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Abstract. This paper investigates if the performance of hyperspec-
tral face recognition algorithms can be improved by considering 1D
projections of the whole spectral data along the spectral dimension.
Three different projections are investigated: single spectral band selec-
tion, non-negative spectral band combination, and unbounded spectral
band combination. Experiments are performed on a standard hyperspec-
tral dataset and the obtained results outperform seven existing hyper-
spectral face recognition algorithms.

1 Introduction

Since intra-person differences are often larger than inter-person ones in presence
of variations in viewing point and illumination conditions, face recognition is
still a challenging problem.

Most of the current research is based on features extracted from grayscale or
RGB images, which are usually acquired in the visible spectrum [1,2].

With the aim of increasing the dimensions in face images, many researchers
have considered the use of hyperspectral imaging [3–7]. Hyperspectral imaging
can increase facial discrimination by capturing more biometric measurements
such as the spectral response of faces. A hyperspectral image is a data cube with
two spatial dimensions and one spectral dimension. It is captured by a hyper-
spectral camera which operates in multiple narrow bands and densely samples
the radiance information in both space and wavelength, producing a radiance
spectra at every pixel.

In addition to face appearance, spectral measurements in multiple wave-
lengths can also measure subsurface tissue features [4] which may be significantly
different for each person.

Although the high dimensionality of hyperspectral data is a desirable feature
for separating the different identities, at the same time it poses new challenges
such as inter-band misalignments and low signal to noise ratio (SNR) in certain
spectral bands.

Due to the high dimensionality of hyperspectral data, discriminative feature
extraction for face recognition is more challenging than 2D images. The different
approaches for dimensionality reduction and feature extraction range from the
sub-sampling of the hyperspectral data [4,5,7] to the more promising approaches
which use whole-band features [3,8].
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Starting from the best hyperspectral method in the state of the art [8], this
paper investigates if the use of linear projections along the spectral dimension
can improve face recognition performance with respect to the use of the full
hyperspectral data.

The experiments are performed on the PolyU Hyperspectral [3,9] standard
hyperspectral face database. The results are compared with seven existing hyper-
spectral face recognition algorithms.

2 Baseline Method

The proposed method builds on the method of Uzair et al. [8], which has three
main steps respectively related to the normalization of illumination variations,
feature extraction and classification.

The first step consists in filtering the individual bands with a circular (8,1)
neighborhood LBP [12] filter to normalize for the illumination variations.

The second step is the feature extraction step which is based on a
three-dimensional Discrete Cosine Transform (3D-DCT). The Discrete Cosine
Transform (DCT) [13] decomposes a discrete signal into linear combination of
independent cosine basis functions. DCT tends to generate a representation in
which the low-frequency coefficients encode most of the signal information. A
compact representation can be obtained by selecting as features only the low-
frequency coefficients. The 3D-DCT of a hyperspectral cube H(x, y, λ) with size
N1 × N2 × N3 is given by

F (u, v, w) = Ω1(u)Ω2(v)Ω3(w)
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with u = {0, . . . , N1 − 1}, v = {0, . . . , N2 − 1}, w = {0, . . . , N3 − 1}, and Ωi(·) is
defined

√

1/Ni if its argument is zero, and
√

2/Ni otherwise.
The low frequency coefficients near the origin of F (u, v, w) represent most

of the energy of the hyperspectral cube, and therefore the high-frequency coeffi-
cients can be discarded. In order to construct the feature vector, in [8] a frequency
sub-cube Γ(u, v, w) of dimensions (α × β × γ) is sampled by retaining only the
low-frequency elements around the origin of F (u, v, w). The sub-cube Γ(u, v, w)
is then vectorized and normalized to unit magnitude to obtain the final feature
vector f ∈ IRd, where d = αβγ, which is then used for classification.

The last step consists in the use of the Partial Least Squares (PLS) regression
[14] for the classification. PLS models the relations between sets of observed
variables by means of latent variables. In its general form, PLS creates orthogonal
score vectors by maximizing the covariance between different variable sets. The
only parameter to be set in PLS is the number of latent variables to use.
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3 The Proposed Method

Building on top of the method of Uzair et al. [8], this work wants to understand if
the full hyperspectral information is actually needed to improve face recognition
accuracy or if a projection of it suffices. The projection is applied directly to
the hyperspectral cube H(x, y, λ) (i.e. the radiance data), before any step of the
method in [8], and depends on the set of weights W (λi) = wi, i = 1, . . . , N3:

P (x, y) =
∑

i=1,...,N3

H(x, y, λi)W (λi) (2)

The projection P (x, y) is thus a 2D image, forcing γ = 1 for the sub-cube size.
In this work three different projections are considered. The first one is

W1(λ) = δλ0
(λ) =

{

1 if λ = λ0

0 otherwise
(3)

and can be seen as a band selection operator, or a pass-band optical filter.
The second projection is

W2(λi) = wi, i = 1, . . . , L s.t. ∀wi : wi ∈ IR, 0 ≤ wi ≤ 1 (4)

which can be seen as a non-negative linear combination of the different hyper-
spectral bands. This is an operation analogue to what optical filters do in tradi-
tional imaging, and could be done using a monochrome digital camera coupled
with a custom designed filter.

The third projection is an unbounded linear combination of the hyperspectral
bands, and can be defined as in equation 4 removing the lower and upper bounds
on the filter coefficients wi, i.e.:

W3(λi) = wi, i = 1, . . . , L s.t. ∀wi : wi ∈ IR (5)

This is a generalization of the second one, and is the only one that cannot be
realized through an optical filter since it could have negative coefficients as well
as |wi| > 1.

The optimal W1(λ) projection is obtained by exhaustive search, while for
both W2(λ) and W3(λ) a Particle Swarm Optimization (PSO) [10,11] is used.
PSO is a population based stochastic optimization technique. A population of
individuals is initialized as random guesses to the problem solutions and a com-
munication structure is also defined, assigning neighbors for each individual to
interact with. These individuals are candidate solutions. The particles iteratively
evaluate the fitness of the candidate solutions and remember the location where
they had their best success. The best solution of each individual is called the
particle best or the local best. Each particle makes this information available
to its neighbors. Movements through the search space are guided by these suc-
cesses. The swarm is typically modeled by particles in multidimensional space
that have a position and a velocity. These particles move into the search space
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Fig. 1. A hyperspectral face cube from the PolyU-HSFD dataset

and have two essential reasoning capabilities: the memory of their own best posi-
tion and the knowledge of the global best position (or the best position of their
neighbors). Members of a swarm communicate good positions to each other and
adjust their own position and velocity based on these good positions.

4 Experiments

4.1 Dataset

The hyperspectral face database used is the Hong Kong Polytechnic University
Hyperspectral Face Database(PolyU-HSFD) [3,9]. It consists of hyperspectral
image cubes acquired using a CRIs VariSpec Liquid Crystal Tuneable Filter.
Each cube contains 33 bands acquired in the 400-720nm spectral range in 10nm
steps. The database has been collected over a long period of time and shows
significant appearance variations of the subjects (e.g. changes of hair style, skin
conditionss, etc.). Signal to noise ratio (SNR) in bands near the blue wavelength
is very low, and the database contains inter-band misalignments due to subject
movements during the acquisition at the different wavelengths.

The database contains a total of 48 subjects (13 females and 35 males). For
each of the first 25 subjects four to seven cubes are available, while the remaining
23 subjects only have one cube each. Following the experimental protocol of [3,7],
only the first 25 subjects are used in the experiments. For each subject, two cubes
are randomly selected for the gallery and the remaining cubes are used as probes.
The random selection is repeated ten times and the results are averaged. As in
[3] the eye, nose tip, and mouth corners coordinates were located manually for
image registration, and a subregion containing the face was cropped from each
band, normalized, and scaled to one quarter size.

An example of the hyperspectral face cubes used is reported in Figure 1,
while examples of appearance variations are reported in Figure 2.

4.2 Compared Hyperspectral Face Recognition Algorithms

The seven existing hyperspectral face recognition algorithms used for compar-
isons include Spectral Signature Matching [4], Spectral Angle Measurement [6],
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Fig. 2. Examples of appearance variations. The same hyperspectral band correspond-
ing to λ15 = 540nm is selected for all subjects.

Spectral Eigenface [5], 2D PCA [3], 3D Gabor Wavelets [7], and 2D and 3D-DCT
with PLS regression [8]. The parameters of these algorithms are set as follows.
For spectral signature matching algorithm [4], five adjacent square regions of
size 17x17 pixels arranged in a cross pattern are used to represent hair, forehead
and cheeks. For the lips, square regions of size 9x9 pixels are used . For Spectral
Eigenface [5], 99% energy is preserved by retaining 48 PCA basis vectors. For
2D PCA [3], 99% energy is preserved by retaining 27 PCA basis vectors. For the
3D Gabor method, 52 Gabor wavelets are used for feature generation as recom-
mended by [7]. For the 2D and 3D-DCT [8] method the parameters are taken as
suggested by the authors: α = β = γ = 10 for the sub-cube size to extract the
features, and 45 PLS basis.

4.3 Results

The results of the hyperspectral face recognition algorithms compared are reported
in terms of average recognition rate in Table 1. The results of Spectral Signature
Matching [4], Spectral Angle Measurement [6], Spectral Eigenface [5], 2D PCA [3],
3D Gabor Wavelets [7], and 2D and 3D-DCT with PLS regression [8] are all taken
from [8], with the only exception of the 3D-DCT method for which the results using
an our implementation are also reported.

It is possible to notice that the proposed method outperforms the best algo-
rithm in the state of the art by 4.3% up to 6.11%. The best projections found
for W1(λ), W2(λ), and W3(λ) are reported in Figure 3. Interestingly, the band
selected by W1(λ) and the bands receiving higher weights by W2(λ) and W3(λ)
are localized at the oxyhemoglobin peak absorption valley [3,15].

As already said in Section 3 the projections W1(λ) and W2(λ) could both
be realized through an optical filter since they do not have negative coefficients.
The projection W3(λ), instead can not be realized through a single optical filter,
but exploiting the linearity of equation 2 it could be realized by subtracting two
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Table 1. Average recognition rates and standard deviations (%) for ten-fold experi-
ments on the database

Algorithm Average recognition rate (std)

Spectral Signature [4] 24.63 (3.87)

Spectral Angle [6] 25.49 (4.36)

Spectral Eigenface [5] 70.30 (3.61)

2D PCA [3] 71.11 (3.16)

3D Gabor Wavelets [7] 90.19 (2.09)

2D-DCT + PLS [8] 91.43 (2.10)

3D-DCT + PLS [8] 93.00 (2.27)

3D-DCT + PLS (author’s implementation) 93.32 (3.13)

Proposed (W1(λ), single band selection) 97.20 (1.66)

Proposed (W2(λ), non-negative band combination) 98.34 (1.83)

Proposed (W3(λ), unbounded band combination) 99.11 (1.21)

different optical filters W+
3 (λi) and W−

3 (λi):

P (x, y) =
∑

i=1,...,N3

H(x, y, λi)W
+
3 (λi) −

∑

i=1,...,N3

H(x, y, λi)W
−
3 (λi) (6)

where

W+
3 (λi) =

{

W3(λi) if wi > 0

0 otherwise
(7)

and

W−
3 (λi) =

{

−W3(λi) if wi < 0

0 otherwise
(8)

Some examples of the projected output given by applying equation 2 with
the optimal W1(λ), W2(λ), and W3(λ) projections are reported in Figure 4.

From the images reported it is possible to see that using the W1(λ) projection
results in sharper images, due to the fact that only one spectral band is used. On
the contrary, since W2(λ) and W3(λ) use the whole spectra, they make inter-band
misalignments evident resulting in more blurred images.

In Figure 5 some examples of errors across the ten-fold experiments when
using the W3(λ) projection are reported. The two gallery images are reported
for each example together with the probe image and the gallery images of the
incorrectly assigned identity.

The sensitivity of the proposed method is analyzed in Figure 6 by plotting
equal recognition rate curves as a function of number of PLS basis and sub-cube
size (α = β and γ = 1, due to the effect of the projection).
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Fig. 3. Best projections found: W1 (top left), W2 (top right), and W3 (bottom left)

Fig. 4. Examples of the projections obtained by applying the optimal projections
found. W1(λ), single band selection (left); W2(λ), non-negative linear combination
(middle); W3(λ) and unbounded linear combination (right).
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Fig. 5. Examples of errors for the ten-fold experiment using the W3(λ) projection:
gallery cubes (top), probes (middle), gallery cubes for the predicted identity (bottom)

Fig. 6. Equal recognition rate curves as a function of sub-cube size (y-axis) and number
of PLS basis (x-axis): single band selection (top left), non-negative linear combination
(top right), and unbounded linear combination (bottom left)
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5 Conclusion

In this paper it is shown that the performance of hyperspectral face recognition
algorithms can be improved by just considering 1D projections along the spectral
dimension of the full spectral cube. Three different projections have been inves-
tigated: single spectral band selection, non-negative spectral band combination,
and unbounded spectral band combination.

Experiments were performed on a standard hyperspectral dataset and the
results of the proposed algorithm were compared with seven existing hyperspec-
tral face recognition algorithms. Experimental results showed that the applica-
tion of the optimal linear projections can improve the performance of the best
hyperspectral face recognition algorithm in the state of the art by more than
6%, reaching an average recognition rate on a ten-fold experiment of more than
99%.

As future work it will be investigated the use of linear projections compati-
ble with physically plausible optical filters, by adding smoothness constraint on
the projection weights. It will be also studied if multiple linear projections can
further improve the recognition rate and which are the best fusion strategies.
Furthermore, it will be investigated if the approach proposed in this work can
be applied to hyperspectral images recovered from traditional RGB images using
spectral recovery techniques [16].
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