E. Usambara 60 

2 E. Usambara 1108 W. Usambara 337 W. Usambara 417 Uluguru 233 W. Usambara 43 Udzungwa 60 

3 South Pare 894 E. Usambara 302 Uluguru 404 E. Usambara 187 Uluguru 42 W. Usambara 58 

4 Uluguru 835 Uluguru 255 E. Usambara 398 W. Usambara 162 Udzungwa 41 Nguru 53 

5 W. Usambara 713 South Pare 246 Nguru 389 Nguru 159 Nguru 32 Uluguru 52 

6 Rubeho 665 Nguru 206 Rubeho 383 South Pare 75 South Pare 22 Mahenge 47 

7 Nguru 658 Rubeho 203 South Pare 358 Rubeho 58 Ukaguru 15 South Pare 44 

8 Mahenge 583 Mahenge 125 North Pare 350 Mahenge 58 Rubeho 10 Rubeho 44 

9 North Pare 108 Ukaguru 59 Nguu 311 Ukaguru 39 Mahenge 8 North Pare 41 

10 Ukaguru 103 North Pare 28 Ukaguru 306 Taita Hills 23 Taita Hills 6 Ukaguru 41 

11 Taita Hills 57 Taita Hills 27 Mahenge 299 North Pare 13 North Pare 2 Nguu 37 

12 Malundwe 31 Malundwe 11 Taita Hills 283 Nguu 3 Nguu 0 Taita Hills 36 

13 Nguu 29 Nguu 5 Malundwe 167 Malundwe 1 Malundwe 0 Malundwe 27 

             

 



 

Table 4.5. Model estimates of the habitat available for 18 plant taxa endemic to the Eastern Arc Mountains, presented in descending order of rarity. Also shown are the current IUCN Red List 

designations (no designation for eight taxa; IUCN, 2009), the proposed Red List status of each taxon in an ongoing assessment of plant conservation in East Africa (Gereau et al., 2010), and 

recommendations based solely on environmentally suitable habitat in mountain blocs where taxa are known to occur: critically endangered (CR), area of occupancy < 10 km2; endangered (EN), 

area of occupancy < 500 km2; vulnerable (VU), area of occupancy < 2000 km2 (see also Hall et al., 2009). Note that areas of occupancy are not the only consideration in determining the level of 

threat: Englerodendron usambarense has a very narrow range but is proposed as Not Threatened because it is well protected within Amani Nature Reserve. For full details of Red List categories 

and criteria, visit http://www.iucnredlist.org/. 

Endemic species or infra-specific taxon Growth form Mountain bloc coverage 
Suitable 

habitat (km2) 
Current IUCN listing 
(version 2.3 or 3.1) 

Proposed threat 
status 

Area-based 
Recommendation 

       

Cynometra longipedicellata tree eU 132 VU [B1+2b], ver. 2.3 CR EN 

Englerodendron usambarense tree eU 156 VU [B1+2c], ver 2.3 NT EN 

Mammea usambarensis tree sP, wU 157 VU [B1+2b], ver. 2.3 VU EN 

Allophylus melliodorus tree wU, eU, Nr 214  PT EN 

Eugenia toxanatolica tree sP, wU, Mh 233  PT EN 

Cola usambarensis tree eU 243  PT EN 

Mussaenda microdonta subsp. microdonta tree wU, Nr, Ul 295 VU [B1+2b], ver. 2.3 PT EN 

Memecylon cogniauxii shrub sP, wU, eU, Nr, Ul 302  PT EN 

Casearia engleri tree sP, wU 328 VU [B1+2b], ver. 2.3 VU EN 

Syzygium micklethwaitii tree sP, wU, Nr, Uk, Ul 468  PT EN 

Coffea mongensis tree wU, eU, Nr, Ud 535 VU [B1+2b], ver. 2.3 LC VU 

Impatiens palliderosea herb Uk, Ul, Ru 543  VU VU 

Craterispermum longipedunculatum tree Ul, Ud 712 VU [B1+2b], ver. 2.3 PT VU 

Lasianthus pedunculatus tree Nr, Uk, Ul, Ud 867 VU [B1+2b], ver. 2.3 PT VU 

Zenkerella capparidacea tree wU, eU, Nr, Ul 872  VU VU 

Polyscias stuhlmannii tree sP, wU, Uk, Ul 933 EN B2ab(iii), ver. 3.1 EN VU 

Dicranolepis usambarica tree Ta, sP, wU, eU, Nr, Ul, Ud 996  PT VU 

Allanblackia ulugurensis tree Nr, Uk, Ul, Ud 1133 VU [B1+2c], ver. 2.3 VU VU 

       

CR, critically endangered; EN, endangered; VU, vulnerable; NT, near threatened; LC, least concern; PT, potentially threatened but not yet evaluated; B1, restricted extent of occurrence; 2b, 
area of occupancy continuing to decline; 2c, extent and/or quality of habitat declining; Ta, Taita; nP, North Pare; sP, South Pare; wU, West Usambara; eU, East Usambara; Nu, Nguu; Nr, 
Nguru; Uk, Ukaguru; Ul, Uluguru; Ml, Malundwe; Ru, Rubeho; Ud, Udzungwa; Mh, Mahenge 
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Figure 4.5. Box plots detailing how plant richness varies according to growth form. In the left panel, modelled 

distributions are extrapolated to all forest patches with suitable environmental conditions. In the right panel, 

predictions are restricted to just those mountain blocs where the respective taxa have been confirmed present. 

Box widths are proportional to the area of forest remaining in each mountain bloc. 

 

 

Discussion 

 

The prioritisation of areas for conservation within the EAMs has tended to change with the 

availability of new field data. First, the Usambaras and Ulugurus were ranked most 

important; subsequently, the importance of Udzungwa was recognised, followed by Nguru 

and now Rubeho (CEPF, 2003; Doggart et al., 2006). This reshuffling of conservation 

priorities is symptomatic of a paucity of survey data common to many high biodiversity 

regions and highlights the need for strategically targeted field sampling. Distribution models 

are an appealing tool for obtaining high-resolution estimates of richness in well-researched 

areas, and tentative estimates of conservation importance elsewhere. Alongside other 
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considerations such as threats to habitat, richness in other taxonomic groups and ecosystem 

value (e.g., carbon stocks, hydrology, natural resources, ecotourism; Naidoo et al., 2008), 

they could form part of a more consistent approach to conservation priority setting and 

strategic planning of surveys. 

 

In many cases, the data available for modelling are biased both in geographical space and 

towards particular groups of organisms. Here, tree data were the most abundant and tree 

models the most stable. Our results suggest that if the bias were towards lianas, shrubs or 

herbs, instead of trees, then we might favour the mountain blocs in a slightly different order. 

Faced with insufficient data, conservation planners must determine the degree to which 

different taxonomic groups and growth forms can serve as surrogates for each other in the 

prioritisation of areas for conservation (Burgess et al., 2006). We find that even within the 

group of vascular plants, it is preferable to consider all growth forms in the analysis of 

conservation priority. Low levels of congruence have also been reported for vertebrates 

(Grenyer et al., 2006) and when comparing patterns of endemism across a range of 

taxonomic groups (Kremen et al., 2008). 

 

Because of broad-scale geographical bias in the occurrence data, coupled with uncertain 

colonisation histories, we have been careful to distinguish between those mountain blocs 

where a taxon is known to occur and those where it is to-date undocumented. When 

dispersal limitations are not considered, models predict that richness could be more evenly 

distributed across the mountains than is currently documented (Fig. 4.3). In the 2003 

Ecosystem Profile of the EAMs and Coastal Forests (CEPF, 2003), the Usambaras, Ulugurus 

and Udzungwas were identified as being the most species-rich blocs. Predictive estimates 

largely confirm this ranking, whilst indicating that the importance of Nguru and Rubeho 

may still be underestimated, particularly for rare species (see also Doggart et al., 2006). 

Lesser-researched blocs, especially North Pare and Nguu, could also be important, following 

higher rankings despite low survey intensity. Predictions such as these could be verified and 

subsequently refined by ongoing and targeted field assessments (Guisan et al., 2006). 

 

Using independent test data, we found that models were generally quite successful at 

predicting occurrence in novel mountain blocs. These validations were, however, limited to 

bloc-level sensitivity, so the extent of over-prediction remains uncertain. Models for 

threatened and endemic taxa were most likely to under-predict when extrapolated into novel 

blocs, indicating gaps in the documented environmental niche. This could be a problem for 

wider-ranging taxa too, for it is difficult to know whether or not the complete range of 
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conditions under which a taxon exists has been sampled. Further, we suspect that in some 

cases the soil predictors, which vary broadly by mountain bloc, simply identified spatial 

biases in the sampling distribution, rather than truly casual factors. Given the sensitivity of 

predictions to survey intensity and the fact that realised distributions of EAM endemics are 

highly dependent on past connectivity, we caution that it is for the taxa of highest 

conservation concern that predictive estimates are most uncertain. 

 

Restricting analyses to confirmed blocs only, we find that environmental conditions across 

most forests in Udzungwa have potential to support large numbers of plant taxa; 

concentrations of rare and endemic taxa, meanwhile, are predicted to be lower than in the 

Usambaras and Ulugurus – possibly a real pattern given the close proximity of non-EAM 

habitats. Mahenge is predicted to be suitable for many of the rare plants modelled here, but 

occurrence is unconfirmed in most cases. The Usambaras and Ulugurus are better known 

centres of endemism (Iversen, 1991; Temu and Andrew, 2008), promoted by geographical 

isolation and exposure to rain bearing ocean winds. High levels of endemism have also been 

recorded in the Taita Hills (Beentje, 1988; Beentje, 1994); however, this bloc is not well 

represented in our database, leading models to under-estimate its importance. Forests in 

Taita are of particular conservation concern, having been reduced to just a few remnant 

patches (Rogo and Oguge, 2000; Pellikka et al., 2009). 

 

Human activity has resulted in widespread fragmentation and degradation of many tropical 

forests, yet modelled estimates of diversity often do not consider the minimum forest area 

required for species persistence, nor the vulnerability of small fragments to degradation. 

Here, we map forest cover using remotely sensed land cover data. Whilst these estimates are 

not without error, they can at least be indicative of potential threats. We show that many 

taxa, especially those predicted to occur in blocs beyond their documented range, have 

suitable conditions only in relatively small forest patches (Fig. 4.4). Species across many 

taxonomic groups are less likely to persist in smaller and more isolated habitats, even if 

environmental conditions are favourable (MacArthur and Wilson, 1967; Lomolino, 2000; 

also Marshall et al., 2010 in Appendix I). Around one fifth of the forests we identify from 

the land cover map are both smaller than 1 km2
 and more than 1 km from another patch. 

Much of this fragmentation is relatively recent, so in many cases the extinction debt has yet 

to be realised. In less isolated fragments, long-term persistence might be possible via seed 

recruitment from neighbouring populations (Lehouck et al., 2009) – it is therefore 

imperative to conserve forests of all sizes to maintain connectivity (Fjeldså and Lovett, 

1997a). Although not considered here, there is scope to address such patch dynamics post 
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hoc by linking predicted distributions with spatially explicit population models (Keith et al., 

2008). 

 

Exacerbated by forest loss, the extinction risk for narrow-range endemics is considerable 

(Brooks et al., 2002). The tree Platypterocarpus tanganyikensis Dunkley & Brenan was 

once found in the West Usambara Mountains, but collections show no record of its presence 

since 1953, even before high levels of forest clearance in the 1960s. Distribution models for 

rare species require particular scrutiny, but as part of a wider assessment they can be useful 

for indicating the appropriate level of threat on the IUCN Red List (Table 4.5). One of the 

rarest endemics modelled here is the tree Cynometra longipedicellata Harms, known only 

from the East Usambaras. Models identify potential niche-space in Mahenge, but this 

species is more likely endemic to north-eastern Tanzania. We estimate the area of occupancy 

to be c. 132 km2
, probably less given competition for niche-space and other factors beyond 

the scope of our models (Pulliam, 2000). Based on the tree’s observed altitudinal range, Hall 

et al. (2009) estimate that C. longipedicellata may have only 70 km
2
 of habitat remaining, a 

decrease of over 70% since 1955. This species is currently assessed as Vulnerable (IUCN, 

2009); we recommend elevating the threat status to Endangered, EN B1ab(iii) + B2ab(iii) 

(extent of occurrence < 5000 km2
, area of occupancy < 500 km

2
, extent and/or quality of 

habitat declining) or Critically Endangered, CR B1ab(iii) (extent of occurrence < 100 km
2
). 

 

Patterns of endemism are often complex (Jetz et al., 2004). Our perceptions of these patterns 

and our ability to identify causal factors are likely to be influenced by the spatial resolution 

used for modelling (Whittaker et al., 2001; Rahbek, 2005). We find that higher resolution 

models are more stable, presumably because micro-climatic conditions are better 

represented. High levels of endemism in the EAMs have been attributed to historical 

isolation coupled with long-term climatic stability, with persistent orographic rainfall and 

mist having minimised climatically linked extinctions (Fjeldså et al., 1997; Fjeldså and 

Lovett, 1997b). Recent pollen analyses confirm that whilst there were shifts in abundance, 

few if any plant taxa were lost during the last glacial maximum (Mumbi et al., 2008; Finch 

et al., 2009). Analysis of model predictions also suggests that moisture is a key driver for 

concentrations of endemism, with the annual moisture index explaining 31% of deviance 

across forested grid squares (Appendix 4E). Similarly, other studies have found 

contemporary rainfall to be a good predictor of endemism in the EAMs (Fjeldså and Lovett, 

1997b) and of range-size rarity in West Africa (Holmgren and Poorter, 2007). Cloud cover 

explains little of the spatial variation in endemism but was an important predictor for some 

of the rarest plants (e.g., C. longipedicellata). The correlation between cloud frequency and 



Distribution Models and Conservation Priority | 125 

 

overall richness was higher (13% explained deviance), with frequencies over 50% 

promoting climatic suitability for the most taxa (Appendix 4E). Annual temperature range 

was the best climatic predictor of modelled richness (24%), with lower seasonality 

correlating with higher diversity. Given the importance of the moisture index, these results 

suggest that measures of seasonal constancy in the water balance might be worth including 

in future studies. 

 

 

Conclusions 

 

The application of distribution models to plant inventory data can provide useful indications 

of which areas may be important for biodiversity conservation, and offers a means to 

estimate the niche-space available for species of conservation concern. Whilst models are 

highly sensitive to spatial bias in the inventory data, especially for rare species, we suggest 

that predictive definitions of conservation priority could be systemically improved by 

targeting field sampling towards locations with large discrepancies between observed and 

predicted diversity. As improvements in data quality cease to increase model stability, the 

limits of environmental controls on species’ distributions will become clearer, providing a 

baseline by which to quantify the roles of historical and non-climatic factors in shaping 

contemporary patterns of biodiversity. Our results indicate that it is necessary to consider all 

growth forms of plants in the prioritisation of sites for conservation, and so we draw 

attention to the sometimes-excessive dominance of tree species in botanical inventories. 
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Appendix 4A.    Details of plant data 

  

Species location data were based on a large dataset totalling c. 70 000 records, 30% of which 

were from the Missouri Botanical Garden’s TROPICOS database and 70% from vegetation 

plot assessments (Frontier-Tanzania, A.A., A.R.M., J.C.L. and P.J.P). Occurrence data were 

collated and modelled at species level, except when only one infra-specific taxon of a 

species is known to occur in the EAMs, in which cases the subspecies or variety was 

modelled. 

 

A project sponsored by the Critical Ecosystem Partnership Fund has recently undertaken an 

updated assessment of the conservation status of the combined EAM and Coastal Forest 

flora (Gereau et al., 2010). Pending publication on the IUCN Red List, we did not 

distinguish between threat categories, but simply identified as “Threatened” the modelled 

taxa that either have a proposed assessment in one of the globally threatened categories 

(Vulnerable, Endangered or Critically Endangered) or are considered as potentially 

threatened and remain to be evaluated. For purposes of endemism used a uniform lower 

altitudinal limit of 500 m. This procedure, although somewhat over-simplified given 

complexities in the altitudinal limits of coastal vegetation, was the most pragmatic given the 

data available (but see Chapters 2, 5 and 6, which post-date this article). Of the 452 taxa 

modelled, 68 are proposed as threatened and 25 are endemic to the EAMs. 

 

For model calibration purposes, we reviewed the locality information of all specimen 

records, assigning each to one of four spatial categories according to our confidence in the 

coordinates provided: 150 m or higher (42%), 1 km (21%), 2 km (30%) or lower (7%). Taxa 

with records of occurrence in ten or more distinct 1 km grid squares were modelled at 1 km 

resolution, using all available 150 m and 1 km records. The remaining taxa were modelled at 

2 km, using all available 150 m, 1 km and 2 km records, provided that these localities 

spanned ten or more 2 km grid squares. Records not trusted to within 2 km were omitted 

from model calibration, but were retained as independent test data. In some cases, there was 

scope to calibrate models at the very highest resolution (i.e., records available in ten or more 

150 m grid squares), potentially giving a superior representation of microclimate; this 

however was beyond the spatial precision of the climate and soils data. Moreover, specimens 

were often clustered within the same 1 km grid square, so running models at such a fine-

scale would have exacerbated fine-scale spatial dependence in the training data. 
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Appendix 4B.    Occurrence thresholds and sensitivity to prevalence 

 

Using a test set of 16 taxa (four of each growth form) we investigated the sensitivity of 

models to prevalence and to the chosen method for selecting occurrence thresholds (see table 

below; chosen method in bold font). We first tried an intermediate prevalence of 0.5, 

allocating absences at a ratio of 1:1 against presences. This approach resulted in spatial 

predictions that were poorly constrained and that varied considerably between runs. For our 

data, a presence-absence ratio of 1:5 was more appropriate. Lower prevalence (< 0.2) led to 

similar spatial patterns but slightly lower validation scores. Previous studies confirm that a 

prevalence in the range 0.2-0.8 minimises bias in validation metrics (Manel et al., 2001; 

McPherson et al., 2004) and allows optimal occurrence thresholds to be more easily 

identified (Liu et al., 2005). In our study, a prevalence below 0.2 also hindered comparison 

across growth forms, because for lianas the required number of absences sometimes 

exceeded the number of target sites available. 

 

Once calibrated at the chosen prevalence, models predicted occurrence on a continuous 

scale, from zero to one. Maps of estimated presence-absence were obtained by imposing 

taxon-specific occurrence thresholds, chosen by maximising the sum of sensitivity and 

specificity (Cantor et al., 1999). This approach was shown to perform well in a comparative 

study by Liu et al. (2005), who recommend it alongside two other techniques: the prevalence 

approach (threshold = model prevalence) and the sensitivity-specificity equality approach. 

All three methods produced similar results, but that maximising the sum of sensitivity and 

specificity yielded the most constrained predictions with minimal type II error. 

 

 Threshold Sensitivity Specificity 

 

Presences 1 : 5 Absences 

     Prevalence of training data 0.21 (0.01) 0.93 (0.02) 0.88 (0.02) 

     Sensitivity-specificity sum maximisation 0.37 (0.05) 0.94 (0.02) 0.93 (0.01) 

     Sensitivity-specificity equality 0.35 (0.04) 0.91 (0.02) 0.90 (0.02) 

Presences 1 : 10 Absences 

     Prevalence of training data 0.14 (0.02) 0.92 (0.02) 0.85 (0.02) 

     Sensitivity-specificity sum maximisation 0.27 (0.05) 0.93 (0.02) 0.90 (0.02) 

     Sensitivity-specificity equality 0.25 (0.04) 0.88 (0.02) 0.89 (0.02) 

Presences : All target sites 

     Prevalence of training data 0.09 (0.02) 0.92 (0.02) 0.84 (0.02) 

     Sensitivity-specificity sum maximisation 0.17 (0.04) 0.92 (0.02) 0.90 (0.02) 

     Sensitivity-specificity equality 0.14 (0.03) 0.89 (0.02) 0.89 (0.01) 
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Appendix 4C.    Analysis of model performance 

 

Box-plot comparisons of resolution and growth form 

 

Box widths are proportional to the number of taxa. From the top: proportion of deviance 

explained, area under the receiver-operator characteristic curve (AUC) including a five-fold 

cross-validation, and generalisation error (GE). The latter is defined as the proportion of 

above-chance AUC lost under cross-validation; GE ≈ 0 indicates a very stable model, whilst 

GE ≈ 1 warns that discriminatory ability at unvisited sites may be no better than chance. 
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Significance of differences between models 

 

Model resolution 

 

Wilcoxon rank sum tests (one-sided), comparing the performance of models calibrated at 1 

km resolution (254 trees, 7 lianas, 33 shrubs, 25 herbs) with those calibrated at 2 km 

resolution (50 trees, 5 lianas, 29 shrubs, 49 herbs). 

 

 

 

Growth form 

 

Wilcoxon rank sum tests (one-sided: rows > columns), comparing the performance of 

models calibrated for the different growth forms of plants (304 trees, 12 lianas, 62 shrubs, 74 

herbs). 

 

 Explained deviance AUC 5-fold AUC Generalisation error 
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Trees - ns ns ns - ns ns ns - ns ns *** - ns ns ns 

Lianas ns - ns ns ns - ns ns ns - ns ns *** - ns ns 

Shrubs ns ns - ns ns ns - ns ns ns - * *** ns - ns 

Herbs ns ns ns - ns ns ns - ns ns ns - *** ns * - 

                 

***, p ≤ 0.001 (extremely significant); **, p ≤ 0.01 (highly significant); *, p ≤ 0.05 (significant); ns, not significant 

 

 

 

 Explained deviance AUC 5-fold AUC Generalisation error 

 
1 km 
> 2 km 

2 km 
> 1 km 

1 km 
> 2 km 

2 km 
> 1 km 

1 km 
> 2 km 

2 km 
> 1 km 

1 km 
> 2 km 

2 km 
> 1 km 

         

Trees ns * ns * *** ns ns *** 

Lianas ns ns ns ns ns ns ns ns 

Shrubs ns ns ns ns ns ns ns ns 

Herbs ns ns ns ns ns ns ns ns 

All taxa ns * ns * *** ns ns *** 

         

***, p ≤ 0.001 (extremely significant); **, p ≤ 0.01 (highly significant); *, p ≤ 0.05 (significant); ns, not sig. 



 

Envelope uncertainty maps (EUMs) 

 

The proportional ‘distance’ of each grid cell from the calibration envelope was mapped with respect to each environmental predictor. Prediction uncertainty 

resulting from extrapolation to novel parameter space was estimated using an average of these maps, weighted according to the relative contributions of 

predictors in models (drop in explained deviance with predictor removed). The EUMs below show mean values for different growth forms of plant (number 

of taxa in parentheses). Dormann (2007b) recommends that one should not extrapolate further than 1/10th 
of the parameter range – caution is therefore 

recommended where the EUM > 0.1 (Chapter 3). 

 

 

 

 

 

 

 

 

 

 

Models rarely extrapolated far beyond the niche-breadth used for calibration. Environmental coverage of tree and herb data was particularly good. Coverage 

for shrubs was slightly less comprehensive with respect to western Nguru and northern Ukaguru, but models were not seriously affected (EUM < 0.1). 

Uncertainty was highest for lianas, generally increasing with distance from the coast. With the exception of western Nguru near Talagwe Forest Reserve, the 

areas of highest uncertainty did not coincide with present-day forest cover, and so our results were unaffected. 



 

Appendix 4D.    Patch occupancy for endemic/threatened taxa 

 

Histograms showing patterns of within-bloc patch occupancy for taxa that are endemic and/or threatened. Horizontal axes represent the largest contiguous 

area of forest providing environmentally suitable conditions for a particular species. Vertical axes show the number of species in each 30 km
2
 patch size 

interval. Filled bars relate to confirmed occurrence at the bloc level; open bars relate to predictions of occurrence in novel mountain blocs. 
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Appendix 4E.    Correlates of richness and endemism 

 

Richness 

 

Response of plant richness (across forested grid cells) to the environmental variables used in 

modelling, including the proportion of deviance explained in an additive model (D
2
). 

Temperature range is probably the strongest functional predictor. Soil variables appear to be 

important, but irrational response shapes suggest that these are not casual factors. 

Conversely, responses to slope and aspect appear sensible (overall richness higher on south 

and south-easterly slopes > 15˚; endemism higher on north-easterly slopes > 0˚) but explain 

little of the deviance in modelled richness. 
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Endemism 

 

Response of endemic plant richness (across forested grid cells) to the environmental 

variables used in modelling, including the proportion of deviance explained in an additive 

model (D
2
). Annual moisture index is the strongest predictor. As above, response shapes for 

soil predictors suggest spurious relationships. 
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