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Abstract

The diagnosis of Alzheimer’s disease (AD) needs to be improved. We investigated if hippo-

campal subfield volume measured by structural imaging, could supply information, so that

the diagnosis of AD could be improved. In this study, subjects were classified based on clini-

cal, neuropsychological, and amyloid positivity or negativity using PET scans. Data from

478 elderly Korean subjects grouped as cognitively unimpaired β-amyloid-negative (NC),

cognitively unimpaired β-amyloid-positive (aAD), mild cognitively impaired β-amyloid-posi-

tive (pAD), mild cognitively impaired—specific variations not due to dementia β-amyloid-

negative (CIND), severe cognitive impairment β-amyloid-positive (ADD+) and severe cogni-

tive impairment β-amyloid-negative (ADD-) were used. NC and aAD groups did not show

significant volume differences in any subfields. The CIND did not show significant volume

differences when compared with either the NC or the aAD (except L-HATA). However, pAD

showed significant volume differences in Sub, PrS, ML, Tail, GCMLDG, CA1, CA4, HATA,

and CA3 when compared with the NC and aAD. The pAD group also showed significant dif-

ferences in the hippocampal tail, CA1, CA4, molecular layer, granule cells/molecular layer/

dentate gyrus, and CA3 when compared with the CIND group. The ADD- group had signifi-

cantly larger volumes than the ADD+ group in the bilateral tail, SUB, PrS, and left ML. The

results suggest that early amyloid depositions in cognitive normal stages are not accompa-

nied by significant bilateral subfield volume atrophy. There might be intense and accelerated

subfield volume atrophy in the later stages associated with the cognitive impairment in the

pAD stage, which subsequently could drive the progression to AD dementia. Early subfield

volume atrophy associated with the β-amyloid burden may be characterized by more sym-

metrical atrophy in CA regions than in other subfields. We conclude that the hippocampal
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subfield volumetric differences from structural imaging show promise for improving the diag-

nosis of Alzheimer’s disease.

Introduction

Alzheimer’s disease (AD) is a non-curable and irreversible neurodegenerative disease that

accounts for approximately 70% of all dementia cases. In 2015, around 46.8 million people

worldwide were living with dementia, which is estimated to rise to approximately 131.5 million

by 2050. In addition, the estimated cost of the disease is about a trillion US dollars in 2018 and

is expected to double by 2030 [1]. AD is histopathologically characterized by neuritic plaques

composed of amyloid-beta (Aβ) protein aggregates and neurofibrillary tangles composed of

tau protein [2, 3]. There are a few criteria that can be combined to diagnose AD: 1) Aβ deposi-

tions quantified using cerebrospinal fluid analysis or in vivo amyloid positron emission tomog-

raphy (PET) imaging, 2) anatomical changes in the brain detected through structural magnetic

resonance imaging (MRI), and 3) cognitive impairments assessed through neuropsychological

tests [4].

The first AD-related change is the Aβ accumulation, which is believed to start at least two

decades before any other clinical symptoms [5, 6], and the testing for amyloids using PET

imaging comes with various problems. First, amyloid imaging of both asymptomatic subjects

and subjects with cognitive complaints unconfirmed after a clinical examination is considered

inappropriate and also practically highly challenging [7]. Second, approximately 10–30% of

cognitively normal controls test amyloid positive by PET imaging [8–10], and third, the high

costs are currently not covered by Medicare or other insurances. So, it will be helpful to have a

reliable additional parameter or complementary information that can help to improve the AD

diagnosis and to justify the use of PET imaging in certain unclear or questionable diagnoses.

In search of this complementary information, we investigated the second AD-related change

which is hippocampal volume atrophy, often examined through structural MRI.

Quantitative analysis of structural MRI can serve as an in vivo surrogate for the severity of

disease in various stages of disease progression [11–14]. Hippocampal volumetry is among the

highly discussed and studied quantitative MRI measures and is considered a powerful non-

invasive biomarker for AD in diagnostic criteria and clinical trials [15–18]. The hippocampus

is a non-homogeneous structure with histologically distinct subfields. Each subfield is believed

to be functionally distinct, performing functions related to learning and memory, certain

aspects of motor control, regulation of emotional behavior, and regulation of hypothalamic

functions, among others (S1 Table) [19]. However, traditionally, the limitations of MRI resolu-

tion and the lack of consistent and reliable segmentation methods forced researchers to con-

sider the hippocampus as a single homogeneous structure [20–22]. Recent advances in

segmentation techniques made it possible to process large subject groups and automatically

segment the hippocampus into its various subfields more efficiently, swiftly, and with greater

reproducibility [23].

However, recent research [24] suggests that automated segmentation techniques must be

employed with caution on the relatively low-resolution MRI data currently available. Despite

these limitations, we believe that dividing the hippocampus into parts or subfields might pro-

vide extra information compared to a focus on the total hippocampus. An example of the

information that the subregions can provide is the pattern of neuronal loss in the CA1 of the

hippocampus, which is qualitatively different and higher in AD subjects than in normal aging

subjects [25, 26]; another example is that of the DG, where subject groups with various
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neuropsychological disorders and high levels of stress have shown more severe adverse effects

than controls, suggesting that these impacts act selectively on the subfields and not on the

whole hippocampus [27]. So, the localization of subfield-specific volume loss or neurodegen-

eration could thus be a harbinger of future damage. Additionally, knowledge about the possi-

ble differences in the hippocampal subfields between the different diagnostic groups will

encourage the development of newer accurate segmentation protocols.

The number of studies on changes in hippocampal subfield volume associated with the Aβ
burden and cognitive status in AD and stages preceding AD is limited. In this study, we tried

to improve the diagnosis of AD by not taking the traditional focus on the total hippocampus

but instead focusing on hippocampal subfield volume. We expected 1) asymmetry in the sub-

field volumes between the groups, 2) larger subfield volumes in the Aβ negative groups than in

the Aβ positive groups, and 3) reduction in the subfield volumes along the AD continuum.

When most of the findings are in the expected directions, the information might be used to

improve the diagnosis of Alzheimer’s disease.

Methods

Study participants

The regional ethics committee approved the study, and written consent was obtained from the

participants, family members, or caregivers. Subjects were first classified into three groups—

normal control (NC), mildly cognitively impaired (MCI), and Alzheimer’s disease dementia

(ADD). The clinical diagnosis of probable AD was made according to the National Institute of

Neurological and Communicative Diseases and Stroke/Alzheimer’s Disease and Related Dis-

orders Association Alzheimer’s criteria [4]. Controls had no evidence of neurological disease

or impairment in cognitive function or activities of daily living. Individuals with a focal lesion

on the brain identified using MRI (magnetic resonance imaging), a history of head trauma, or

a psychiatric disorder that could affect mental function were excluded. The diagnosis of MCI

was made according to the National Institute on Aging-Alzheimer’s Association’s (NIA-AA)

criteria [28]. Depending on the PET scans (positive or negative) and as summarized in

Table 1, (S2 Table and S2 Fig), 478 study subjects (NC: n = 192; β-amyloid negative cognitively

unimpaired [NC-]), asymptomatic AD (n = 34; β-amyloid positive cognitively unimpaired

[aAD or NC+]), cognitive impairments that are not dementia (CIND) (n = 118; β-amyloid

negative mildly cognitively impaired [MCI-]), prodromal AD (n = 34; β-amyloid positive

mildly cognitively impaired [pAD or MCI+]), Alzheimer’s disease dementia negative (n = 30;

β-amyloid negative severely cognitively impaired [ADD-]), and Alzheimer’s disease dementia

(n = 70; β-amyloid positive severely cognitively impaired [ADD+]) were recruited by the

Gwangju Alzheimer’s disease and Related Dementias (GARD) cohort research center at Cho-

sun University in Gwangju, Republic of Korea.

Clinical and neuropsychological assessments

Participants underwent testing using the Seoul Neuropsychological Screening Battery, a com-

prehensive neuropsychological battery of tests and subtests assessing five cognitive domains:

memory (subtests: Orientation and Verbal and Visual Memory), language (Korean version of

the Boston Naming Test and written Calculation Trails), attention (Forward and Backward

Digit Span), visuospatial functions (Copying Test from the Rey Complex Figure Test), and

frontal/executive functions (Motor Impersistence, Contrasting Program, Go-no-go Test, Fist-

edge-palm task, and the Luria Loop task) [29, 30]. In addition, the battery of tests included the

Korean version of the Mini-Mental State Examination (MMSE) [31], the Clinical Dementia

Rating [32], and the Seoul Instrumental Activities of Daily Living [33]. Control subjects did
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not show any evidence of neurological disease or impairment in cognitive function or activities

of daily living.

MRI acquisition

Contiguous 0.8 mm sagittal Magnetization-Prepared Rapid Acquisition Gradient Echo

(MPRAGE) images of the whole brain examined at the GARD cohort research center was

acquired using a 3T MR scanner (Skyra, Siemens) with the following parameters: TR = 2300

ms; TE = 2.143 ms; TI = 900 ms; 9 flip angles; FoV = 256x256; matrix = 320x320; number of

slices = 178.

MRI data processing

High-resolution structural T1-weighted images were processed using the FreeSurfer software

package (v5.3.0 & v6.0.0; Athinoula A. Martinos Center for Biomedical Imaging, Harvard Uni-

versity, Cambridge, MA, USA) on a Linux environment using a 64-bit CentOS 7 operating sys-

tem. The complete documentation of the FreeSurfer pipeline and methodologies can be found

elsewhere [34–38]. Complete automated processing, including cortical and subcortical labeling

using the Desikan–Killiany atlas, was performed on each subject. Then, the hippocampal sub-

fields were accessed using FreeSurfer v6.0.0, sub-dividing the hippocampus into subfields,

namely the hippocampal tail (Tail), Sub, CA1, hippocampal fissure (fissure), presubiculum

(PrS), parasubiculum (PaS), molecular layer (ML), granule cells/molecular layer/dentate gyrus

(GCMLDG), CA3, CA4, fimbria, and hippocampal-amygdala transition area (HATA) (S1 Fig)

[23]. The hippocampal subfields segmentation was performed for all groups using only Free-

Surfer (v6.0.0). It should be noted that the CA3 sector includes the CA2 sector in the hippo-

campal subfield atlas used. In the current study, we excluded the whole hippocampus volumes

from all analyses, as the primary focus was on the subfields.

PET imaging

Subjects underwent a PET scan 90 min after intravenous injection of 300 MBq 18F-florbetaben

using a dedicated Discovery ST PET-CT scanner (General Electric Medical Systems,

Table 1. Demographic characteristics of the study population.

NC aAD CIND pAD ADD- ADD+

Number of subjects (n) 192 34 118 34 30 70

Agea,b 71.95±5.30 73.80±4.21 72.50±6.96 74.17±6.11 73.76±6.48 72.18±6.92

Male (%)c 46.35 47.05 43.22 67.64 50 48.57

Level of education (years)a,d 9.32±5.50 8.79±5.75 9.66±5.15 8.82±4.93 9.13±6.02 7.48±5.03

MMSEa,e 27.43±2.03 27.41±2.09 25.17±3.39 25.23±3.14 19.06±7.86 19.41±5.73

Values are expressed as mean ± standard deviation (SD).

NC, normal controls; ADD, Alzheimer’s disease dementia; aAD, asymptomatic Alzheimer disease; pAD, prodromal Alzheimer disease; CIND, cognitive impairments

that are not dementia; MMSE, Mini Mental State Examination.
aThe P-values were calculated using general linear model; Bonferroni post hoc test was also performed when F-test was significant.
bMain interaction among groups: F5, 478 = 1.29, p = 0.26. (Age)
cThe P-value were calculated using the χ2 test: χ2 = 6.60, p = 0.25. (Gender)
dMain interaction among groups: F5,478 = 2.54, p = 0.02. Post hoc: CIND versus ADD+, 0.01, others were insignificant. (Education)
eMain interaction among groups: F5, 478 = 73.44, p = 1.08E-56. post hoc: NC versus aAD, 1.00; NC versus pAD, 8.99E-3; NC versus ADD+, 5.77E-45; NC versus CIND,

3.46E-7; NC versus ADD-, 1.61E-29; aAD versus pAD, 0.04; aAD versus ADD+, 2.85E-24; aAD versus CIND, 2.58E-3; aAD versus ADD-, 2.29E-20; pAD versus ADD+,

1.90E-12; pAD versus CIND, 1.00; pAD versus ADD-, 5.93E-11; CIND versus ADD+, 8.71E-22; CIND versus ADD-, 1.14E-15; ADD+ versus ADD-, 1.00. (MMSE)

https://doi.org/10.1371/journal.pone.0275233.t001
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Milwaukee, WI, USA). Non-contrast-enhanced computed tomography (CT) scans were used

for attenuation correction with technical parameters of 120 Kvp, 10–130 mAs, eight slices,

helical, and 3.79 mm slice thickness. PET and CT scan data were reconstructed using ordered

subset expectation maximization after attenuation correction with two iterations and 21 sub-

sets. A Gaussian filter was applied with 5.14 mm FWHM to reconstruct a 128 × 128 matrix

with 3.27-mm slice thickness.

PET image data processing

PET images were assessed according to a predefined regional cortical tracer uptake (RCTU)

scoring system (“1” = no uptake, “2” = minor uptake, “3” = pronounced uptake) for four

brain regions (frontal cortex, posterior cingulate, lateral temporal cortex, parietal cortex).

Details of a three-grade scoring system using RCTU scores for the amyloid plaque load have

been provided previously [39]. For the PiB-PET images, the mean retention value of the

global cortical region of interest (ROI) was used to define the global cerebral Aβ deposition

as amyloid-positive if the mean standard value uptake ratio was > 1.4 in at least one of the

ROIs, including the frontal, lateral parietal, lateral temporal, or posterior cingulate-precu-

neus [40].

Statistical analyses

All statistical analyses were performed using IBM SPSS Statistics (Version 23.0., Armonk, NY:

IBM Corp.) All analyses were two-tailed and controlled for the covariates: age, sex, years of

education, and estimated total intracranial volume. One-way analysis of variance and Bonfer-

roni post hoc correction for multiple comparisons was used for continuous demographic vari-

ables, and chi-squared tests were performed for categorical demographic variables. A series of

analysis of covariance (ANCOVA) on the estimated subfield volumes adjusting for the covari-

ates were performed comparing the six diagnosis groups. The P-values of the comparisons

between the diagnosis groups were corrected using the Bonferroni correction for multiple

comparisons. The Bonferroni correction was performed across the 24 regions and six groups

(Table 2). Further post hoc analysis of the subfields that met the minimum standards of signifi-

cance after the Bonferroni correction for multiple comparisons were performed for pairwise

comparisons between the two groups. Here, we considered p< 0.05 as significant (Table 3).

The left-right hemispheric volumetric asymmetry comparisons were evaluated using the t-test
(Table 4). p< 0.05 was considered statistically significant. Additionally, we investigated the

hemispheric volumetric correlation among the six diagnostic groups using Pearson’s correla-

tion, and again we used a statistical significance of p < 0.05.

Results

Demographics

Table 1 shows no significant differences in terms of age (F5, 478 = 1.29, p = 0.26) and gender (χ2

test: χ2 = 6.60, p = 0.25) were observed among the groups. Levels of education (F5, 478 = 2.54,

p = 0.02) were significantly different when all the groups were compared, and an additional

pairwise comparison revealed that the difference was only specific to CIND and ADD+ groups

(post hoc: CIND versus ADD+, p = 0.01). The MMSE scores were significantly different

between the groups (F5, 478 = 73.44, p = 1.08E-56). However, the post hoc analyses showed that

the scores were not different between aAD and NC, pAD and CIND, and ADD- and ADD

+ groups.

PLOS ONE Hippocampal subfield measures to improve the diagnosis of Alzheimer’s disease?

PLOS ONE | https://doi.org/10.1371/journal.pone.0275233 November 3, 2022 5 / 17

https://doi.org/10.1371/journal.pone.0275233


Group comparisons and hemispheric asymmetry findings

As summarized in Tables 2 and 3, comparisons of the six groups showed that hippocampal fis-

sure volume was not significantly different between them (after adjusting for Bonferroni cor-

rection, p = 0.05/ 24 structures/ 6 groups = 3.47E-4). Additionally, the bilateral PaS, left CA3,

and right fimbria did not show any significant volume differences between the aAD and pAD

groups. The left fimbria and right CA3 showed significant atrophy in the supposed early AD

progression stages, though they did not show any significant atrophy difference between the

pAD and ADD+ groups. The percentile volume loss was higher in the prodromal AD to AD

dementia stage than in the preclinical AD to prodromal AD stage. Predominantly, there was a

higher percentile volume loss in the left hemisphere than in the right hemisphere.

Findings in NC and aAD groups

Subfield volumes between NC and aAD groups were not significantly different from each

other (Tables 2 and 3; Fig 1). We observed left-right hemispheric differences in both groups,

with significantly larger right hemisphere volumes than in the left hemisphere, except in the

Table 2. Volume (mm3) of left and right hippocampal subfields.

Labels ADD+ ADD- pAD CIND aAD NC ANCOVA (F5,478)a

L-Fissure 149.88 ± 33.57 154.83 ± 34.00 159.41 ± 24.29 162.21 ± 29.12 172.10 ± 34.43 160.11 ± 27.90 F = 3.13, p = 8.59E-3

L-Sub 308.11 ± 66.61 347.25 ± 72.95 369.83 ± 63.23 401.40 ± 60.71 424.64 ± 49.35 417.85 ± 56.92 F = 46.39, p = 6.44E-39

L-PaS 46.09 ± 16.36 48.78 ± 17.24 55.16 ± 17.36 56.40 ± 13.78 61.55 ± 12.74 59.79 ± 12.68 F = 11.57, p = 1.48E-10

L-PrS 208.21 ± 47.41 237.46 ± 53.27 257.19 ± 48.99 272.08 ± 44.17 289.84 ± 33.58 287.52 ± 40.76 F = 43.68, p = 5.82E-37

L-ML 408.85 ± 77.50 449.87 ± 87.82 482.60 ± 66.31 522.99 ± 68.09 546.98 ± 63.55 539.50 ± 65.19 F = 52.67, p = 2.52E-43

L-Tail 367.24 ± 68.69 423.95 ± 78.52 418.37 ± 68.78 462.28 ± 68.43 477.84 ± 73.85 472.28 ± 68.34 F = 29.73, p = 3.03E-26

L-CA3 172.54 ± 31.82 178.19 ± 37.09 200.53 ± 29.85 210.59 ± 27.94 214.03 ± 41.08 213.70 ± 32.77 F = 24.35, p = 8.15E-22

L-Fimbria 59.14 ± 22.42 63.84 ± 25.77 69.97 ± 26.30 81.24 ± 25.53 85.99 ± 18.62 84.19 ± 24.14 F = 14.60, p = 2.60E-13

L-GCMLDG 229.96 ± 40.92 245.29 ± 47.92 263.17 ± 35.50 287.45 ± 36.80 296.35 ± 39.54 295.08 ± 36.86 F = 44.33, p = 1.98E-37

L-CA1 477.85 ± 92.31 511.09 ± 98.12 544.91 ± 72.45 583.79 ± 74.48 614.49 ± 81.20 598.89 ± 75.10 F = 34.57, p = 4.39E-30

L-HATA 46.82 ± 11.96 46.62 ± 10.91 53.89 ± 9.95 57.78 ± 9.66 63.29 ± 10.32 60.46 ± 10.89 F = 25.40, p = 1.07E-22

L-CA4 202.21 ± 35.73 215.96 ± 42.23 231.55 ± 29.38 251.07 ± 30.58 259.05 ± 35.00 257.03 ± 30.88 F = 43.16, p = 1.41E-36

R-Fissure 181.48 ± 38.14 172.64 ± 33.38 178.40 ± 34.44 177.75 ± 30.78 188.08 ± 29.16 178.30 ± 33.36 F = 0.93, p = 0.45

R-Sub 329.74 ± 68.34 365.66 ± 73.24 390.26 ± 62.43 414.59 ± 61.67 441.39 ± 44.07 432.65 ± 56.53 F = 39.00, p = 1.74E-33

R-PaS 43.96 ± 15.75 47.85 ± 12.89 52.31 ± 14.01 54.45 ± 13.15 60.63 ± 12.27 56.68 ± 12.72 F = 12.41, p = 2.51E-11

R-PrS 217.71 ± 46.03 238.89 ± 40.17 258.08 ± 47.01 268.26 ± 39.84 287.46 ± 29.52 282.33 ± 38.26 F = 33.00, p = 7.43E-29

R-ML 449.71 ± 79.22 481.45 ± 81.13 516.56 ± 69.68 550.98 ± 72.96 575.95 ± 61.62 567.40 ± 69.10 F = 39.56, p = 6.63E-34

R-Tail 413.57 ± 73.19 462.34 ± 84.05 461.81 ± 73.33 498.45 ± 70.93 513.29 ± 74.27 505.78 ± 68.02 F = 21.06, p = 5.16E-19

R-CA3 194.06 ± 30.42 196.48 ± 36.07 210.36 ± 31.59 225.64 ± 32.92 231.05 ± 37.00 227.71 ± 34.42 F = 16.61, p = 4.06E-15

R-Fimbria 50.77 ± 19.31 55.49 ± 20.87 64.02 ± 22.51 68.86 ± 23.97 74.23 ± 18.37 73.72 ± 23.69 F = 13.50, p = 2.55E-12

R-GCMLDG 252.92 ± 38.89 261.94 ± 45.51 281.64 ± 38.63 302.33 ± 40.69 311.51 ± 41.24 307.42 ± 40.85 F = 28.88, p = 1.47E-25

R-CA1 533.81 ± 95.01 555.63 ± 90.33 592.31 ± 77.94 627.89 ± 81.62 655.64 ± 75.23 641.90 ± 81.02 F = 25.74, p = 5.68E-23

R-HATA 47.14 ± 9.79 49.75 ± 9.54 54.20 ± 8.87 56.58 ± 9.04 61.07 ± 7.45 58.96 ± 9.53 F = 21.61, p = 1.74E-19

R-CA4 222.69 ± 33.48 231.73 ± 39.16 246.65 ± 31.58 264.53 ± 33.82 272.52 ± 35.67 268.15 ± 33.52 F = 29.13, p = 9.25E-26

Values are expressed as mean ± SD.

Bold characters indicate significant results.

Key: L-, left; R-, right; ANCOVA, analysis of covariance.
aANCOVA followed by Bonferroni correction was carried out to test the differences among groups (adjusting for the covariates age, gender, level of education, and total

intracranial volume. Adjustment for multiple comparisons: p = 0.05/ 24 structures/ 6 groups = 3.47E-4). When the ANCOVA was significant, pairwise Bonferroni post

hoc was applied. Whole hippocampus data is not shown.

https://doi.org/10.1371/journal.pone.0275233.t002
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PrS, PaS, fimbria, and HATA (Table 4). In these regions, the volumes on the right were smaller

than those on the left. However, in the aAD group, these differences were not statistically sig-

nificant, except in the fimbria. In addition, the asymmetries were higher in the NC group than

in the aAD group. Compared to other subfields, the left-right PaS volumes in NC and aAD

groups were weakly correlated (Table 5).

Findings in CIND and pAD groups

As shown in Tables 2 and 3 and Fig 1, bilateral volumes of the hippocampal tail, CA1, ML,

GCMLDG, CA4, and right CA3 significantly differed between CIND and pAD groups, with

larger volumes in the CIND group than in the pAD group. In addition, left-right hemispheric

asymmetries were significantly higher in CIND than in the pAD group. All other subfields

except PrS, PaS, HATA, and fimbria (Table 4) had larger right hemisphere volumes. The left-

right PaS volumes in CIND and pAD groups were moderately correlated (Table 5).

Findings in ADD- and ADD+ groups

The ADD- group had significantly larger volumes than the ADD+ group in the bilateral tail,

SUB, PrS, and left ML (Tables 2 and 3; Fig 1). In addition, subfields other than the PrS, PaS,

Table 3. Bonferroni pairwise post hoc analysis.

Labels NC vs.

aAD

NC vs.

pAD

NC vs.

ADD+

NC vs.

CIND

NC vs.

ADD-

aAD vs.

pAD

aAD vs.

ADD+

aAD vs.

CIND

aAD vs.

ADD-

pAD vs.

ADD+

pAD vs.

CIND

pAD vs.

ADD-

CIND vs.

ADD+

CIND vs.

ADD-

ADD

+ vs.

ADD-

L-Sub

L-PaS

L-PrS

L-ML

L-Tail

L-CA3

L-Fimbria

L-GCMLDG

L-CA1

L-HATA

L-CA4

R-Sub

R-PaS

R-PrS

R-ML

R-Tail

R-CA3

R-Fimbria

R-GCMLDG

R-CA1

R-HATA

R-CA4

Statistically significant Statistically insignificant

Values are expressed as pairwise comparison P-values.

Bold characters with p < 0.05 indicate significant results.

Key: NA, not applicable; L-, left; R-, right.

Comparisons in each column are made based on both cognitive categories and the amyloid-PET statuses

https://doi.org/10.1371/journal.pone.0275233.t003
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HATA, and fimbria (Table 4) had larger right hemisphere volumes than left hemisphere vol-

umes. Inconsistent with the between NC and aAD and the between CIND and pAD group

findings, the left-right hemispheric asymmetry was lower in the ADD- group than in the

ADD+ group. In addition, the PaS left-right hemispheric volumes were weakly correlated in

the ADD+ group and moderately correlated in ADD- group (Table 5).

Discussion

In this study, we tried to improve the diagnosis of AD by not taking the traditional focus on

the total hippocampus but by instead focusing on hippocampal subfield volume. To the best of

our knowledge, the current study is the first large-scale study of the Korean population to

investigate changes in distinct hippocampal subfield volumes that accompany the Aβ burden

and cognitive changes in AD and stages preceding AD. As expected, 1) there were asymmetries

in the subfield volumes among the groups that were distinct for the respective group, 2) the Aβ
negative group had larger subfield volumes than the Aβ positive group in both the mild cogni-

tively impaired and the severe cognitively impaired groups, and 3) the subfield volumes

showed a decreasing trend along the AD continuum. The additional findings from the study

were that (1) there was an intense and accelerated focal atrophy at the pAD, which was specific

to prodromal AD subjects, (2) certain hippocampal subfields showed no volume loss till the

late prodromal AD or very early ADD stage, and (3) the subfield volume loss in ADD might be

Table 4. Comparison of hemispheric differences using paired t-tests.

Labels NC aAD CIND pAD ADD- ADD+

PaS t = 3.09, t = 0.34, t = 1.55, t = 1.21, t = 0.39, t = 0.90,

p = 2.26E-3 p = 0.73 p = 0.12 p = 0.23 p = 0.69 p = 0.36

PrS t = 2.24, t = 0.44, t = 1.61, t = -0.18, t = -0.22, t = -1.88,

p = 0.02 p = 0.65 p = 0.10 p = 0.85 p = 0.82 p = 0.06

Fimbria t = 7.42, t = 4.14, t = 7.27, t = 1.64, t = 2.23, t = 4.01,

p = 3.67E-12 p = 2.22E-4 p = 4.23E-11 p = 0.11 p = 0.03 p = 1.47E-4

HATA t = 2.27, t = 1.38, t = 1.88, t = -0.22, t = -2.70, t = -0.22,

p = 0.02 p = 0.17 p = 0.06 p = 0.82 p = 0.01 p = 0.81

Fissure t = -9.79, t = -4.29, t = -6.91, t = -4.31, t = -5.72, t = -8.41,

p = 1.27E-18 p = 1.45E-4 p = 2.59E-10 p = 1.38E-4 p = 3.00E-6 p = 3.50E-12

Sub t = -5.38, t = -2.91, t = -4.99, t = -3.51, t = -2.53, t = -3.79,

p = 2.14E-7 p = 6.37E-3 p = 2.00E-6 p = 1.28E-3 p = 0.01 p = 3.15E-4

ML t = -9.13, t = -4.61, t = -8.13, t = -5.08, t = -3.77, t = -5.87,

p = 9.32E-17 p = 5.60E-5 p = 5.05E-13 p = 1.50E-4 p = 7.28E-4 p = 1.33E-7

Tail t = -9.18, t = -4.97, t = -9.57, t = -5.95, t = -3.87, t = -8.81,

p = 7.11E-17 p = 2.00E-5 p = 2.18E-16 p = 1.00E-6 p = 5.58E-4 p = 6.59E-13

CA3 t = -7.85, t = -4.56, t = -7.30, t = -2.48, t = -4.14, t = -7.26,

p = 2.88E-13 p = 6.60E-5 p = 3.61E-11 p = 0.01 p = 2.73E-4 p = 4.31E-10

GCMLDG t = -6.91, t = -3.71, t = -7.38, t = -4.86, t = -3.11, t = -6.85,

p = 6.95E-11 p = 7.49E-4 p = 2.41E-11 p = 2.70E-5 p = 4.10E-3 p = 2.46E-9

CA1 t = -10.85, t = -6.24, t = -10.23, t = -5.74, t = -4.43, t = -6.34,

p = 1.06E-21 p = 4.67E-7 p = 5.96E-18 p = 2.00E-6 p = 1.20E-4 p = 1.96E-8

CA4 t = -7.09, t = -4.10, t = -7.73, t = -4.72, t = -3.37, t = -6.76,

p = 2.47E-11 p = 2.50E-4 p = 3.99E-12 p = 4.10E-5 p = 2.10E-3 p = 3.55E-9

Values are expressed as t-statistics and respective P-values.

Bold characters with p < 0.05 indicate significant results.

https://doi.org/10.1371/journal.pone.0275233.t004
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stronger than in other suspected non-Alzheimer’s pathology. Most of the findings are in the

expected directions, which could be taken to mean that the information might be used to

improve the diagnosis of Alzheimer’s disease.

Findings of the study

Neurodegeneration is believed to cause cognitive dysfunction, which is expected to be medi-

ated by the deposition of β-amyloid [20]. Approximately 10–30% of cognitively normal

Fig 1. Hippocampal subfield volumes in NC, aAD, pAD, and ADD groups adjusting for the covariates age, sex, level of education, and intracranial

volume. Error bars indicate two standard errors. There were seven prominent regions among the entire 13 regions. NC, normal controls; aAD, asymptomatic

Alzheimer Disease; pAD, prodromal Alzheimer Disease; ADD, Alzheimer Disease Dementia; n.s, not statistically significant; �, p< 0.05; ��, p< 0.01; ���,

p< 0.001.

https://doi.org/10.1371/journal.pone.0275233.g001

Table 5. Correlations between the two hemispheres.

Labels NC aAD CIND pAD ADD- ADD+

Fissure r = 0.66, p = 1.90E-25 r = 0.77, p = 5.55E-8 r = 0.66, p = 1.17E-16 r = 0.66, p = 1.60E-5 r = 0.87, p = 3.31E-10 r = 0.62, p = 8.66E-9

Sub r = 0.77, p = 1.21E-39 r = 0.74, p = 3.66E-7 r = 0.89, p = 1.92E-41 r = 0.85, p = 1.22E-10 r = 0.85, p = 2.30E-9 r = 0.75, p = 7.41E-14

PaS r = 0.40, p = 8.37E-9 r = 0.21, p = 0.21 r = 0.49, p = 1.34E-8 r = 0.64, p = 4.30E-5 r = 0.67, p = 4.70E-5 r = 0.25, p = 0.03

PrS r = 0.67, p = 1.42E-26 r = 0.52, p = 1.54E-3 r = 0.81, p = 1.87E-29 r = 0.82, p = 2.74E-9 r = 0.76, p = 8.24E-7 r = 0.59, p = 6.36E-8

ML r = 0.80, p = 1.32E-44 r = 0.82, p = 1.30E-9 r = 0.86, p = 5.90E-36 r = 0.83, p = 6.95E-10 r = 0.85, p = 1.61E-9 r = 0.72, p = 1.28E-12

Tail r = 0.72, p = 1.37E-32 r = 0.84, p = 4.05E-10 r = 0.82, p = 8.10E-31 r = 0.82, p = 2.31E-9 r = 0.77, p = 3.84E-7 r = 0.80, p = 2.19E-17

CA3 r = 0.72, p = 3.21E-33 r = 0.84, p = 2.02E-10 r = 0.74, p = 8.04E-22 r = 0.71, p = 2.00E-6 r = 0.78, p = 3.42E-7 r = 0.68, p = 6.69E-11

Fimbria r = 0.66, p = 4.72E-26 r = 0.60, p = 1.74E-4 r = 0.72, p = 2.24E-20 r = 0.63, p = 5.40E-5 r = 0.63, p = 1.79E-4 r = 0.65, p = 5.19E-10

GCMLDG r = 0.80, p = 2.04E-44 r = 0.82, p = 1.61E-9 r = 0.84, p = 2.36E-33 r = 0.82, p = 1.98E-9 r = 0.80, p = 8.09E-8 r = 0.75, p = 4.69E-14

CA1 r = 0.75, p = 1.03E-36 r = 0.88, p = 5.38E-12 r = 0.82, p = 2.07E-30 r = 0.79, p = 1.59E-8 r = 0.83, p = 1.11E-8 r = 0.69, p = 3.76E-11

HATA r = 0.60, p = 9.43E-21 r = 0.48, p = 3.63E-3 r = 0.73, p = 6.56E-21 r = 0.64, p = 3.50E-5 r = 0.81, p = 3.93E-8 r = 0.43, p = 1.80E-4

CA4 r = 0.77, p = 8.45E-40 r = 0.85, p = 1.42E-10 r = 0.83, p = 1.57E-31 r = 0.81, p = 4.12E-9 r = 0.80, p = 8.12E-8 r = 0.73, p = 4.90E-13

Values are expressed as correlation coefficient values ‘r’ and respective P-values.

Bold characters with p < 0.05 indicate significant results.

https://doi.org/10.1371/journal.pone.0275233.t005
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individuals have abnormal levels of β-amyloid, suggesting a biological relevance to normal

aging [41, 42] and also suggesting that the abnormal levels of β-amyloid are not sufficient to

cause clear cognitive symptoms [6]. Prior studies show that β-amyloid positive cognitively nor-

mal, mild cognitively impaired, and AD dementia subjects at baseline showed greater cognitive

and global deterioration compared to β-amyloid negative subjects [43–45]. Without neurode-

generation, which provides vital pathological staging, the differences between the plaques and

tangles cannot be formally captured. Furthermore, standalone PET imaging cannot function

as a significant prediction tool for future cognitive impairment without the use of MRI [46].

Differential volume loss among groups

The bilateral comparison of the six diagnostic groups showed that all the subfields volumes dif-

fered between the groups, except for the hippocampal fissure. However, when the diagnostic

group volumes were compared using pairwise comparison, certain subfield volumes between a

few groups were not different.

Comparison between NC and aAD

In line with previous studies [47, 48], there were no significant differences in volumes between

the NC and aAD groups. Although, a few studies have shown marginal statistical significance

in volume differences of one or two subfields between aAD and NC, with aAD showing lower

volumes than the NC [49, 50]. These studies have failed to find clear differences in the other

subfields they studied. The differences reported could be due to the sampling and sample size

discrepancies, procedural variations, and most notably, ethnic variability. We observed a trend

level increase in the subfield volumes of the aAD group compared to the NC group, which is

similar to the observations made in the final model of temporal ordering of biomarkers in the

Dominantly Inherited Alzheimer Network study [51].

No clear differences in the normal aging-associated hippocampal atrophy rates have been

observed between the normal control and the MCI subjects with the same β-amyloid status

[52], and an accelerated volume loss was seen specifically in the MCI group [53–55]. Thus, the

current stage might be too early to see a clear volume loss, and a longitudinal study between

the NC and aAD groups might provide a much clearer picture of the underlying mechanisms.

Comparisons between cognitively normal and mild cognitively impaired

It is shown that hippocampal atrophy can act as a strong predictor of AD progression and can

discriminate the MCI from the cognitively normal [56]. When we compared the NC and aAD

groups to the CIND group bilaterally, we observed no clear differences in the subfield volumes.

Interestingly, when we compared the NC and aAD groups to the pAD group bilaterally, most

of the subfield volumes showed clear differences; this indicates that the pAD is the transitional

stage in the AD continuum, and the differences in the subfield volumes might be useful to clas-

sify subjects with mild cognitive impairment into pAD and CIND groups even before the β-

amyloid imaging. A more extensive study might help clarify the underlying mechanisms of

this transitional stage.

Comparisons between cognitively normal and severely impaired

In line with previous studies [25, 57, 58], comparing the NC and aAD groups with the ADD

+ and ADD- groups yielded very clear differences in all the subfields, clearly differentiating the

normal controls from subjects with dementia.
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Comparisons between pAD and CIND

In line with an earlier study [59], in the MCI groups pAD and CIND, we observed larger sub-

field volumes in the CIND group than in the pAD group. Additionally, we observed no signifi-

cant bilateral volume difference of the subicular complex (SUB, PrS, and PaS), but there was

atrophy in the bilateral tail, CA1, ML, GCMLDG, CA4, and right CA3.

Comparisons between mild cognitively impaired and severely impaired

We then compared the pAD & CIND groups with the ADD+ & ADD- groups. There were

clear differences when the CIND group was compared with the ADD+ and ADD- groups. The

CIND might be a result of cognitive impairment resulting from the normal aging process, met-

abolic disturbance, substance abuse, or head trauma [28, 60]. pAD & ADD+ groups showed

clear differences in all subfields, except the bilateral PaS, left fimbria, and right CA3, suggesting

that these regions are atrophied only in the late AD stages, located some distance from the sus-

pected pathological initiation sites, the CA1 and the subiculum [61–63].

Comparisons between ADD+ and ADD-

Finally, a comparison of ADD+ and ADD- groups showed differences in the bilateral SUB,

PrS, tail, and left ML, suggesting that the volume atrophy in ADD+ might be more severe than

in ADD- or other types of dementia [64]. All other subfields showed no clear differences. In

addition, several subjects in the ADD- group has been shown to demonstrate Aβ positivity in a

longitudinal study [65].

Comparisons between CIND and ADD-

Individuals in the group CIND or Aβ- MCI mostly have less cognitive and functional

impairment at baseline than patients with pAD or Aβ+ MCI and individuals in the group Aβ-

MCI are less likely to convert to AD. In Aβ- MCI, the simultaneous presence of several comor-

bidities makes it difficult to pinpoint the cause of the cognitive symptoms. In ADD- or Aβ-

ADD individuals, non-AD etiologies like subclinical depression and vascular abnormalities

may account for AD-like phenotype. However, individuals with ADD+ or Aβ+ ADD and Aβ-

ADD do not have very strong differences in cognitive impairments [66].

The trajectory of volume loss

Based on the results, we expect that the trajectory of AD progression might be from NC to

aAD to pAD to ADD+. In cognitively unimpaired and MCI subjects, those diagnosed with

Aβ-negativity showed a higher hemispheric volume difference than those diagnosed with Aβ-

positivity. In contrast, in severely cognitively impaired subjects, those diagnosed with Aβ-posi-

tivity showed a higher hemispheric volumetric difference than those diagnosed with Aβ-nega-

tivity [64]. Our study shows the importance of separating the Aβ positive subjects from the Aβ
negative ones.

Selective vulnerability among subfields

Neuropathological studies have reported that the AD continuum reflects a complex and

ordered sequential process with the atrophy beginning at the anterior CA1-subiculum regions

and progressing toward other subfields [61, 62, 67, 68]. Also, another study has reported presu-

bicular-subicular complex atrophy in the earliest stages of AD [69]. In line with the previous

findings, we observed atrophy in both the CA1 and subiculum regions in a comparison

between the cognitively unimpaired groups and the pAD group. Additionally, atrophy in
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other subfields was observed in a comparison between the cognitively unimpaired groups and

the pAD group. The bilateral parasubiculum, left CA3, and right fimbria situated at some dis-

tance from the CA1-subiculum regions show no atrophy until the late AD stages. The parasu-

biculum is a transitional area sandwiched between the presubiculum and the entorhinal area

[19] and is postulated to play a vital role in spatial navigation and the integration of head-

directional information [70]. The fimbria extends to the fornix, the brain’s white matter, and

the CA3 is expected to be the largest subregion in the hippocampus [71]. The atrophy of the

parasubiculum and CA3 might suggest terminal disease propagation stages that later spread to

other brain regions.

Hemispherical asymmetry in subfield volume loss

In line with an earlier study [72], we observed left-right hemispheric asymmetry in the atrophy

pattern. In most subfields, the left hemispheric volumes showed more severe atrophy than the

right hemispheres. The early atrophy of the left fimbria and the right CA3 was observed but

not the right fimbria and the left CA3, which show a hemispherical difference in the atrophy

patterns of these two regions [73]. These hemispheric volume differences are seen in almost all

subfields, with larger right hemisphere volumes except in the PrS, PaS, and HATA.

Limitations

The first limitation of the present study is that it has a cross-sectional design. A future longitu-

dinal study would offer a more convincing way to test our hypotheses.

Due to the difficulty of obtaining amyloid-PET data, data from cognitive tests, and MRI

data on the same participants, the number of participants in the different groups is unbal-

anced. Moreover, in the cognitively unimpaired and mild cognitively impaired groups, the

number of amyloid-negative subjects is larger than the number of amyloid-positive subjects,

but in the severely cognitively impaired group, the number of amyloid-positive subjects is

larger than the number of amyloid-negative subjects. These unequal sample sizes decrease the

statistical power of the analyses. Finally, the unequal sample sizes combined with substantial

differences in the variances’ values increase the number of type-I errors for post hoc tests

when comparing groups.

A clear limitation of the present study is that the MRI scans’ resolution is lower than those

obtained with newer equipment. Imperfect measures are ubiquitous in biomedical research,

and statisticians have dealt with this issue in detail [74]. A common conclusion is that having

imperfect measures underestimates the true relationships. In the present case, repeating the

present analyses using comparable datasets with MRI scans of higher resolution would most

likely lead to substantially increased values of rs and ds in many cases. So, most likely, many of

the conclusions would become stronger.

Finally, although a single-subject analysis would give a deeper understanding of the

obtained results and their significance in clinical practice, we limit ourselves to the group-level

analysis of the experimental groups.

Conclusions

We conclude that the results suggest that early depositions of amyloid in cognitive normal

stages are not accompanied by significant bilateral subfield volume atrophy. Early subfield vol-

ume atrophy associated with the β-amyloid burden may be characterized by more symmetrical

atrophy in CA regions than in other subfields. So, hippocampal subfield volumetry shows

promise in improving the diagnosis of Alzheimer’s disease. Clearly, more research is needed.
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