Can ℓ (1440) Be a Pseudoscalar Glueball Which Appreciably Mixes with $\eta^{\prime}(958)$?

Tadayuki Teshima and Sadao Oneda*
Department of Applied Physics, Chubu University, Kasugai 487
Center for Theoretical Physics, Department of Physics and Astronomy University of Maryland, College Park, Maryland 20742)
and
Research Institute for Fundamental Physics, Kyoto University, Kyoto 606

(Received July 16, 1987)

Abstract

We have studied the $\eta-\eta^{\prime}-\iota$ mixing by using the Gell-Mann-Oakes-Renner type approach to the chiral $U(3) \times U(3)$ and also $U(4) \times U(4)$ algebras involving anomaly and found that $\eta^{\prime} \cdot \iota$ mixing could be appreciable. The model also predicted (by using PCAC and also sometimes a simple quark counting argument) that while the rate of $\iota \rightarrow \gamma \gamma$ is relatively small, $\Gamma(\iota \rightarrow \rho \gamma)$ will be rather large $\simeq 1 \mathrm{MeV}$. The $\eta-\eta^{\prime}-\iota$ mixing has also been studied by us using the method of "asymptotic flavor $S U(3)$ symmetry plus the constraint algebras involving the generators of underlying symmetry groups of QCD". Essentially the same conclusion as derived in the first approach has been obtained for the structures of $\eta-\eta^{\prime}-\iota$ mixing. In this paper, we study the $t \rightarrow \gamma \gamma$ and $\iota \rightarrow \rho \gamma$ decays in the second approach without using quark counting argument. We find a result which is compatible (at least in fiavor $S U(3)$ symmetry studied) with that of the first approach. We conclude that a part of the present experimental situation can be understood with the presence of pseudoscalar glueball $\iota(1440)$ which mixes rather appreciably with the η^{\prime}. Critical experiments for the model are also discussed.

§ 1. Introduction

It has already been some time since an argument was made that $\iota(1440)$ observed ${ }^{1)}$ in the radiative decay of J / ψ could be a $J^{\mathrm{PC}}=0^{-+}$glueball. ${ }^{2)}$ Even if $\iota(1440)$ indeed has a genetic origin in glueball, it can also acquire $q \bar{q}$-components through the mixing with the $0^{-+} q \bar{q}$-mesons. At present the following three problems prevent us from reaching a definite conclusion about $\iota(1440)$:
(1) In the subsequent decays of ι originated from the reaction $J / \psi \rightarrow \iota \gamma$, why is the $\iota \rightarrow \eta \pi \pi$ mode suppressed relative to the $\iota \rightarrow K \bar{K} \pi$, if the latter proceeds through $\iota \rightarrow \delta \pi$ $\rightarrow(K \bar{K}) \pi ?^{3)}$
(2) Recently the width of $\iota \rightarrow \gamma \gamma$ is found to be small. ${ }^{4,5)}$ Does this fact contradict the rather large width ${ }^{6)}$ of $\iota \rightarrow \rho \gamma$ decays inferred from the $J / \psi \rightarrow \rho \gamma \gamma$ decay and exclude an appreciable $q \bar{q}$ contamination in $\iota(1440)$?
(3) In the recent study of the reaction $\pi^{-} p \rightarrow K^{+} \bar{K}^{0} \pi^{-} n$, the bump at 1420 MeV in the ($K^{+} \bar{K}^{0} \pi^{-}$) system is reported ${ }^{7)}$ to be mainly 0^{-+}. It decays into $\delta \pi$ and $\bar{K}^{*} K$ $+K^{*} \bar{K}$ systems, with the latter process dominating. One may be tempted to identify this bump with the ι found in the $J / \phi \rightarrow \iota \gamma$ decay. However, the ι has been reported ${ }^{3)}$ to decay mainly into $K \bar{K} \pi$ through the $\delta \pi$ channel.

As to the problem (1), several theoretical attempts have been put forward; chiral Lagrangian method, ${ }^{8)}$ destructive interference between the $\iota \rightarrow \delta \pi \rightarrow(\eta \pi) \pi$ and $\iota \rightarrow \eta \varepsilon$

[^0](700) $\rightarrow \eta(\pi \pi)$ amplitudes, ${ }^{9)}$ the effect of $K \bar{K}$ threshold on the δ (presently $a_{0}(980)$) propagator ${ }^{10)}$ and the $K \bar{K}$ molecule interpretation of the $S^{*}\left(f_{0}(975)\right)$ and δ scalar mesons, ${ }^{11)}$ etc. In the present approach the amplitude $\iota \rightarrow a_{2}(1320) \pi \rightarrow(\eta \pi) \pi$ and $\iota \rightarrow \kappa \bar{K}$ $+\bar{\kappa} K$ can also interfere with the $\iota \rightarrow \delta \pi \rightarrow(\eta \pi) \pi$.

For the πp reactions related to the problem (3), various results have been obtained by various groups. In the $\pi^{+} p$ production processes, ${ }^{12)}$ the state with $M=1420 \mathrm{MeV}$ and $J^{\mathrm{PC}}=1^{++}$is observed not only in the final $K \bar{K} \pi$ system but also in the $\eta \pi \pi$ system, while the signal for the $J^{\mathrm{PC}}=0^{-+}$state is not significant. However, in the $\pi^{-} p$ production processes, ${ }^{13)}$ the opposite result has been observed, i.e., 0^{-+}state has been seen in both the $K \bar{K} \pi$ and $\eta \pi \pi$ systems. Also in the $p \bar{p}$ production processes, ${ }^{14)}$ presumably the same 0^{-+}state has been observed in the $K \bar{K} \pi$ channel. From these experiments, it seems that there exist at least two states (0^{-+}and 1^{++}) in the mass range $1420-1450 \mathrm{MeV}$. The 0^{-+}state may be identified with the iota found in the $J / \phi \rightarrow \iota \gamma$ decay and the 1^{++}state with $E(1420)$. We are also certainly tempted to identify the $0^{-+} 1420 \mathrm{MeV} K^{+} \bar{K}^{0} \pi^{-}$bump observed ${ }^{7}$ in the reaction $\pi^{-} p \rightarrow K^{+} \bar{K}^{0} \pi^{-} n$ with the iota. However, as mentioned in (3) above, this may not be tenable, if the bump decays into the final $K \bar{K} \pi$ state through the $K^{*} \bar{K}+\bar{K}^{*} K$ channel rather than the $\delta \pi$ channel as reported in Ref. 7).

In this connection, recent Mark III analysis ${ }^{15)}$ of the processes, $J / \psi \rightarrow \iota \gamma$ and $\iota \rightarrow K \bar{K} \pi$, is also very interesting. Apparently iota shape could not be fitted by a single Breit-Wigner resonance. However, it can be fitted by two Breit-Wigner resonances and the high mass region ($>1.45 \mathrm{GeV}$) seems to have $K^{*} \bar{K}+\bar{K}^{*} K$. In any case further more precise experiments are eagerly awaited.

As for the problem (2), it becomes quite serious recently since the high statistics TPC $/ 2 \gamma$ experiment yields ${ }^{5}$. $\Gamma(\iota \rightarrow \gamma \gamma) B(\iota \rightarrow K \bar{K} \pi)<1.6 \mathrm{keV}$. Theoretical problems arise from the calculation of the rates of $\iota \rightarrow 2 \gamma$ and $\iota \rightarrow \rho \gamma$ decays based on the vector-meson dominance model ${ }^{166}$ (VDM) and the Bag model. ${ }^{17)}$ A conclusion has been drawn that the $\rho \gamma$ system in the decay $J / \psi \rightarrow(\rho \gamma) \rho$ cannot be associated with $\iota(1440)$ and also that ι cannot contain an appreciable $q \bar{q}$-component. However, the result may be dependent upon the model used to calculate the rates of $\iota \rightarrow 2 \gamma$ and $\rho \gamma$.

In contrast, in the Gell-Mann-Oakes-Renner type approach to the chiral $U(3)$ $\times U(3)^{18)}$ and $U(4) \times U(4)^{19)}$ algebras involving anomaly in which we have studied the $\eta-\eta^{\prime}-\iota$ mixing from the input masses of pseudoscalar mesons, we have previously derived a result which does not necessarily contradict the experimentally observed small $\Gamma(\iota \rightarrow \gamma \gamma)$ and also the rather large $\Gamma(\iota \rightarrow \rho \gamma)$ of order of MeV . However, in this approach the presence of rather appreciable $\iota^{-} \eta^{\prime}$ mixing is indicated. Essentially the same result was also obtained ${ }^{20)}$ for the $\eta-\eta^{\prime}-\iota$ mixing from the distinct approach of "asymptotic $S U_{f}(3)$ flavor symmetry plus the constraint algebras involving the generators (i.e., vector and axial-vector charges) of underlying symmetries of QCD". Recently, Milton also obtained ${ }^{211}$ a similar conclusion for the rate of $\iota \rightarrow \gamma \gamma$ from the method of anomalous chiral Ward identities.

In this paper, we reexamine the problems, particularly the problems (2), from our second approach (in flavor asymptotic $S U(3)$ symmetry) mentioned above and show that our previous conclusions from our first approach remain essentially unchanged. We argue that $\iota(1440)$ has a genetic origin in glueball but can mix rather appreciably
with η^{\prime} (at least in the present framework of $S U_{f}(3)$ symmetry) and can provide a main cause for the non-ideal behavior of the ground-state $q \bar{q}$ PS mesons. However, $\iota(1440)$ has a very small octet component so that its decay branching ratio into $K^{*} \bar{K}$ $+\bar{K}^{*} K$ is shown to be very small. Therefore, the establishment of the presence of genuine sizable $\iota K^{*} \bar{K}+\bar{K}^{*} K$ mode can exclude the model under discussion.

§ 2. Rates of the $\iota \rightarrow \gamma \gamma$ and $\ell \rightarrow \rho \gamma$ decays in the framework of "asymptotic flavor $S U(3)$ symmetry plus constraint algebras of QCD"

We now discuss the problem of the rates of the $\iota \rightarrow \gamma \gamma$ and $\iota \rightarrow \rho \gamma$ decays from our second approach, which is based on the method of "asymptotic flavor symmetry plus the constraint algebras, involving the generators (i.e., vector and axial-vector charges V_{a} and A_{a}) of underlying symmetry groups of QCD". Instead of chiral algebras involving anomalies used in Refs. 18) and 19), we use the well-known chiral $S U_{f}(3)_{L}$ $\times S U_{f}(3)_{R}$ algebras which are valid in QCD. Flavor symmetry breaking in QCD can be characterized by the presence of the so-called "exotic" commutators, [\dot{V}_{a}, V_{β}] $=\left[\dot{V}_{\alpha}, A_{\beta}\right]=0$, where $\dot{V}_{\alpha}=i\left[H, V_{\alpha}\right]$ and H is the total Hamiltonian. (α, β) stands for the "exotic" combination of physical flavor indices. The hypothesis of asymptotic flavor symmetry implies that the linear relation $\left|P^{A}\right\rangle=\sum_{a} R^{A a}\left|P^{a}\right\rangle$, where $\left|P^{A}\right\rangle$ represent the physical states $\left(A=\pi, K, \eta, \eta^{\prime}\right.$ and ι), while $\left|P^{a}\right\rangle$ the hypothetical representation states $\left(a=0,1, \cdots, G_{0}\right)$, can be exactly valid but only when the state under consideration has infinite momentum ${ }^{20)}(\boldsymbol{p} \rightarrow \infty)$. This requires that the creation and annihilation operators of physical (i.e., "in" or "out") particles do transform linearly under flavor transformation generated by V_{a} but only in the infinite momentum limit, provided that the particle mixing is also taken into account in the same limit. We limit ourselves to the case of $S U_{f}(3)$ in this paper. According to asymptotic $S U_{f}(3)$ symmetry, the annihilation operators of physical η, η^{\prime} and ι-meson, $a_{\eta}(\boldsymbol{p}), a_{\eta^{\prime}}(\boldsymbol{p})$ and $a_{\iota}(\boldsymbol{p})$, are related linearly, but only in the limit $\boldsymbol{p} \rightarrow \infty$, to the annihilation operators of hypothetical representation states η_{8}, η_{0} and $G_{0}\left(G_{0}\right.$ denotes bare glueball), $a_{8}(\boldsymbol{p}), a_{0}(\boldsymbol{p})$ and $a_{G}(\boldsymbol{p})$, as follows:

$$
\left(\begin{array}{c}
a_{\eta} \\
a_{\eta^{\prime}} \\
a_{\iota}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{8} & \alpha_{0} & \alpha_{G} \\
\beta_{8} & \beta_{0} & \beta_{G} \\
\gamma_{8} & \gamma_{0} & \gamma_{G}
\end{array}\right)\left(\begin{array}{c}
a_{8} \\
a_{0} \\
a_{G}
\end{array}\right), \quad \boldsymbol{p} \rightarrow \infty
$$

The α 's denote the mixing parameters. In Ref. 22), we have parametrized the α 's in terms of mixing angles θ_{1}, θ_{2} and θ_{3} defined by

$$
\begin{array}{lll}
\alpha_{8}=c_{1} c_{2}, & \alpha_{0}=-c_{1} s_{2} s_{3}-s_{1} c_{3}, & \alpha_{G}=-c_{1} s_{2} c_{3}+s_{1} s_{3} \\
\beta_{8}=s_{1} c_{2}, & \beta_{0}=-s_{1} s_{2} s_{3}+c_{1} c_{3}, & \beta_{G}=-s_{1} s_{2} c_{3}-c_{1} s_{3} \\
\gamma_{8}=s_{2}, & \gamma_{0}=c_{2} s_{3}, & \gamma_{G}=c_{2} c_{3},
\end{array}
$$

where $c_{i} \equiv \cos \theta_{i}$ and $s_{i} \equiv \sin \theta_{i}(i=1,2,3)$. In the same literature, we have determined the probable range of the values of θ_{1}, θ_{2} and θ_{3}, which are compatible with the constraints obtained by realizing the above-mentioned constraint algebras in our
asymptotic limit. For details see Ref. 22). The typical values of θ_{i} may be given by

$$
\theta_{1}=-8.52^{\circ}, \quad \theta_{2}=3.52^{\circ} \quad \text { and } \quad \theta_{3}=-21.98^{\circ}
$$

which expresses Eq. $(2 \cdot 1)$ as follows (in the limit $\boldsymbol{p} \rightarrow \infty$):

$$
\begin{align*}
\left(\begin{array}{l}
a_{\eta} \\
a_{\eta^{\prime}} \\
a_{\iota}
\end{array}\right) & =\left(\begin{array}{rrr}
0.987 & 0.160 & -0.001 \\
-0.148 & 0.917 & 0.379 \\
0.062 & -0.374 & 0.926
\end{array}\right)\left(\begin{array}{l}
a_{8} \\
a_{0} \\
a_{G}
\end{array}\right) \\
& =\left(\begin{array}{rrr}
0.701 & -0.714 & -0.001 \\
0.661 & 0.648 & 0.379 \\
-0.270 & -0.266 & 0.926
\end{array}\right)\left(\begin{array}{l}
N \\
S \\
G_{0}
\end{array}\right),
\end{align*}
$$

where $N=(u \bar{u}+d \bar{d}) / \sqrt{2}$ and $S=s \bar{s}$. As seen, the $q \bar{q}$ structure of η, η^{\prime} and ι found above is remarkably compatible with the one in Ref. 18) obtained from the very different algebras involving anomalies using $\boldsymbol{p} \rightarrow 0$ limit.

To discuss $\iota \rightarrow \rho \gamma$ decay, we pick up the following charge-charge density algebras (which are valid in the framework of L_{QCD} plus L_{EM}) as the useful "constraint" algebras,

$$
\begin{array}{ll}
{\left[j_{0}^{\mathrm{EM}}(x),\right.} & \left.V_{K^{0}}\right]=0, \\
{\left[j_{0}^{\mathrm{EM}}(x),\right.} & \left.\dot{V}_{K^{0}}\right]=0,
\end{array}
$$

where $V_{K^{0}}=V_{6}+i V_{7}$.
We sandwich Eqs. (2•5a) and (2.5b) between the states $\left\langle\rho^{0}(\boldsymbol{p})\right|$ and $\left|\bar{K}^{0}(\boldsymbol{k})\right\rangle$ with $\boldsymbol{p} \rightarrow \infty$ and $\boldsymbol{k} \rightarrow \infty$ and use asymptotic $S U_{f}(3)$ symmetry. ${ }^{23)}$ We then obtain two sum rules,

$$
\begin{align*}
& -g_{\rho 0^{0}{ }^{0} \gamma}+\sqrt{3} \alpha_{8} g_{\rho 0_{\eta \gamma}}+\sqrt{3} \beta_{8} g_{\rho 0_{\eta^{\prime} \gamma}}+\sqrt{3} \gamma_{8} g_{\rho \rho^{\prime} \gamma}+g_{\bar{K}^{*} \bar{K}^{0}{ }_{\gamma}}=0, \\
& -\left(m_{\pi}^{2}-m_{K}{ }^{2}\right) g_{\rho 0^{\circ} \pi^{\circ} \gamma}+\sqrt{3}\left(m_{\eta}^{2}-m_{K}{ }^{2}\right) \alpha_{8} g_{\rho \circ \eta r}+\sqrt{3}\left(m_{\eta^{\prime}}^{2}-m_{K}{ }^{2}\right) \beta_{8} g_{\rho \eta^{\prime} \gamma} \\
& +\sqrt{3}\left(m_{\iota}^{2}-m_{K}{ }^{2}\right) \gamma_{8} g_{\rho \rho^{\prime} \gamma}+\left(m_{\rho}{ }^{2}-m_{K^{*}}^{2}\right) g_{\vec{K}^{* *} \bar{K}^{0} r}=0 .
\end{align*}
$$

These are the modifications of the old sum rules discussed by Matsuda and Oneda ${ }^{25)}$ and also Oneda et al. ${ }^{26)}$ in the presence of $\iota(1440)$. The g 's are defined by

$$
\sqrt{4 p_{0} k_{0}}\langle V(\boldsymbol{p})| J_{\mu}^{\mathrm{EM}}(0)|P(\boldsymbol{k})\rangle=g_{V P \gamma}\left((p-k)^{2}\right) \varepsilon_{\mu \nu \rho \sigma} e_{V}^{\nu}(\boldsymbol{p}) p^{\rho} k^{\sigma},
$$

where e_{V} is the polarization four-vector of V.
Let us, for example, eliminate $g_{\rho \circ}{ }^{\circ} \eta r$ which is least well-known from the above two sum rules to obtain

$$
\begin{align*}
& -\left(m_{\eta}{ }^{2}-m_{\pi}^{2}\right) g_{\rho 0^{\prime} \sigma^{\circ} \gamma}+\left(m_{\eta}^{2}-m_{\eta}^{2}\right) \sqrt{3} \beta_{8} g_{\rho \rho^{\prime} \gamma}+\left(m_{\eta}^{2}-m_{\iota}{ }^{2}\right) \sqrt{3} \gamma_{8} g_{\rho \rho_{\ell \gamma}} \\
& -\left(m_{\eta}^{2}-m_{K}^{2}-m_{\rho}{ }^{2}+m_{K^{*}}^{2}\right) g_{K_{K}^{* 0}}{ }^{+0} \gamma=0 .
\end{align*}
$$

In Eq. (2-7) we can see explicitly that the term involving the $\iota \rightarrow \rho^{0} \gamma$ decay coupling constant $g_{\rho \rho^{\prime} \gamma}$ contributes rather significantly. In the absence of ι (i.e., $\gamma_{8}=\gamma_{0}=\alpha_{G}=\beta_{G}$ $=0, \gamma_{G}=1, \alpha_{8}=\beta_{0}=\cos \theta, \alpha_{0}=-\beta_{8}=-\sin \theta$ and $\theta \simeq-10^{\circ}$), Eqs. (2•6) and (2•7) become

$$
\frac{g_{\rho^{0} \eta^{\prime} \gamma}}{g_{\rho^{\circ} \pi^{0} \gamma}}=\frac{-\left(m_{\eta}{ }^{2}-m_{K}{ }^{2}-m_{\rho}{ }^{2}+m_{K^{*}}^{2}\right) g_{\bar{K}^{*} \bar{K}^{\circ} \gamma} / g_{\rho \rho^{\circ} \pi^{\circ} \gamma}+\left(m_{\eta}{ }^{2}-m_{\pi}^{2}\right)}{\left(m_{\eta}^{2}-m_{\eta^{\prime}}^{2}\right) \sqrt{3} \sin \theta} .
$$

If we use the experimental values ${ }^{27)}$

$$
\begin{align*}
& \Gamma\left(\rho^{0} \rightarrow \pi^{0} \gamma\right)=0.070 \pm 0.008 \mathrm{MeV} \\
& \Gamma\left(\bar{K}^{* 0} \rightarrow \bar{K}^{0} \gamma\right)=0.118 \pm 0.010 \mathrm{MeV}
\end{align*}
$$

and the meson masses involved we then obtain with an appropriate choice of the phases of the couplings,
right-hand side of Eq. $(2 \cdot 10) \simeq 3.58$.
However, the use of the experimental value ${ }^{27)}$

$$
\Gamma\left(\eta^{\prime} \rightarrow \rho^{0} \gamma\right)=0.072 \pm 0.010 \mathrm{MeV}
$$

then implies,
left-hand side of Eq. $(2 \cdot 10) \simeq 1.90 \pm 0.17$,
which deviates from the value of Eq. $(2 \cdot 12)$ and may thus call for the presence of ι, i.e., the $g_{\rho o_{c r}}$ terms in Eqs. $(2 \cdot 6)$ and $(2 \cdot 7)$. By using the values of mixing parameters given by Eq. $(2 \cdot 4)$ we can determine $g_{\rho \circ \iota \gamma}$ from Eqs. $(2 \cdot 6)$ and (2-7) to obtain

$$
\Gamma\left(\iota \rightarrow \rho^{0} \gamma\right)=2.8 \pm 0.7 \mathrm{MeV}
$$

which agrees fairly well with the experimental value

$$
\begin{array}{rlrl}
\Gamma(\iota \rightarrow \rho \gamma)= & 2 \mathrm{MeV} & & \text { Crystal Ball, } \\
& 1 \mathrm{MeV} & & \text { Mark II } \\
& 0.5 \mathrm{MeV} & \text { DM II. }
\end{array}
$$

We here note that our present method uses a much more dynamical information than that obtained by mere (asymptotic) flavor $S U(3)$ symmetry. As demonstrated in Eq. $(2 \cdot 7)$ (which is obtained from the algebra involving Eq. $(2 \cdot 5 b)$), we are dealing with the explicit interplay between the masses of mesons and coupling constants. As stated in Ref. 25), a well-satisfied mass formula $m_{\rho}{ }^{2}-m_{\pi}{ }^{2}=m_{K^{*}}^{2}-m_{K}{ }^{2}$ and a mass-mixing-angle-coupling constant interplay, $g_{\phi \pi \gamma} / g_{\omega \pi \gamma}=-\tan \theta_{\omega \phi}\left(m_{\rho}{ }^{2}-m_{\omega}{ }^{2}\right) /\left(m_{\rho}{ }^{2}-m_{\phi}{ }^{2}\right)$ have been demonstrated in the similar sum rules obtained from Eqs. (2.5a) and (2.5 b). Therefore, we have a considerable confidence in the method used. However, for the present problems involving η and η^{\prime}, the neglected possible mixings with the η_{c} and the radially excited PS-meson states could produce some small corrections. Equation (2•7) is certainly more sensitive than Eq. $(2 \cdot 6)$ to these mixings, since large masses will come into play. Nevertheless, Eq. (2•15) seems to imply strongly that Γ (ι $\rightarrow \rho \gamma$) is of the order of MeV and not of the order of keV .

We may also make an estimate of $\rho^{0} \rightarrow \eta \gamma$ decay in the presence of $\iota \rho^{0} \gamma$ coupling. ' If we consider the sum rule obtained by eliminating $g_{\rho \circ c \gamma}$ from Eqs. (2•6) and (2.7) and use experimental input Eqs. $(2 \cdot 11)$ and $(2 \cdot 13)$ together with the mixing parameters
given by Eq. (2•4), we obtain

$$
\Gamma\left(\rho^{0} \rightarrow \eta \gamma\right)=0.037 \pm 0.005 \mathrm{MeV}
$$

The particle data group has not yet given the value of $\Gamma\left(\rho^{0} \rightarrow \eta \gamma\right)$. However, our value $(2 \cdot 17)$ agrees within a factor 2 with the value recently cited by Hitlin, ${ }^{3)}$

$$
\Gamma\left(\rho^{0} \rightarrow \eta \gamma\right)=0.0725 \pm 0.014 \mathrm{MeV}
$$

We next study the $\iota \rightarrow \gamma \gamma$ decay using the method used in Ref. 25) a long time ago. We now sandwich the constraint algebras, Eqs. $(2 \cdot 5 \mathrm{a})$ and $(2 \cdot 5 \mathrm{~b})$, between the states $\langle\gamma(\boldsymbol{q})|$ and $\left|\bar{K}^{0}(\boldsymbol{p})\right\rangle$ and $\boldsymbol{q} \rightarrow \infty$ and $\boldsymbol{p} \rightarrow \infty$ with $s=(p-q)^{2}=0$. We then obtain two sum rules

$$
\begin{align*}
& F^{\pi^{0}}-\sqrt{3} \alpha_{8} F^{\eta}-\sqrt{3} \beta_{8} F^{\eta^{\prime}}-\sqrt{3} \gamma_{8} F^{c} \\
& =n \sqrt{2}\langle\gamma(\boldsymbol{q})| V_{K^{0}}|n(\boldsymbol{q})\rangle\langle n(\boldsymbol{q})| j_{\mu}{ }^{E}(0)\left|\bar{K}^{0}(\boldsymbol{p})\right\rangle, \\
& \left(m_{\pi}{ }^{2}-m_{K}{ }^{2}\right) F^{\pi^{0}}-\sqrt{3}\left(m_{\eta}{ }^{2}-m_{K}{ }^{2}\right) \alpha_{8} F^{\eta}-\sqrt{3}\left(m_{\eta^{\prime}}{ }^{2}-m_{K}{ }^{2}\right) \beta_{8} F^{\eta^{\prime}}-\sqrt{3}\left(m_{\iota}{ }^{2}-m_{K}{ }^{2}\right) \gamma_{8} F^{c}-\delta \\
& \quad=\sum_{n} \sqrt{2}\langle\gamma(\boldsymbol{q})| \dot{V}_{K} 0|n(\boldsymbol{q})\rangle\langle n(\boldsymbol{q})| j_{\mu}{ }^{\mathrm{EM}}(0)\left|\bar{K}^{0}(\boldsymbol{p})\right\rangle,
\end{align*}
$$

where F^{P} are defined as

$$
\sqrt{4 p_{0} k_{0}}\langle\gamma(\boldsymbol{p}, e)| J_{\mu}^{\mathrm{EM}}(0)|P(\boldsymbol{k})\rangle=F^{P} \varepsilon_{\mu \nu \rho \sigma} e^{\nu} p^{\rho} k^{\sigma} .
$$

In Eq. $(2 \cdot 20), \delta$ represents the possible non-negligible contribution of η_{c},

$$
\delta \equiv \sqrt{3}\left(m_{\eta_{c}}^{2}-m_{K}^{2}\right) R^{\eta_{c} 8} F^{\eta_{c}},
$$

where $R^{\eta_{c} 8}$ denotes the fraction of octet component in η_{c} state. If we examine the right-hand side of Eq. ($2 \cdot 19$) by using field-current identity, the main contribution to the intermediate states $n(\boldsymbol{q})$ will come from the zero mass $\bar{K}^{* 0}$-meson state with momentum \boldsymbol{q} and it is given by

$$
\begin{align*}
& \left.\sqrt{2}\langle\gamma(\boldsymbol{q})| V_{K^{0}} \mid \text { zero mass } \bar{K}^{* 0}(\boldsymbol{q})\right\rangle\left\langle\text { zero mass } \bar{K}^{* 0}(\boldsymbol{q})\right| j_{\mu}{ }^{\mathrm{EM}}\left|\bar{K}^{0}(\boldsymbol{p})\right\rangle \\
& \quad=X\left\{F^{\pi^{0}} / 2-(3 \sqrt{3} / 2) \alpha_{8} F^{\eta}-(3 \sqrt{3} / 4) \beta_{8} F^{\eta^{\prime}}\right\},
\end{align*}
$$

where X stands for the right-hand side of Eq. $(2 \cdot 19)$, which is the correction term for $S U(3)$ breaking. ${ }^{25)}$ On the other hand, the right-hand side of Eq. (2•20) vanishes, since, as mentioned above, the intermediate $|n(\boldsymbol{q})\rangle$ state is the extrapolated $\left|\bar{K}^{* 0}\right\rangle$ state with mass zero so that $\langle\gamma(\boldsymbol{q})| \dot{V}_{K^{\circ}}|n(\boldsymbol{q})\rangle=0$. Therefore, Eq. (2-20) becomes

$$
\begin{align*}
\left(m_{\pi}^{2}\right. & \left.-m_{K}^{2}\right) F^{\pi^{0}}-\sqrt{3}\left(m_{\eta}^{2}-m_{K}^{2}\right) \alpha_{8} F^{\eta}-\sqrt{3}\left(m_{\eta^{\prime}}^{2}-m_{K}^{2}\right) \beta_{8} F^{\eta^{\prime}}-\sqrt{3}\left(m_{\iota}{ }^{2}-m_{K}{ }^{2}\right) \gamma_{8} F^{\iota} \\
& =\delta .
\end{align*}
$$

If we eliminate $F^{\pi^{0}}$ from Eqs. $(2 \cdot 23)$ and (2-24), we then obtain to the first order in X

$$
\begin{align*}
& \left\{m_{\eta}^{2}-m_{\pi}^{2}+\left(m_{\pi}^{2}-m_{K}^{2}\right) X\right\} \alpha_{8} F^{\eta}+\left\{m_{\eta^{\prime}}^{2}-m_{\pi}^{2}+\left(m_{\pi}^{2}-m_{K}^{2}\right) X / 4\right\} \beta_{8} F^{\eta^{\prime}} \\
& \quad+\left\{m_{\iota}^{2}-m_{\pi}^{2}+\left(m_{\pi}^{2}-m_{K}^{2}\right) X / 2\right\} \gamma_{8} F^{t}=-\delta / \sqrt{3} .
\end{align*}
$$

From these sum rules, the experimental rates of $\eta \rightarrow \gamma \gamma$ and $\eta^{\prime} \rightarrow \gamma \gamma$ decays

$$
\begin{align*}
& \Gamma(\eta \rightarrow \gamma \gamma)=0.41 \pm 0.06 \mathrm{keV} \text { for Ref. 27), } \\
& =0.560 \pm 0.04 \mathrm{keV} \text { for Ref. 4) , } \\
& \Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right)=4.6 \pm 0.8 \mathrm{keV} \quad \text { for Ref. 27) , } \\
& =4.3 \pm 0.1 \mathrm{keV} \text { for Ref. 4) , }
\end{align*}
$$

and the values of α_{8}, β_{8} and γ_{8} given by Eq. $(2 \cdot 16)$, we obtain

$$
\begin{align*}
\Gamma(\iota \rightarrow \gamma \gamma) & =0.6-4.0 \mathrm{keV} \text { for Ref. 27) }, \\
& =5.1-7.6 \mathrm{keV} \text { for Ref. } 4),
\end{align*}
$$

by using $X \simeq 0.1$ and $\delta \simeq 0.0$. If the contribution of η_{c}, i.e., δ in Eq. (2•22) is crudely estimated, we obtain an estimate $\delta / \sqrt{3} F^{\eta^{\prime}}<0.02 \mathrm{GeV}^{2}$ from the experiment $\Gamma\left(\eta_{c} \rightarrow \gamma \gamma\right)$ $<6.6 \mathrm{keV}^{27)}$ and the value $R^{\eta_{c} 8} \simeq 0.01$ obtained in Ref. 19). Then the range of predictions given in Eq. (2.27) is modified to $\Gamma(\iota \rightarrow \gamma \gamma)=0.1-6.9 \mathrm{keV}$ for Ref. 27) and 2.7 -11.5 keV for Ref. 4). In the absence of $\iota(1440)$, the sum rule predicted, ${ }^{25)} \Gamma(\eta \rightarrow \gamma \gamma)$ $\simeq 0.5 \mathrm{keV}$ and $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right) \simeq 5.5 \mathrm{keV}$. The first value of Eq. (2.27) based on the experimental input of Ref. 27) (Particle data group 86) may be said to be consistent with the present value of experimental value

$$
\begin{align*}
\Gamma(\iota \rightarrow \gamma \gamma) B(\iota \rightarrow K \bar{K} \pi) & <2.2 \mathrm{keV}(95 \% \text { c.l. }) \\
& <2.0 \mathrm{keV}(95 \% \text { c.1. }), \text { Ref. } 4)
\end{align*}
$$

The second value of Eq. (2-27) based on the input from Ref. 4) probably a little too large. However, as seen from our procedure used, an error of $\simeq 10 \%$ at many places may build up a fairly sizable error. The η_{c} contribution can also reduce the expected values (2-27) as stated above.

Thus our result shows that the smallness of $\gamma(\iota \rightarrow \gamma \gamma)$, i.e., $\simeq 1 \mathrm{keV}$, does not necessarily implies small $\iota-\eta^{\prime}$ mixing. However, if $\Gamma(\iota \rightarrow \gamma \gamma)$ turns out to be $\lesssim 0.1$ keV , it will at least exclude the present $S U_{f}(3)$ model.

§ 3. Comments and experimental tests of the model

In § 2 we have argued that the rate of $\iota \rightarrow \gamma \gamma$ decay, computed from the sum rule Eq. (2.24) derived from the approach which is based on QCD constraint algebras, can be compatible with the present experimental values given by Eq. (2•28). The similar result was also obtained recently by using chiral Ward identity ${ }^{21)}$ in which $\iota^{-} \eta^{\prime}$ mixing can also be appreciable as in the present approaches. Thus the smallness of the $\iota \rightarrow$ $\gamma \gamma$ rate around 1 keV does not necessarily imply the smallness of $\iota-\eta^{\prime}$ mixing, if we compute the rate of $\iota \rightarrow \gamma \gamma$ decay without recourse to the assumption of vector meson dominance, etc. However, $\Gamma(\iota \rightarrow \gamma \gamma)$ turns out to be $\lesssim 0.1 \mathrm{keV}$, the possibility of large $\iota-\eta^{\prime}$ mixing will be excluded at least in the present model discussed in $\S 2$.

In the approach of "asymptotic flavor $S U(3)$ symmetry plus the constraint algebras involving the generators of underlying symmetry groups of QCD" used in § 2,
the presence of "exotic" commutators, $\left[\dot{V}_{a}, V_{\beta}\right]=\left[\dot{V}_{\alpha}, A_{\beta}\right]=0$, etc, requires that the canonical mass formula for each $S U_{f}(3)$ nonet is Schwinger's nonet mass relation, ${ }^{24)}$ so long as we consider only the intra-multiplet (i.e., nonet) mixing. For the PS-meson nonet, this relation predicts the mass of the ninth meson η^{\prime} around 1.6 GeV in terms of the mass values of π, K and η. It is, therefore, natural (at least, in the framework of $S U_{f}(3)$) to attribute the deviation of the η^{\prime} mass from the nonet value 1.6 GeV to the presence of a pseudoscalar glueball with a mass close to 1.6 GeV , which mixes rather appreciably with the $I=0 q \bar{q}$ PS-mesons. From this point of view, $c(1440)$ is perhaps an ideal candidate and one may think that the unusual behavior of groundstate PS-mesons is due to the $\iota^{-} \eta-\eta^{\prime}$ mixing. The large violation of quark-line rule in the processes involving η and η^{\prime} can then be attributed to this mixing. One caution is that the inclusion of the effect of η_{c} in this game may be important, since η_{c} is certainly not a pure $c \bar{c}$-state. A study of $\iota-\eta-\eta^{\prime}-\eta_{c}$ mixing in the framework of asymptotic flavor $S U(4)$ symmetry is being undertaken. ${ }^{28)}$

We may add here some relevant remarks on the problems (1) and (3) mentioned in § 1.
(a) $\iota \rightarrow K^{*} \bar{K}+\bar{K}^{*} K$

As mentioned at the end of § 1, in the present model $\iota(1440)$ has a very small octet component as seen from Eq. $(2 \cdot 4)$, so that we obtain the very small rate, $\Gamma\left(\iota \rightarrow K^{*} \bar{K}\right.$ $\left.+\bar{K}^{*} K\right) \simeq 0.79 \mathrm{MeV}$. Therefore, if $K^{*} \bar{K}+\bar{K}^{*} K$ mode is found to be an appreciable fraction of $\iota \rightarrow K \bar{K} \pi, \iota$ cannot be identified with the 0^{-+}object being considered by us. Of course, the $K^{*} \bar{K}+\bar{K}^{*} K$ mode may come from the radially excited 0^{-+}state which might exist in the same mass region around 1440 MeV . Confirmation of the presence of $K^{*} \bar{K}+\bar{K}^{*} K$ mode is certainly very interesting.
(b) Possible intermediate states to the processes of $c \rightarrow \eta \pi \pi$ and $\iota \rightarrow \bar{K} \pi$

One may elaborate a little about the possible mechanisms which lead to $\iota \rightarrow \eta \pi \pi$ and $K \bar{K} \pi$. In addition to the process $\iota \rightarrow a_{0}(980) \pi \rightarrow(\eta \pi) \pi$ and $\iota \rightarrow a_{0}(980) \pi \rightarrow(K \bar{K}) \pi$, one can also consider another competing processe $\iota \rightarrow a_{2}(1320) \pi \rightarrow(\eta \pi) \pi$ and $\iota \rightarrow a_{2}$ (1320) $\pi \rightarrow K \bar{K} \pi$. One can estimate the $\iota \rightarrow a_{0}(980) \pi$ and $\iota \rightarrow a_{2}(1320) \pi$ couplings, $g_{\iota a_{0} \pi}$ and $g_{c a_{2} \pi}$, as follows. As discussed in Ref. 22), in the present theoretical framework we have general predictions on the asymptotic matrix elements of the axial-vector charge $A_{\pi}\left(A_{\pi^{+}}=A_{1}+i A_{2}\right.$, etc.) involving η, η^{\prime} and ι. For example, we have

$$
\frac{\langle\iota(\boldsymbol{p})| A_{\pi^{+}}\left|a_{0}^{-}(980)\right\rangle}{\langle\eta(\boldsymbol{p})| A_{\pi^{+}}\left|a_{0}-(980)\right\rangle}=\frac{\langle\iota(\boldsymbol{p})| A_{\pi^{+}}\left|a_{2}^{-}(1320)\right\rangle}{\left\langle\eta(\boldsymbol{p}) \mid A_{\pi^{+}}+a_{2}^{-}(1320)\right\rangle}=\frac{R_{3}}{R_{1}} \quad \boldsymbol{p} \rightarrow \infty .
$$

According to the argument of Ref. 22) updated, $\left|R_{3} / R_{1}\right|$ is constrained as

$$
\left|R_{3} / R_{1}\right| \simeq 0.38-0.47
$$

By using PCAC for A_{π} in the $\boldsymbol{p} \rightarrow \infty$ limit (which yields a hard-pion extrapolation) we can rewrite ($3 \cdot 1$) (for derivation, see Ref. 24), §4.3) as

$$
\frac{\left(m_{a_{0}}^{2}-\eta^{2}\right) g_{a_{0} \iota \pi}}{\left(m_{a_{0}}^{2}-\iota^{2}\right) g_{a_{0} \eta \pi}}=\frac{\left(m_{a_{2}}^{2}-\iota^{2}\right) g_{a_{2} \iota \pi}}{\left(m_{a_{2}}^{2}-\eta^{2}\right) g_{a_{2} \eta \pi}}=\frac{R_{3}}{R_{1}},
$$

which implies

$$
\begin{align*}
& \frac{g_{a_{0}<\pi}}{g_{a_{0} \eta \pi}} \simeq 1.67 \frac{R_{3}}{R_{1}}, \\
& \frac{g_{a_{2}<\pi}}{g_{a_{2} \eta \pi}} \simeq 4.27 \frac{R_{3}}{R_{1}} .
\end{align*}
$$

The estimate $\left|R_{3} / R_{1}\right|$ given by (3 $\cdot 2$), in fact, yields

$$
\frac{\Gamma(\iota \rightarrow \delta \pi)}{\Gamma(\delta \rightarrow \eta \pi)} \simeq 0.66-1.02
$$

The results (3.4) and (3.5) suggest that the contribution of $\iota \rightarrow a_{2} \pi \rightarrow(\eta \pi) \pi$ and $\iota \rightarrow a_{2} \pi$ $\rightarrow(K \bar{K}) \pi$ may be appreciable. As mentioned in Ref. 22), via PCAC the coupling strengths of $\iota^{-} \kappa^{-} K$ and $\iota^{-} K^{* *}-K\left(\kappa \equiv K_{0}^{*}(1350)\right.$ and $\left.K^{* *} \equiv K_{2}^{*}(1430)\right)$ are comparable with that of $\iota-a_{0}-\pi$ and their contributions to the $\iota \rightarrow K \bar{K} \pi$ decays may also be appreciable.

Acknowledgements

We thank Professor K. Takamatsu of KEK for the information on the recent $\pi^{-} p$ reaction experiment. One of us (S.O.) acknowledges the support of General Research Board, University of Maryland for this collaboration. He is also indebted to the hospitality of Research Institute for Fundamental Physics, Kyoto University, where the final phase of this work was completed.

References

1) D. L. Scharre et al., Phys. Lett. 97B (1980), 329.
C. Edwards et al., Phys. Rev. Lett. 49 (1982), 259.
2) M. S. Chanowitz, Invited Talk at the VIV'th International Symposium on Multiparticle Dynamics at High Energies, Lake Tahoe, 1983.
3) The Mark III Collaboration, in AIP Conference Proceedings No. 132, Hadron Spectroscopy-1985, ed. S. Oneda, AIP, 1985, p. 14.
D. Hitlin, in Proceedings of the 1983 International Symposium on Lepton and Photon Interactions at High Energies, ed. D. G. Cassel and D. L. Kreinick, Cornell University, Aug. 4-9, 1983, p. 746.
4) H. Kolanoski, in Proceedings of the 1985 International Symposium on Lepton and Photon Interactions at High Energies, ed. M. Konuma and K. Takahashi, Kyoto, August 19-24, 1985, Kyoto, p. 90.
5) H. Aihara et al., Phys. Rev. Lett. 57 (1986), 51.
6) See D. Hitlin's talk in Ref. 3) and J. D. Richman, in Proceedings of the Twentieth Recontre de Moriond, ed. J. Tran Thanh Van (Editions Frontieres, Gif-sur-Yvette, France, 1985), p. 471.
7) S. Protopopescu, Invited Talk at The International Conference on Hadron Spectroscopy (Hadron '87), at KEK, April 16-18, 1987.
8) C. Rosenzweig et al., Nucl. Phys. B206 (1982), 12; B207 (1982), 546 (E).
9) W. F. Palmer and S. S. Pinsky, Phys. Rev. D27 (1983), 2219.
10) N. N. Achasov et al., Phys. Lett. 96B (1980), 168.
11) M. Frank et al., Phys. Rev. D32 (1985), 2971.
12) T. A. Armstrong et al., Phys. Lett. 146B (1984), 273.
T. A. Armstrong et al., in Proceedings of the International Europhysics Conference on High-Energy Physics, ed. L. Nitti and G. Preparate, Bari Italy, July 18-24, 1985, p. 314.
13) S. U. Chung et al., Phys. Rev. Lett. 55 (1985), 779.
A. Ando et al., Phys. Rev. Lett. 57 (1986), 1296.
14) P. Baillon et al., Nuovo Cim. 50A (1967), 393.
15) L. Kopke (the Mark III Collaboration), in Proceedings of the XXIII International Conference on High Energy Physics, ed. S. C. Loken, Berkeley, July 16-23, 1986, p. 692.
16) M. S. Chanowitz, Phys. Lett. 164B (1985), 379.
S. Iwao, Lett. Nuovo Cim. 35 (1982), 209.
17) C. E. Carlson and T. H. Hansson, Nucl. Phys. B199 (1982), 441.
18) T. Teshima and S. Oneda, Phys. Lett. 123B (1983), 455.
19) T. Teshima and S. Oneda, Phys. Rev. D29 (1984), 2067.
20) The Gell-Mann-Oakes-Renner method used in Refs. 18) and 19) corresponds to $\boldsymbol{p}=0$ (instead of \boldsymbol{p} $\rightarrow \infty$) sum rules. There we took a great pain in estimating the effect of symmetry breaking and the method can be applicable only to the PS-mesons. For the method used in this paper, asymptotic symmetry provides us with an unambiguous recipe for computing symmetry breaking effect and the method is applicable to any meson.
21) K. Milton, Phys. Rev. Lett. 57 (1986), 1530.
22) T. Teshima and S. Oneda, Phys. Rev. D27 (1983), 1551.
23) As discussed in Ref. 24), we take a non-collinear limit $p \rightarrow \infty$ and $k \rightarrow \infty$ in such a way as $(p-k)^{2}$ $\rightarrow 0$. Actually exactly the same sum rule Eq. (2-7) can also be derived by using the commutator [$J_{\mu}{ }^{\mathrm{EM}}(x), V_{K^{\circ}}$] $=0$ with $\mu=x$ and y and a collinear limit as discussed in Ref. 26).
24) S. Oneda and K. Terasaki, Prog. Theor. Phys. Suppl. No. 82 (1985).
25) S. Matsuda and S. Oneda, Phys. Rev. 187 (1969), 2107.
26) S. Oneda, T, Tanuma, T. Toiya and M. D. Slaughter, Phys. Rev. D23 (1981), 789.
27) Particle Data Group, Phys. Lett. 170B (1986).
28) This is being studied by M. D. Slaughter.

[^0]: *) Permanent address.

