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Previous modeling studies have identified the vaccination coverage level necessary for preventing influenza
epidemics, but have not shown whether this critical coverage can be reached. Here we use computational modeling to
determine, for the first time, whether the critical coverage for influenza can be achieved by voluntary vaccination. We
construct a novel individual-level model of human cognition and behavior; individuals are characterized by two
biological attributes (memory and adaptability) that they use when making vaccination decisions. We couple this
model with a population-level model of influenza that includes vaccination dynamics. The coupled models allow
individual-level decisions to influence influenza epidemiology and, conversely, influenza epidemiology to influence
individual-level decisions. By including the effects of adaptive decision-making within an epidemic model, we can
reproduce two essential characteristics of influenza epidemiology: annual variation in epidemic severity and sporadic
occurrence of severe epidemics. We suggest that individual-level adaptive decision-making may be an important
(previously overlooked) causal factor in driving influenza epidemiology. We find that severe epidemics cannot be
prevented unless vaccination programs offer incentives. Frequency of severe epidemics could be reduced if programs
provide, as an incentive to be vaccinated, several years of free vaccines to individuals who pay for one year of
vaccination. Magnitude of epidemic amelioration will be determined by the number of years of free vaccination, an
individuals’ adaptability in decision-making, and their memory. This type of incentive program could control epidemics
if individuals are very adaptable and have long-term memories. However, incentive-based programs that provide free
vaccination for families could increase the frequency of severe epidemics. We conclude that incentive-based
vaccination programs are necessary to control influenza, but some may be detrimental. Surprisingly, we find that
individuals’ memories and flexibility in adaptive decision-making can be extremely important factors in determining
the success of influenza vaccination programs. Finally, we discuss the implication of our results for controlling
pandemics.
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Introduction

Previously, both complex [1–3] and simple models [4–7] of
influenza transmission dynamics have been analyzed to
determine what proportion of the population would need
to be vaccinated to prevent influenza epidemics and
pandemics. However, none of these modeling studies have
shown whether this critical coverage can actually be reached.
Here we investigate, by modeling vaccination decisions made
by individuals, whether the critical coverage can be achieved
through voluntary vaccination. We construct an individual-
level model of human cognition and behavior and link it to
an epidemic model of influenza that includes vaccination
dynamics. We assume that the decision of each individual is
based upon self-interest such that s/he wishes to avoid
catching influenza, preferably without having to be vacci-
nated. Since protective immunity against influenza lasts less
than one year [8], individuals must decide every year whether
or not to participate in a voluntary vaccination program.
Individuals who get vaccinated protect themselves from
infection, but if they do not get vaccinated they may still
avoid infection if sufficient numbers of their peers get
vaccinated (i.e., through herd immunity). This poses a yearly
dilemma for the self-interested individual of whether
vaccination is necessary. We model each individual’s strategy
for making yearly vaccination decisions as an adaptive
process of trial and error. We track both individual-level

decisions and population-level variables (yearly vaccine
coverage level and influenza prevalence; where prevalence is
defined as the proportion of the population that is infected).
We use our model to address the following question: can
influenza epidemics be prevented by voluntary vaccination?
Our individual-level adaptive decision-making model is

inspired by Minority Game methodology. A Minority Game
models how noncommunicating selfish individuals reach a
collective behavior with respect to a common dilemma under
adaptation of each one’s expectations. In the past decade,
Minority Games [9] have been used to model inductive
reasoning systems [10] and financial markets [11]. Our
constructed model consists of a population of N individuals
acting in their own self-interest who do not communicate
their vaccination decisions to each other. Every year, these
individuals independently decide whether or not to get
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vaccinated against influenza using a risk-free, highly effective
vaccine [12]. We assumed that the vaccine presents no real
risk and that individuals do not perceive any risk from
vaccination. Individuals in the model are characterized by
two biological attributes (adaptability and memory) that they
use when making vaccination decisions. Individuals can adapt
their vaccination behavior for the current season on the basis
of their memories of the consequences of their past
vaccination decisions: i.e., they use cognition to make
decisions. We couple our individual-level model of adaptive
decision-making with a model of influenza vaccination
dynamics. Our coupled models show the effect of individu-
al-level vaccination decisions on influenza epidemiology and,
conversely, the effect of influenza epidemiology on individ-
ual-level vaccination decisions. We first use our model to
assess whether vaccination programs without incentives could
achieve the critical coverage levels necessary to control
influenza epidemics. We then assess the potential epidemio-
logical impact of two public heath programs that use
incentives to encourage vaccination.

There are two major classes of incentive-based public
health programs that can be investigated with our coupled
models. The first class uses incentives to correlate vaccination
decisions for the same individual over many influenza
seasons. The second class uses incentives to correlate
vaccination decisions amongst individuals in the population
in one influenza season. Many additional incentive-based
vaccination programs can be formulated by combining the
defining characteristics of these two classes. The first public
health program that we investigate is an example of the first
class of incentive-based programs. This program offers free
vaccination for y number of years to an individual who pays
for vaccination in the first year. We assume that the
individual gets vaccinated each year during the y years of
free vaccination, but that s/he also evaluates the necessity of
vaccination every year. At the end of y years, each individual

in the program then uses their evaluations to decide whether
or not to re-enroll in the program. If they choose to re-enroll,
they pay for vaccination that season (i.e., season y þ 1) and
receive free vaccinations for a further y years. The second
public health program that we analyze is an example of the
second class of incentive-based programs. This program
vaccinates a family for free if the head of the family pays
for her/his own vaccination. We assume that the head of the
family decides every year whether to re-enroll in the program
depending upon how many of her/his family members were
infected in the previous season.

Results

We found that influenza epidemics could not be prevented
in most seasons if vaccination was voluntary and no
incentives were offered (Figure 1A). This result was a
consequence of individuals making vaccination decisions
each year on the basis of their past experiences. When
epidemics occurred, some individuals became infected; this
increased the probability that they would get vaccinated in
the next influenza season. Thus, the vaccination coverage
gradually approached the critical value necessary for pre-
vention (Figure 1A). Eventually, the coverage slightly ex-
ceeded the critical coverage level due to the stochastic nature
of the individual-level adaptive decision-making process. At
this point, an influenza epidemic did not occur; notably, this
happened rarely (approximately once every 35 years; see
Figure 1A). In the following season, many individuals decided
that they did not need to get vaccinated, as an epidemic had
not occurred in the previous season; thus vaccination
coverage abruptly decreased and a severe epidemic ensued
(Figure 1A). The vaccination coverage then repeated a similar
cyclic dynamic (Figure 1A). If the initial vaccination coverage
was larger than the critical coverage, the coverage dropped to
a level below the critical coverage within a few years
(unpublished data); vaccination coverage then followed the
same cyclic dynamic as shown in Figure 1A. Since vaccination
coverage determines the severity of an influenza epidemic,
our results (as shown in Figure 1A) revealed that cyclic
dynamics of influenza epidemics could simply be caused by
individual-level adaptive decision-making.
The dynamics of each individual’s probability of getting

vaccinated each season is more complex than coverage and
prevalence dynamics (Figure 1B). Figure 1C shows the
distribution containing each of the N individuals’ probability
of getting vaccinated in one season; two distributions are
shown. The first distribution (black data) is obtained from a
season when an epidemic does not occur. In this season, the N
individuals segregate into two groups as has been shown for
other inductive reasoning games [13]. Individuals in one
group are very likely to get vaccinated whilst individuals in
the other group are unlikely to get vaccinated; few are
undecided. This segregated distribution results over the
course of the years when the coverage is close to but below
the critical vaccination coverage. During these years, both
vaccination and nonvaccination behaviors are reinforcing
with the small exception of a few nonvaccinating individuals
who get infected. These infected individuals then begin to get
vaccinated and thus increase the coverage closer toward the
critical vaccination coverage. The second distribution (blue
data in Figure 1) is obtained in successive seasons when severe
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Author Summary

Currently, a major public health concern is the next influenza
pandemic; yet it remains unclear how to control such a crisis. By
using novel mathematical modeling techniques, here we predict the
likely impact of voluntary vaccination programs on controlling
influenza epidemics and pandemics. We construct an individual-
level model of human cognition and behavior that includes two
important biological characteristics: memory and adaptability/
flexibility. In each influenza season, each individual in the modeled
population decides, using memory and adaptability/flexibility,
whether to be vaccinated or not. We combine our individual-level
model with an epidemic model to predict the impact of voluntary
vaccination programs. We found that severe influenza epidemics
cannot be prevented unless vaccination programs offer incentives.
Frequency of severe epidemics could be reduced if programs
provide, as an incentive to be vaccinated, several years of free
vaccines to individuals who pay for one year of vaccination.
However, we found that a public health intervention program that
focuses on vaccinating families is likely to increase the frequency of
severe epidemics. Most importantly, we found that individuals’
memories and adaptability/flexibility in decision-making are critical
factors in determining the success of influenza vaccination
programs. Our results are applicable both for the control of seasonal
and pandemic influenza.

Influenza and Voluntary Vaccination



epidemics occur. In these seasons, the distribution of the
vaccination probabilities remains segregated into two groups.
However, individuals who were very likely to get vaccinated
previously have decreased their vaccination probability
(Figure 1C), causing severe epidemics. The distribution shown
by the blue data in Figure 1 slowly tended towards the
distribution shown by the black data as epidemics decreased
in severity. When the critical coverage level is exceeded, the
distribution repeats a similar cyclic dynamic. This cyclic
dynamic occurred in a homogenous population where every
individual had the same memory parameter s and adapt-
ability parameter e. We found that similar cyclic dynamics

occur in heterogeneous populations where memory and
adaptability are normally distributed, but bounded between 0
and 1 (unpublished data). We note that, using a population-
level model with a deductive reasoning game, Reluga et al.
[14] have also recently shown that cyclic dynamics in vaccine
coverage can occur due to heterogeneity in risk perception.
Many individuals are likely to enroll in incentive-based

vaccination programs in response to a major epidemic.
However, the epidemiological impact of these programs can
be complex. We analyzed the potential impact of a commit-
ment-incentive program that offers free vaccination for y
years if the individual pays for vaccination in the first year
(Figure 2). A three-year program (red data) caused substan-
tially less severe, but more frequent, epidemics than a
program without incentives (black data) (Figure 2A). In
contrast, a fifteen-year program (green data) caused more
frequent severe epidemics than a program without incentives.
Our contrasting results are a consequence of the relationship
between the length of the commitment to the program and
the time scale of the memory parameter (s; s¼ 0.7 determines
a half life of 1.9 years). Programs that require only a short-
term commitment (e.g., y ¼ 3) have a high turnover of
participants and a time scale comparable to that of the
memory parameter. Participants who leave this program
become reinfected and therefore quickly re-enroll in the
program; this process results in only small frequent epidem-
ics. Programs that require long-term commitment (e.g., y ¼
15) have a relatively low turnover of participants and a time
scale much longer than that of the memory parameter. Long-
term commitment programs prevent epidemics for many
years. Thus, at the end of the commitment many individuals
do not re-enroll in the program because an epidemic has not
occurred for many years. Therefore, vaccination coverage
drops and a severe epidemic occurs; severe epidemics occur
approximately every fifteen years if y ¼ 15.
To systematically assess the effect of memory, adaptability,

and length of commitment on the success of vaccination

Figure 1. Results of the Model without Incentives

The vaccination coverage dynamic has a memory parameter s = 0.7, an adaptability parameter e = 1, a critical vaccination coverage level pc = 0.6
(dashed line), and a probability q(0) = 0.8 of getting infected if no one participates in the voluntary vaccination program.
(A) Dynamics of yearly coverage (p) for a population of N¼ 105 individuals (black data), and the corresponding dynamics of the prevalence (red data). The
dynamics of the yearly coverage is approximately cyclic: as p approaches pc from below, it eventually fluctuates above pc and then abruptly drops below pc.
(B) The probability that individual i decides to be vaccinated in season n is w(i)

n. The figure shows w(i)
n versus time for two individuals in the population.

In contrast to the simple dynamics of the coverage, individuals go through complex vaccination decision behavior.
(C) Normalized distributions q(w(i)) versus w(i)

n for a population with N ¼ 107 for improved accuracy. The distribution when the coverage fluctuates
above pc is shown by the black data, and the distribution in the successive year when the coverage abruptly drops below pc is shown by the blue data.
Individuals tend to strongly segregate into two groups. The individuals in one group are highly unlikely to get vaccinated the next season. The black
data show that the individuals in the other group are highly likely to get vaccinated (i.e., w¼ 1). The blue data show that the individuals in the second
group are less likely to get vaccinated than previously (i.e., given that no epidemic occurred in the previous season, w ¼ s).
doi:10.1371/journal.pcbi.0030085.g001

Figure 2. Vaccine Coverage for Different Public Health Programs.

The dynamics of the vaccination coverage p is calculated for N ¼ 105

individuals using a memory parameter s¼ 0.7, an adaptability parameter
e = 1, a critical vaccination coverage level pc¼ 0.6, and a probability q(0)
= 0.8 of getting infected when p = 0.
(A) Individuals who pay for one vaccination are then given y ¼ 3 (red
data) and y ¼ 15 (green data) free years of vaccination; the vaccine
coverage when individuals are given no incentive to get vaccinated (i.e.,
no free vaccine) is shown by the black data for comparison.
(B) The head of the family makes the decision as to whether or not their
family gets vaccinated. The vaccine coverage when the family size is
eight (C¼ 8) is shown by the blue data; the vaccine coverage when each
individual makes voluntary vaccination decisions independently (rather
than as a family) is shown by the black data for comparison. Similar
results were obtained for family sizes of two and four.
doi:10.1371/journal.pcbi.0030085.g002
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programs, we conducted an uncertainty analysis for: (i)
programs without incentives, (ii) short-term commitment
(e.g., y¼3) programs, and (iii) long-term commitment (e.g., y¼
15) programs (see Figure 3). We found that the magnitude of
epidemic amelioration is determined by the length of
commitment to the program, the individuals’ adaptability,
and their memory. When individuals are very adaptable and
have long-term memories, commitment-incentive programs
can be very effective in controlling influenza epidemics.

As well as a commitment-incentive vaccination program,
we also investigated the potential epidemiological impact of a
family-incentive program. This program vaccinates a family
for free if the head of the family pays for her/his own
vaccination. Vaccination coverage dynamics for the family-
incentive program appeared fairly similar to the coverage
dynamics for the program that does not provide incentives
(Figure 2B). However, surprisingly, the family-incentive
program increased the frequency of severe epidemics. This
result was found because epidemic severity and frequency are
a function of the number of individuals who independently
decide whether or not to get vaccinated. In the vaccination
program without incentives, each member of the population
is a decision-maker and decides independently whether to get
vaccinated or not. In the family-incentive program, only one
member of each family is allowed to make the decision.
Therefore, the family-incentive program reduces the number
of independent decision-makers from the total number of
individuals to the total number of families. Stochastic
variation in the coverage (and hence frequency of severe
epidemics) increases as the number of independent decision-
makers decreases. Thus, the family-incentive program in-
creased the frequency of severe epidemics.

Discussion

The critical vaccination coverage level necessary to
eradicate influenza epidemics and pandemics has been

calculated by analyzing influenza transmission models [1–7].
However, none of these studies have shown whether it is
actually possible to reach the critical coverage level. By
coupling a novel individual-level model of human cognition
and behavior with an epidemic model, we have determined,
for the first time, that this critical level is unlikely to be
reached if vaccination is voluntary and no incentives are
offered; for mathematical justification see [15]. Our modeling
has shown that incentive-based vaccination programs are
necessary to control influenza epidemics, but that some of
these programs may be detrimental. Hence, incentive-based
programs need to be carefully evaluated before they are
implemented. Surprisingly, we have found that the epidemio-
logical impact of influenza vaccination programs will depend
upon the biological characteristics of individuals as well as
the specific incentives that are offered.
Influenza evolution and dynamics are driven by genetic

changes that can alter strain transmissibility and/or virulence;
therefore, influenza epidemics can show seasonal variation in
severity. The severity of an epidemic can be defined in terms
of the basic reproduction number (R0); where R0 represents
the average number of secondary cases caused by one
infectious case at the beginning of an epidemic. Changes in
strain transmissibility and/or virulence may lead to an
increase (or a decrease) in the value of R0; thus, the value of
R0 may show seasonal variation. However, in our analyses we
used a constant value of R0, because we wanted to isolate the
impact of individual-level vaccination decisions on influenza
dynamics. It is notable that even with a constant R0, by
including individual-level adaptive decision-making, our
modeling was able to reproduce two essential characteristics
of influenza dynamics and evolution: (i) annual variation in
epidemic severity, and (ii) sporadic occurrence of severe
epidemics. Therefore, our results suggest that individual-level
adaptive decision-making may be an important (previously
overlooked) causal factor in driving influenza epidemiology.
A pandemic influenza strain will not necessarily have a

Figure 3. The Structure of the Average Prevalence Level (i Panels) and the Average Coverage Level (ii Panels) in the Parameter Space e � s

(A) Individuals receive no incentives (i.e., no free vaccines)—i.e., y ¼ 0 (gray data).
(B) Individuals pay for one vaccine and are then given y ¼ 3 years of vaccination (red data).
(C) Individuals pay for one vaccine and are then given y ¼ 15 years of vaccination (green data).
doi:10.1371/journal.pcbi.0030085.g003
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substantially higher R0 than an interpandemic (i.e., seasonal)
strain. In our analyses of interpandemic strains, we used an R0

value of 2.5 (which requires a critical vaccination coverage of
0.6); a similar value for R0 has been quoted and attributed to
pandemic strains [5,16]. Specifically, in Mills et al. [5], they
calculate that the R0 values for the 1918 pandemic strains
were between 2 and 3. However, it is possible that a pandemic
strain may have a substantially higher R0 than an interpan-
demic strain. Therefore, we also investigated the impact of
the sporadic introduction of a pandemic strain with an R0¼
10; this pandemic strain has a critical vaccination coverage
level of 0.9. Apart from an occasional substantial increase in
coverage in the year after a pandemic, the qualitative
behavior of the coverage dynamics are similar to the
dynamics for interpandemic influenza (unpublished data).
The epidemiological impact of both the commitment-
incentive and the family-incentive program on pandemics
are also similar to the impact observed previously for
interpandemic influenza. Therefore, we conclude that our
results can be used to understand, and to predict, the
potential impact of vaccination programs for controlling
pandemic, as well as interpandemic, influenza.

Two previous studies [17,18], based upon a game-theoretic
approach using voluntary vaccination programs (without
incentives), have shown that it would only be possible to
eradicate a vaccine-preventable disease if a risk-free vaccine
was used. In contrast, we found that influenza epidemics are
unlikely to be prevented by using voluntary vaccination with a
risk-free vaccine. The reason that our results are in direct
contrast to the previous two theoretical studies are that
different pathogens are investigated. The earlier study by
Bauch et al. concentrated on smallpox [18], and in the second
study Bauch and Earn [17] analyzed childhood diseases. For
both smallpox and childhood diseases, it is necessary to be
vaccinated only once [17,18]; thus, Bauch and colleagues did
not model memory nor individual adaptability. In contrast to
these earlier studies, we have modeled influenza, which needs a
yearly vaccination. We have assumed that individuals make
their decisions both on the outcome of their own previous
vaccination decisions, as well as on the basis of the previous
seasons’ level of herd immunity. Therefore, our model includes
greater biological complexity than the previous models, as,
when modeling annual influenza vaccination decisions, it is
necessary to model a memory effect and to incorporate the
possibility of changing behavior (i.e., adaptability). Hence we
found contrasting results to the previous two studies [17,18].

The purpose of our analyses was to evaluate the role of
memory and adaptation on vaccination decision-making, and
also the impact of vaccination decisions on influenza
epidemiology. We have presented results for a homogenous
population in the memory and adaptability parameters.
Similar qualitative dynamics were found for the case where
the population was heterogeneous in both memory and
adaptability. Many other factors may also influence individ-
uals in making their vaccination decisions [19]. However,
memory and adaptation are principle biological attributes of
individuals; consequently, including them in models of
recurring voluntary vaccination is essential. Our model
describes a large population of individuals. We account only
for epidemics and we do not consider outbreaks; outbreaks
become decreasingly important as the population size N
increases. The two central assumptions of our model are that

individuals act in their own self-interest and do not
communicate their vaccination decisions to each other. If
these assumptions are not met, then other outcomes are
possible: for example, the public may choose to continue
vaccinating even if vaccination does not appear worthwhile
for them. This type of behavior may be able to prevent
influenza epidemics occurring. However, we stress that even a
population of individuals acting in the interest of their own
families would not be able to prevent influenza epidemics.
Although we do not model the impact of treatment in
controlling influenza epidemics, the effects of treatment can
be implicitly accounted for in our individual-level model by
decreasing the critical vaccination coverage level. We also do
not model the economics of vaccination programs. Such
analyses could be done using our model in order to assess the
most cost-effective vaccination program.
In the United States, demand for influenza vaccines is

generally met and no major shortages occur. In recent years,
vaccination coverage (based upon voluntary vaccination) has
steadily increased [20,21]. One of the national health objectives
of the US is to further increase the coverage [20,21]; currently,
the coverage is below the Healthy People 2010 objectives [20].
Here we have shown computationally, for the first time to the
best of our knowledge, that it is unlikely that influenza
epidemics will be prevented if vaccination is voluntary and no
incentives are offered. We have found that incentive-based
vaccination programs will be necessary for controlling
influenza. We have also shown that these programs can have
surprising effects and sometimes may make epidemics worse.
We recommend that public health vaccination programs
should be carefully evaluated before they are implemented.
By modeling human cognition and behavior, we have shown
that the impact of vaccination programs will depend upon
both the biological characteristics of individuals as well as the
specific incentives that are offered. Surprisingly, we found that
individuals’ memories and their flexibility in adaptive deci-
sion-making can be extremely important factors in determin-
ing the success of influenza vaccination programs.

Materials and Methods

Individual-level model of cognition and adaptive decision-making.
In every influenza season, each individual decides whether or not to
get vaccinated, independently from each other. We assume that
vaccination completely protects an individual from infection. The
probability that individual i chooses to be vaccinated in season n is
w(i)

n. Individual i is assigned a vaccination experience variable V(i)
n,

the value of which changes every year and depends upon whether or
not: the individual chose to be vaccinated, they became infected, and
an epidemic occurred in the previous season (Figure 4A). V(i)

n
increases each time the individual perceives that there was, or would
have been, a benefit to vaccination because (a) the individual got
vaccinated and there was an epidemic, or (b) the individual did not
get vaccinated and then became infected (Figure 4A). We model the
effect of memory by using a parameter s to discount the previous
seasons’ vaccination outcome with respect to the outcome of the
present season (0 , s , 1) [22]. Specifically, V(i)

nþ1 ¼ sV(i)
n þ 1 if

individual i believes s/he did, or would have, benefited from
vaccination in season n. Otherwise, if individual i believes that
vaccination was unnecessary in season n (regardless of whether s/he
got vaccinated or not), V(i)

nþ1 ¼ sV(i)
n.

We normalize V(i)
nþ1 by (snþ1 � 1)/(s � 1) because this factor is the

maximum possible value for V(i)
nþ1 if individual i would have

benefited from vaccination in all n influenza seasons. The domain
for the V(i)

n is 0 � V(i) , 1/(1� s). Note that if individual i has perfect
memory (i.e., s ¼ 1), the vaccination experience variable represents
the total number of years that this individual would have benefited
from being vaccinated divided by the total number of years that
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vaccination was available. We assume that individuals are adaptable
in their decision-making as to whether to be vaccinated or not, and
we use a parameter e to describe an individuals’ adaptability based
upon their past experiences with vaccination (0 , e , 1). Thus, the
probability that an individual chooses to get vaccinated in the next
influenza season is given by w(i)

n þ1¼ (1� e) w(i)
nþ e V(i)

nþ1/[(s
nþ1� 1)/(s

� 1)]. This expression shows that memory s and adaptability e are not
interchangeable parameters. An individual may have perfect memory
of their vaccination experiences, characterized by s¼ 1, but may not
use this memory if they have a small adaptability parameter e. In our
model, the probability of an unvaccinated individual acquiring
influenza q(p) decreases linearly as the coverage p increases; Figure
4B. This function is a good approximation of the relationship found
for the Susceptible–Infected–Recovered (SIR) model as well as the
Susceptible–Exposed–Infectious–Recovered (SEIR) model that could
be used as within-season population-level models; see below. When
the vaccination coverage is greater than or equal to the critical
vaccination coverage (i.e., p � pc) the probability of an unvaccinated
individual getting infected is defined to be zero.

At the end of each season, every individual evaluates their
vaccination decisions based upon whether vaccination had been
necessary to avoid infection. They then modify their probability to
get vaccinated the next season to w(i)

nþ1. Figure 4A shows a diagram of
the evaluation tree. Individuals start their first season with no prior
experience in decision-making as to whether to be vaccinated or not.
The initial condition assigns a random vaccination probability for the
first season to every individual. Specifically, V(i)

0 ¼ 0 and w(i)
0 is a

uniformly random variable between 0 and 1. Our initial conditions
were chosen to reflect the fact that the initial public awareness of the
benefits of the voluntary vaccination would not be high enough to
prevent an epidemic, while at the individual-level the likelihood of
vaccination could vary considerably.

Our findings reported in Figure 1 are robust. Using the method-
ology presented in [15], we found that there exists a considerable
region in the parameter space for which our model yields coverage
dynamics similar to the results in Figure 1. The region is given by e� s
�1 , e(1� s) [1� q(0)(1�pc)/pc] , e� sþ1 and 0 , s(1þ e� s)þ e(1� e)
(1 � s)(1 � 2s). Furthermore, for this parameter region, there exists
only one attracting state for the dynamics of the coverage. Thus, our
results are independent of the initial conditions.

We investigated the potential epidemiological impact of two public
health programs that we defined as a voluntary vaccination program
coupled with an incentive. The first public health program that we
investigated would offer free vaccination for y number of years if the
individual paid for vaccination in the first year. We assume that
during the y years of free vaccination the individual would continue

to get vaccinated each year, but would also evaluate the necessity of
influenza vaccination. At the end of their y years of free vaccination,
every individual in the program then uses all their evaluations to
decide whether to pay for vaccination that season (i.e., season y þ 1)
and further receive free vaccinations for a further y years. To model
this public health program, the changes that are needed in the model
are very few. Namely, if an individual gets vaccinated in year n, then
w(i)

nþr¼ 1, with 0 , r , yþ 1; thus s/he will also get vaccinated for the
next consecutive y years (when the vaccine is provided for free).

We also investigated the potential epidemiological impact of a
public health program that would vaccinate a family for free if the
head of the family paid for her/his own vaccination. This is different
from the model without incentives and the one with the first public
health program, as in those analyses we assumed that individuals
independently decide whether or not to get vaccinated. We assume
that the head of the family would make her/his choice on the basis of
protecting her/his family against influenza in that particular season
that free vaccination is offered. S/he would then modify her/his
probability of getting vaccinated in the next season depending upon
how many family members became infected. To model this
vaccination program we considered a population of N individuals
who are grouped into families with C members. The head of the
family j updates her/his V(j)

n value (where j labels the family, j¼1...N/C)
in the following way: (a) V(i)

nþ1¼ sV(i)
nþC if the head of the family had

decided to have her/his family vaccinated and there was an epidemic
that season; (b) V(i)

nþ1 ¼ sV(i)
n if there was no epidemic that season,

regardless of whether or not the family was vaccinated against
influenza; (c) V(i)

nþ1 ¼ sV(i)
n þ k, if k members of the family were

infected in a season where the head of the family had decided not to
get her/his family vaccinated and there was an epidemic. We
normalized the value of V(i)

nþ1 by a factor of C(snþ1 � 1)/(s � 1) that
represents the maximum possible value of V(i)

nþ1 over n seasons.
Therefore, the vaccination probabilities are updated as follows w(i)

nþ1
¼ (1� e) w(i)

n þ eV(i)
nþ1/[C(s

nþ1 � 1)/(s � 1)].
Within-season epidemic model with vaccination. To calculate the

probability of getting infected with influenza q given a specified
vaccination coverage p during one influenza season, we make the
following assumptions that are compatible with the vaccination
model presented in the main text: a) we ignore the inflow and outflow
of individuals in the study population during a season (i.e., we ignore
vital dynamics); b) individuals may get vaccinated against influenza
only at the beginning of the influenza season; c) the vaccine is risk-
free and offers perfect protection against infection; d) individuals
who get infected and then recover remain immune to infection until
the end of the season.

As a result of the above assumptions, we choose to model the

Figure 4. Diagrammatic Description of the Adaptive Decision-Making Model

(A) Diagram illustrating the evaluation tree. An individual who decides to get vaccinated (branch (a)) will base their decision on whether there was an
influenza epidemic that season. If the coverage p was equal to or greater than the critical coverage pc (i.e., p � pc) (branch (a1)), they will conclude that
their decision to get vaccinated that season was unnecessary to avoid infection. Otherwise, if the coverage was lower than the critical coverage (i.e., p ,
pc) (branch (a2)), they will conclude that their decision was beneficial for avoiding infection. An individual who decides not to get vaccinated that
season (branch (b)) will base their decision on whether they were infected. If they did get infected (branch (b1)) they will conclude that their decision to
not get vaccinated was detrimental and that vaccination would have been necessary for avoiding infection. Instead, if by chance they avoided infection
(branch (b2)), they will conclude that vaccination was unnecessary.
(B) The probability of getting infected with influenza q(p) versus the vaccination coverage p.
doi:10.1371/journal.pcbi.0030085.g004
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epidemic transmission during one season using a SIR model, without
vital dynamics, that includes vaccination at the beginning of each
influenza season.

dSðtÞ=dt ¼ �bSðtÞIðtÞ=N ;

dIðtÞ=dt ¼ bSðtÞ=IðtÞ=N � cIðtÞ;

dRðtÞ=dt ¼ cIðtÞ;

dVðtÞ=dt ¼ 0

where S(t), I(t), R(t), and V(t) represent the number of susceptible,
infected, recovered, and vaccinated individuals, respectively. The
total number of individuals N ¼ S(t) þ I(t) þ R(t) þ V(t) is constant. b
represents the transmissibility in the mass-action term, and c
represents the recovery rate. The initial conditions for the equations
are as follows. A fraction p of the population gets vaccinated against
influenza leaving only (1 � p)N susceptible individuals. Thus, at the
start of the influenza season, S(0)¼ (1� p) N� 1, I(0)¼ 1, R(0)¼ 0, and
V(0) ¼ pN.

The probability of getting infected during an influenza season q(p)
is given by,

qðpÞ ¼
ZT

O

bSðtÞIðtÞ
N2 dt

where T represents the duration of the influenza season. In Figure 5
we show an illustrative graph of q(p). We note that the featured
dependence is approximately piecewise linear. The discontinuity in
derivative occurs at p¼ 1� 1/N� c/b [ pc which for large N becomes
pc ’ 1 � c/b.

We note that a SEIR model could also be used to model influenza
transmission [23]. Using an SEIR model we obtained a dependency of
q with p which is similar to that presented in Figure 5 (unpublished
data). Therefore, Figure 4B can be used to qualitatively model this
dependency for both SIR and SEIR transmission models.
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