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Abstract This article presents the information-theoretic based feature information
interaction, a measure that can describe complex feature dependencies in multi-
variate settings. According to the theoretical development, feature interactions are
more accurate than current, bivariate dependence measures due to their stable and
unambiguous definition. In experiments with artificial and real data we compare first
the empirical dependency estimates of correlation, mutual information and 3-way
feature interaction. Then, we present feature selection and classification experiments
that show superior performance of interactions over bivariate dependence measures
for the artificial data, for real world data this goal is not achieved yet.

Keywords Multi modal information fusion · Feature selection and construction ·

Feature information interaction

1 Introduction

With the rise of Web 2.0 and its tendency to be populated with an ever-increasing
amount of images and videos, multimedia processing has become a lively discussed
field in research. At the center of multimedia systems, there is an essential need for
information fusion due to the multi modal nature of its data. Hence, the fusion of
multi modal data (e.g. text and images) has a large impact on the performance of
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algorithms for multimedia indexing, retrieval and classification, object recognition as
well as for data preprocessing like feature selection or data model development.

Information fusion has established itself as an independent research area over
the last decades, but a theoretic framework to describe general information fusion
systems is still missing [12]. Still today, the understanding of how fusion works and
by what it is influenced is limited. In multimedia document retrieval, especially for
web applications, the visual component is still lacking behind expectations. This can
be seen for example in the INEX 2006 [24] and 2007 Multimedia Tracks, where
text-based runs outperformed all others. Other examples of text-dominant retrieval
strategies are the commercial image search engines by Google, Yahoo!, that do not
use any visual features.

The work done so far on information fusion in multimedia settings can be divided
into two main tracks: (1) fusion of independent or complementary information by
assuming or creating independence and (2) fusion of dependent information by
exploiting their statistical dependencies. Both are applied in multimedia processing
problems equally successfully. Neither of these approaches is superior.

Aligned to the second approach, we investigate here another way of analyzing
input data for multimedia problems based on feature information interactions with
the long term goal of improving the performance of multimedia document retrieval
and classification. This multivariate, information theoretic based dependence mea-
sure is more accurate in detecting the hidden data structures e.g. situations, where
the independence assumption is sufficient and where the dependency between the
input data is not negligible. Freitas [7] gives a broad overview about the importance
of feature interaction in data mining. We think that the processing of and especially
the fusion in large scale multimedia collections is affected by similar problems and
that interactions can help to overcome them.

In Section 2, we discuss in more detail state-of-the-art fusion approaches with
independent and dependent input data and their shortcomings. Next, we present
in Section 3 the idea of feature interaction information and how it can help to
improve information fusion algorithms. In Section 4, we give the results of data
analysis experiments with artificial and real data, as well as results of classification
experiments based on feature selection and classification. Finally, conclusions and
future work are given in Section 5.

2 Related work

Our article discusses the problem of information fusion, but most of the related work
can be found in multimedia processing where information fusion is only implicitly
treated as one part of the problem. We review some example approaches and explain
when and why they may fail.

In early years of information fusion research, scientists fused different information
sources by assuming independence between them. One of the first works on classifier
and decision fusion used this principle, where they fusied neural network outputs
[20]. The independence assumption is still widely used in machine learning as for
example in the nave Bayes classifier. Its success is based on its simplicity in calcu-
lation and the learned models, as well as its robustness in estimating the evidence
[10]. Approaches that fuse independent or complementary sources mostly belong
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to classifier and decision fusion, where each modality of the input is first processed
separately and then a final decision is based on the individual results. This principle
has been applied e.g for multimedia retrieval [13, 26], multi modal object recognition
[25], multi-biometrics [19] and video retrieval [27].

Despite the successful application of this approach for some problems, it seems to
fail completely for others. In [19], it is shown that the violation of the independence
assumption hurts the information fusion performance. So a trade-off between simple
and fast calculated results and their accuracy is necessary. That loss in performance
was empirically explained in [5], where the authors showed that the maximum per-
formance in their multi-biometrics application can be achieved only if the statistical
dependencies between the modalities are taken into account. These algorithms are
also called myopic, because they treat all attributes as conditionally independent
given the class label [14].

To circumvent the problem of attribute dependencies in data, other approaches
try to create independence with the help of linear transformation methods like
principal and independent component analysis (PCA/ICA), factor analysis and
projection pursuit as reviewed in [8]. Unfortunately, these methods are not sufficient
to eliminate all dependencies in the data, since they target only pairwise and linear
feature dependencies [21]. In addition, the authors showed empirically that their
multi modal object recognition problem is affected by higher order dependency
patterns. A similar result was found in [22]. In the multimedia classification task the
Support Vector Machine (SVM) approach using an ICA-based feature selection was
outperformed by a SVM on the original data set.

Multimedia processing approaches that explicitly exploit attribute dependencies
fuse the information preferably at data or feature level. Example applications are
multimedia summarization [2], text and image categorization [4], multi modal image
retrieval [23] and web document retrieval [28]. These approaches all exploit some
form of attribute dependency at data level like co-occurrence (LSI [15]), correlation
(kCCA [22]) or mutual information. As examples for late fusion, where classifier
dependencies are exploited, can be named copula functions [9] or nonlinear fusion
algorithms based on SVM [3].

The most important shortcoming of those algorithms is that they only take
bivariate dependencies into account, even though they work in a multivariate setting
[16]. High level feature relationships such as conditional dependencies of a feature
pair to a third variable e.g. the class label are neglected. For now there exists no
proof that these higher order dependencies have an impact on the performance of
multimedia processing systems, but in [17] the exploitation led to a performance
improvement.

3 Feature information interaction

Before the introduction of feature interaction by Jakulin and Bratko [10] there was
no unifying definition of feature dependence in multivariate settings, but similar
formulae have emerged independently in other fields from physics to psychology.
Feature information interaction or co-information as it was named in [1] is based on
McGill’s multivariate generalization of Shannon’s mutual information. It describes
the information that is shared by all of k random variables, without over counting
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redundant information in attribute subsets. So, it finds irreducible and unexpected
patterns in data that are necessary to learn from data [18].

This general view of attribute interactions could help machine learning algorithms
to improve their performance. For example attribute interactions can be helpful in
domains where the lack of expert knowledge hinders the selection of very informa-
tive attributes sets by finding interacting attributes needed for learning. Another
example is the case when the attribute representation is primitive and attribute
relationships are more important than the attributes themselves. Then similarity
based learning algorithms fail, because the proximity in the instance space is not
related to classification in this domain.

Two levels of interactions can be differentiated: (1) relevant non-linearities
between the input attributes, which are useful in unsupervised learning and (2)
interactions between the input attributes and the indicators or class labels, which
is needed in supervised learning.

The k-way interaction information as found in Jakulin and Bratko (unpublished
manuscript) for a subset Si ⊆ X of all attributes X = {X1, X2, ..., Xn} is defined as:

I(S) = −
∑

T ⊆S

(−1)|S|−|T | H(T ) = I(S \ X|X) − I(S \ X), X ∈ S (1)

with the entropy defined as:

H(X ) = −
∑

X∈S

P(X)log2 P(X), (2)

where in case of several variables the joint probability distribution is used. The
feature interaction for k = 1 reduces to the single entropy, for k = 2 to the well
known mutual information and for k = 3 attributes A, B, C to McGill’s multiple
mutual information:

I(A; B) = H(A) + H(B) − H(A, B) (3)

I(A; B; C) = I(A; B|C) − I(A; B)

= H(A, B) + H(A, C) + H(B, C)

−H(A) − H(B) − H(C) − H(A, B, C). (4)

According to this definition 3-way information interaction will be only zero
iff A and B are conditionally independent in the context of C, because then
I(A; B|C) = I(A; B). So it gives only the information exclusively shared by the
involved attributes. Information interactions are stable and unambiguous, since
adding new attributes changes not already existing interactions, but adds only new
ones. Furthermore they are symmetric and undirected between attribute subsets.

An important characteristic of k-way feature information interactions with
k > 2 is that it can result in positive and negative values. Normally, when we
consider Markov chains A → B → C, the data processing inequality states that
conditioning always reduces the information I(A; B|C) ≤ I(A; B). This way the
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3-way mutual information would be limited to I(A; B; C) ≤ 0. But the problem
of feature interactions is not a Markov chain, that is why it is possible that
I(A; B; C) > 0. For example, let C = A + B and let A and B be independent ran-
dom variables, then I(A; B) = 0, but I(A; B|C) = H(A|C) − H(A|B, C) = P(C =

1)H(A|C = 1) = 0.5bit. The variables A, B are said to have a synergy towards C.
Thus, we can distinguish two different types of feature information interactions:

3.1 Synergy I(A; B; C) > 0

In case of positive interactions the process benefits from an unexpected synergy in
the data. In statistics this phenomena is called moderating effect and has been known
for a long time. Synergy occurs when A and B are statistical independent, but get
dependent in the context of C as can be seen in Fig. 1a. Myopic feature selections are
unable to exploit the synergy in the data.

3.2 Redundancy I(A; B; C) < 0

Negative interactions occur when attributes partly contribute redundant information
in the context of another attribute, which leads to a reduction of the overall depen-
dence. It is shown in Fig. 1b on behalf of the redundant attributes A, B towards a
third attribute C. In supervised learning the negative influence of redundancy can be
resolved by eliminating unneeded redundant attributes, but it could be advantageous
in unsupervised learning in the case of noisy data.

In any case myopic voting function that are based on the independence assump-
tion as well as fusion algorithms that use only local dependencies are confused by
positive and negative feature interactions, which results in decreased information
fusion performance.

In the following section we compare empirical estimates of correlation, mutual
information and 3-way feature information interaction for artificial and real multi
modal data to draw conclusions about their usefulness as dependence measure in
information fusion.

3.3 Calculation of 3-way feature information interactions

The calculation of the full feature information interaction matrices is expensive, since
the size of all possible combinations is Mk, where k is the size of the feature subset

Fig. 1 Interaction diagrams
of different types of
information interactions
between A, B and C (a, b)

a b
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and M the number of features. We formalize our problem as follows: d = [1, ..., N]

are the documents, fd = [1, .., M] are the extracted features and ld = [1, ..., C] are the
class labels, that are given as ground truth. The features and labels are represented
as probabilities over the documents such as:

P
(

f i
d j

)

=
m fi

md j

∑

i

P
(

f i
d j

)

= 1 ∀d j. (5)

and

P
(

li
d j

)

=

{

1, d j ∈ ci

0, otherwise
(6)

where m fi
is the number of occurrences of a feature in a document and md j

the
number of all features occurring in a document. These descriptions are conform
to the frequentist interpretation of probability and result in the discrete probability
matrix P(F) of size [M × N] and P(L) of size [C × N].

In the following experiments, we applied a sub-sampling strategy to approximate
interactions with k = 3 between two features and the class label. Using a normal
random distribution, we chose to draw a very small sample set MS << [M × M × C]

from the original search space. To do so, we approximated the joint entropies of
the features and class labels by contingency tables. Then, the approximated feature
interaction IS(A; B; C) between two random features and the class label is calculated
as described in the previous subsection.

This is in any case a sub optimal solution, since a lot of significant interaction will
be missing. Furthermore, also a lot of redundant interaction values are calculated,
which is due to the symmetry of the interactions.

4 Experiments

For the objective evaluation of the different dependence measures, we first con-
ducted tests on simple artificial data sets, where the relations between the input
variables as well as their relations towards the class labels are known. Then, we
applied the analysis to a real world collection: DB of the University of Washington
(UW), Seattle (http://www.cs.washington.edu/research/imagedatabase/groundtruth/).
Finally, we conducted classification experiments on the Washington collection using
feature selection and construction based on the different dependence measures.

4.1 Feature relationship analysis on artificial data

The first artificial data set is based on an AND combination of three binary, random
variables that define one of the three classes such as l1 = 1 if

(

f 1
∧

f 2
∧

f 3
)

. Class

2 and 3 are respectively dependent on features f 4, f 5, f 6 and f 7, f 8, f 9. So, the
intra-class relation between the variables is dominated by redundancy. The variables
that depend on different classes, also referred to as the inter-class relation, are
independent from each other. We generated N = 10000 samples as documents.

http://www.cs.washington.edu/research/imagedatabase/groundtruth/
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The statistical correlation is calculated by means of the Pearson correlation
coefficient, which gives the amount of the linear coherence between two random
signals A and B:

Cor(A, B) =
cov(A, B)

σAσB

. (7)

For the unsupervised case, which describes the correlation between the input
features, a correlation matrix Cor(F, FT) of size [M × M] is built. The supervised
case represents the correlation between the features and the class labels Cor(F, LT)

and results in a correlation matrix of size [M × C]. Mutual information and 3-way
feature interactions (here a calculation of the full interaction matrix was possible)
are calculated as described in the last section.

Figure 2 shows the empirical estimates and histograms of the correlation matrix,
the mutual information and the 3-way information interaction respectively for
the unsupervised (features towards features) and the supervised (features towards
class labels) case. In both cases, all dependence measures succeed in finding the
3 dependent intra-class variables, but with differences in accuracy.

Correlation, for example, is constantly overestimating the dependencies, because
it shows no independence for the inter-class variables. Furthermore, the knowledge
of positive or negative correlation are not useful for information fusion, but only the
absolute magnitudes.
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Fig. 2 Unsupervised (a, c, e) / supervised (b, d, f) case for AND combined artificial data
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Mutual information performs similarly in accuracy as information interaction. So,
it finds the inter-class independence of the input variables as well as the dependence
of the intra-class variables. Finally, information interaction is giving the most detailed
information about the data structure. For the intra-class variables, it results in nega-
tive interaction, which indicates redundancy. The inter-class information interactions
are zero. Surprisingly positive interactions, hence synergy, appears between the
blocks of intra-class variables, where we are not sure yet how to explain this.

The second and more interesting artificial data set is based on the AND set, but
now each input variable is replaced by its XOR combination of two variables. It has
again three classes, where each depends now on six input variables. This new data set
is therefore a parity problem, which contains synergy between the XOR combined
variables and their class labels, whereas the AND set only contains redundancy. We
generated again N = 10000 samples as documents d, that are described by M = 18

features and define C = 3 classes.
Figure 3a, 3c and 3e show the empirical estimates and the histograms for the

unsupervised case. Correlation finds independence between all variables except
between the parity variables, where it results randomly in positive or negative
correlations. This can be seen in the histogram that gives not the absolute values.
Mutual information as well as the 3-way information interaction also show only the
dependence between the parity variables. So none of the investigated dependence
measures finds the features that one class depends on in the unsupervised setting.
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Fig. 3 Unsupervised (a, c, e) / supervised (b, d, f) case for OR combined artificial data
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The results of the supervised case, that are presented in the Fig. 3b, 3d and 3f, show
a clear advantage of information interaction over the other dependence measures.
Correlation and mutual information do not succeed to find the parity variables
because they are based only on bivariate relationships. Information interaction finds
correctly synergy between the parity variables and detects all dependent variables of
a class (in Fig. 3f the example for class 1 is given).

To summarize, it can be said that feature information interactions can detect
complex dependence structures in data sets by giving their irreducible patterns. This
is especially true for parity problems. Furthermore, it allows to differentiate feature
relationships into synergies and redundancies, which we feel is useful knowledge to
exploit in information fusion for multimedia systems.

4.2 Feature relationship analysis on real data

For the real data experiments, we used the Washington collection, which consists
of N = 886 documents, which are images annotated with 1 to 10 keywords. They
are grouped into C = 20 classes like for example football, Barcelona and Swiss
mountains. The extracted feature set F consists of the global color and texture his-
tograms which result in Mc = 165 and Mx = 164 features respectively. Additionally,
we constructed a textual feature vector of size Mt = 297 with the term frequencies
of the keywords. The continuous variables are discretized with a simple equal length
quantizer.

Ignoring the class labels, we first investigated the feature dependencies for the
unsupervised setting. As described above, the full calculation of the 3-way feature
interactions is infeasible. So we largely under-sample the search space of size
I(Fk=3) = [626, 626, 626] by calculating only interactions for a randomly selected
subset of size MS = 80000. The same is done for the supervised case I(Fk=2, L) =

[626, 626, 20]. One should keep in mind that all the following results are based on
incomplete interaction matrices.

Figure 4a, 4c and 4e give the empirical estimates of the dependence measures and
their histograms. As expected the feature information interactions show only little
dependence in the feature set. Be aware that the interaction diagrams are scaled
between [−0.1, 0.1] compared to [−1, 1] for correlation and mutual information. So,
it is clearly visible that the latter two, both 2-way dependence measures, indicate
much higher relationships (in number and magnitude) between the features. Hence,
one can state that they also overestimate the feature’s dependencies for real data sets
as they do for the artificial data sets.

The results for the supervised setting are shown in Fig. 4b, 4d and 4e. Again, the
scale of the information interaction diagrams is set to [−0.1, 0.1]. Here the corre-
lation between the features and their class labels results in high dependencies that
are neither supported by the mutual information nor the 3-way feature information
interaction. Mutual information overestimates slightly the dependencies.

4.3 Classification experiments with feature selection and construction

In this section, we present classification experiments that compare our approach
of feature selection and construction based on feature information interaction to a
baseline system that uses no feature selection and systems that do a feature selection
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Fig. 4 Unsupervised (a, c, e) / supervised (b, d, f) case for the Washington collection

based on correlation, mutual information and random selection. The goal is to
determine whether the knowledge of synergies and redundancies can improve a
classification task in multimedia setting and how it is best exploited. The test
collection is again the Washington collection.

The classification is done with the SVM light library [11] using a RBF kernel.
We followed two different strategies: (1) a feature selection with late or hierarchical
fusion over each modality and (2) a feature construction implemented by a late
fusion over feature subsets of size k = 3. We ran a cross validation to optimize the
parameters of the SVM. As training set we randomly selected for each run and class
5 positive and 7 negative examples, the rest of the examples were used as test set.
The experiments were run with the one-against-all classification strategy, where the
classification errors were averaged over all classes and over 10 runs.

Feature selection A simple, but nevertheless common strategy for feature selection
approaches, that exploit statistical dependencies in a supervised setting, is the
calculation of the pair wise relationships between the attributes and the class labels
[6]. From the features that were ranked in descending order according to the applied
dependence measure the best Ms are selected as the subset fs = [1, .., Ms] to be
included in the classification.

Our dependence measure of 3-way feature information interactions I(Fk=2, L)

divides into the absolute value argmax|I(Fk=2, L)| labeled as (abs), the syner-
gies argmax(I(Fk=2, L)) (syn) and the redundancies argmin(I(Fk=2, L)) (red). As
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dependency measures to compare our approach with, we chose absolute correlation
argmax|Cor(F, LT)| (corr), mutual information argmaxI(F, L) (mut2D) and ran-
dom selection (rand). Figure 5 shows the developing of the classification error over
the number of selected features Ms for correlation, mutual information and random
selection on the left hand side and redundancy, synergy and absolute interaction on
the right hand side.

As can be easily seen in the plot, the correlation based feature selection performs
best with e = 0.19 at Ms = 46. Until about Ms ∼ 300 it outperforms the baseline
based on all features significantly. Thereafter, the systems with the feature selection
based on mutual information and redundancy follow with a similar performance with
e = 0.22 with Ms = 100 and e = 0.27 at Ms = 77 respectively. They can only slightly
outperform the all feature baseline, that achieves a classification error of e = 0.28.
The systems based on absolute information interactions, synergistic features and
random selection are completely unfeasible.

We conclude from this experiment that, first of all, the baseline can be out-
performed by feature selection based on correlation between the features and the
class label. Concerning the performance of our approaches based on information
interaction, we conclude that with feature selection only the redundancy information
can be exploited, but this is not sufficient to attain an equal performance as the
baseline or the correlation based feature selection.

Feature construction It is for this reason that we tried a simple feature construction
approach on the same data and feature evaluation measures. It is set up again as
a hierarchical SVM. But now, we create in the first step a mid-level feature over
each synergistic, redundant or correlated feature subset by using a SVM. The results
are then fused in a second level SVM towards the final classification result. In this
way we select highly synergistic, redundant or correlated feature subsets towards the
class labels.

The feature construction results based on correlation (corr), redundancy (red)
and synergy (syn) are shown in Fig. 6 for one to hundred feature subsets. Now
the synergistic features outperform largely the redundant ones with e = 0.32 at only
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Fig. 6 Classification errors
for the Washington collection
for fusion at feature subset
level
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M′ = 5 feature subsets of size k = 3, hence it uses only 10 features plus the class label.
Still, the synergistic feature subsets stay behind the performance of the full feature
set, but it achieves an acceptable classification result with only 1/100 of the original
feature set. This is the steepest reduction of the classification error within the first
few features, which makes this strategy valuable for extreme feature selection.

The experiments show, first of all, that feature redundancy and synergy have to be
treated separately in information fusion. The first one is best exploited with feature
selection and the other one achieves better results with feature construction. Pair
wise dependence measure can not detect this difference in feature dependencies.
We think that these preliminary results are promising and that further research
towards an efficient and complete calculation of feature information interaction, that
also allows the computation of higher order interactions k > 3, and the specialized
treatment of synergies and redundancies can help to improve information fusion in
future multimedia systems.

5 Conclusions and future work

The article reviews the formal theory and characteristics of feature information
interaction, an information-theoretic dependence measure. Through its stable and
unambiguous definition of feature relationships it can more accurately determine
dependencies, because e.g. redundant contributions to the overall relationships are
not over counted. Experiments on artificial data, where the feature dependencies are
known, undermine the theoretically claimed superior performance of information
interactions over bivariate dependence measures like correlation and mutual infor-
mation especially for parity problems.

With the help of classification experiments on real world data we showed that
the discrimination of positive interactions, synergies, and negative interactions,
redundancy, is valuable in information fusion, which is necessary in multimedia clas-
sification and retrieval. Here especially synergistic feature sets prove to be beneficial
to reduce the input feature set drastically, but this is for now going along with a
loss in performance. This drawback we hope to overcome with the development
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of an efficient and hence complete calculation of all relevant feature information
interactions. Other directions in future work is to apply more sophisticated feature
selection and construction approaches.

Other directions of research will be the utilization of more complex multimedia
data such as the Wikipedia collection and tests with more sophisticated features like
moment-based visual features.
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