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Abstract

Background

Current approaches to predict cardiovascular risk fail to identify many people who would

benefit from preventive treatment, while others receive unnecessary intervention. Machine-

learning offers opportunity to improve accuracy by exploiting complex interactions between

risk factors. We assessed whether machine-learning can improve cardiovascular risk

prediction.

Methods

Prospective cohort study using routine clinical data of 378,256 patients from UK family prac-

tices, free from cardiovascular disease at outset. Four machine-learning algorithms (random

forest, logistic regression, gradient boosting machines, neural networks) were compared to

an established algorithm (American College of Cardiology guidelines) to predict first cardio-

vascular event over 10-years. Predictive accuracy was assessed by area under the ‘receiver

operating curve’ (AUC); and sensitivity, specificity, positive predictive value (PPV), negative

predictive value (NPV) to predict 7.5% cardiovascular risk (threshold for initiating statins).

Findings

24,970 incident cardiovascular events (6.6%) occurred. Compared to the established risk

prediction algorithm (AUC 0.728, 95% CI 0.723–0.735), machine-learning algorithms

improved prediction: random forest +1.7% (AUC 0.745, 95% CI 0.739–0.750), logistic

regression +3.2% (AUC 0.760, 95% CI 0.755–0.766), gradient boosting +3.3% (AUC 0.761,

95% CI 0.755–0.766), neural networks +3.6% (AUC 0.764, 95% CI 0.759–0.769). The high-

est achieving (neural networks) algorithm predicted 4,998/7,404 cases (sensitivity 67.5%,

PPV 18.4%) and 53,458/75,585 non-cases (specificity 70.7%, NPV 95.7%), correctly pre-

dicting 355 (+7.6%) more patients who developed cardiovascular disease compared to the

established algorithm.
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Conclusions

Machine-learning significantly improves accuracy of cardiovascular risk prediction, increas-

ing the number of patients identified who could benefit from preventive treatment, while

avoiding unnecessary treatment of others.

Introduction

Globally, cardiovascular disease (CVD) is the leading cause of morbidity and mortality. In

2012, there were 17.5 million deaths from CVD with 7.4 million deaths due to coronary heart

disease (CHD) and 6.7 million deaths due to stroke [1]. Established approaches to CVD risk

assessment, such as that recommended by the American Heart Association/American College

of Cardiology (ACC/AHA), predict future risk of CVD based on well-established risk factors

such as hypertension, cholesterol, age, smoking, and diabetes. These risk factors have recog-

nised aetiological associations with CVD and feature within most CVD risk prediction tools

(e.g. ACC/AHA [2], QRISK2 [3], Framingham [4], Reynolds [5]. There remain a large number

of individuals at risk of CVD who fail to be identified by these tools, while some individuals

not at risk are given preventive treatment unnecessarily. For instance, approximately half of

myocardial infractions (MIs) and strokes will occur in people who are not predicted to be at

risk of cardiovascular disease [6].

All standard CVD risk assessment models make an implicit assumption that each risk factor

is related in a linear fashion to CVD outcomes [7]. Such models may thus oversimplify com-

plex relationships which include large numbers of risk factors with non-linear interactions.

Approaches that better incorporate multiple risk factors, and determine more nuanced rela-

tionships between risk factors and outcomes need to be explored.

Machine-learning (ML) offers an alternative approach to standard prediction modelling that

may address current limitations. It has potential to transformmedicine by better exploiting ‘big

data’ for algorithm development [7]. ML developed from the study of pattern recognition and

computational learning (so-called ‘artificial intelligence’). This relies on a computer to learn all

complex and non-linear interactions between variables by minimising the error between predicted

and observed outcomes [8]. In addition to potentially improving prediction, MLmay identify

latent variables, which are unlikely to be observed but might be inferred from other variables [9].

To date, there has been no large-scale investigation applying machine-learning for prognos-

tic assessment in the general population, using routine clinical data. The aim of this study was

to evaluate whether machine-learning can improve accuracy of cardiovascular risk prediction

within a large general primary care population. We also sought to determine which class of

machine-learning algorithm has highest predictive accuracy.

Methods

Data source

The cohort of patients was derived from the Clinical Practice Research Datalink (CPRD),

anonymized electronic medical records from nearly 700 UK family practices documenting

demographic details, history of medical conditions, prescription drugs, acute medical out-

comes, referrals to specialists, admissions to hospitals, and biological results. The database is

representative of the UK general population and linked to hospital (secondary care) records

[10]. Ethical and research approvals were granted by the Independent Scientific Advisory

Committee (ISAC) at CPRD (number 14_205).
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Study population

The cohort of patients were registered with a family practice between the ages of 30 to 84 years

at baseline, who had complete data for the eight core baseline variables (gender, age, smoking

status, systolic blood pressure, blood pressure treatment, total cholesterol, HDL cholesterol,

and diabetes) used in the established ACC/AHA 10-year risk prediction model [2]. The base-

line date was set as the 1st of January 2005, thus allowing all patients within the cohort to be fol-

lowed-up for 10 years. The end of the study period was specified as the 1st of January 2015, the

latest date for which CPRD had provided an updated dataset. Individuals with a previous his-

tory of CVD, lipid disorders which are inherited, prescribed lipid lowering drugs, or outside

the specified age range prior to or on the baseline date were excluded from the analysis.

Risk factor variables

The eight core risk variables (above) were used to derive a baseline risk prediction model using

the published equations in the 2013 ACC/AHA guidelines for assessment of CVD risk [2]. To

compare the machine-learning algorithms, an additional 22 variables with potential to be asso-

ciated with CVD were included in the analysis. These variables were selected based on their

inclusion in published CVD risk algorithms [2–5], within literature on other potential CVD

risk factors [11–21], and further reviewed by practising clinicians (NQ, JK).

In nine of the additional continuous variables, there were some levels of missing data.

Median imputation, a common approach to dealing with missing values in machine-learning

algorithms [22] was used. It was also hypothesized that missing values in certain clinical vari-

ables (e.g. BMI and laboratory results) may indicate a perception of reduced relevance in cer-

tain patients, given the under recording of normal BMI values in primary care medical records

[23]. Dummy variables were created to indicate whether these continuous variable values were

missing. For demographic categorical variables, Townsend deprivation index (28) and ethnic-

ity, missing values were given a separate category of ‘unknown’ in the analyses. In total, there

were 30 variables (excluding dummy variables for missing values) analysed in the machine-

learning models prior to baseline (Table 1).

Outcome

The primary outcome was the first recorded diagnosis of a fatal or non-fatal cardiovascular

event documented in the patient’s primary or secondary care computerised record. In primary

care, CVD is labelled and electronically recorded by UK National Health Service (NHS) Read

codes. Further, confirmation of outcomes in secondary care (Hospital Episodes Statistics) uti-

lised ICD-10 codes, specifically I20 to I25 for coronary (ischaemic) heart conditions and I60 to

I69 for cerebrovascular conditions.

Machine-learning algorithms

To compare machine-learning risk algorithms, the study population was split in the data set

into a ‘training’ cohort in which the CVD risk algorithms were derived and a ‘validation’

cohort in which the algorithms were applied and tested. The ‘training’ cohort was derived

from random sampling of 75% of the extracted CPRD cohort, and the ‘validation’ cohort com-

prised the remaining 25%. Four commonly used classes of machine-learning algorithms were

utilised: logistic regression [25], random forest [26], gradient boosting machines [27], and neu-

ral networks [28]. These algorithms were selected based on the ease of implementation into

current UK primary care electronic health records. Development of the risk algorithms in the

training cohort and application of the risk algorithms to the validation cohort was completed
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using RStudio with library packages caret (http://CRAN.R-project.org/package=caret) for neu-

ral networks and h2o (http://www.h2o.ai) for the remaining algorithms. Each model’s hyper

parameters were determined by using a grid search and two fold cross-validation on the train-

ing cohort to determine the values which led to the best performance. Further details on

machine-learning models are described in the S1 Text.

Statistical analysis

Descriptive characteristic of the study population were provided, including number (%) and

mean (SD) for categorical and continuous variables, respectively. The performance of the

machine-learning prediction algorithms, developed from the training cohort, was assessed

using the validation cohort by calculating Harrell’s c-statistic [29], a measure of the total area

Table 1. Variables included in themachine-learning algorithms.

Variable Description Reference+

Gender male/female [2–5]

Age Years [2–5]

Total cholesterol mmol/L [2–5]

HDL cholesterol mmol/L [2–5]

Systolic blood pressure mm HG [2–5]

Blood pressure treatment (anti-hypertensives
prescribed)

yes/no [2–4]

Smoking yes/no [2–5]

Diabetes yes/no [2–4]

Body mass index (BMI) kg/m2 [3,4]

LDL cholesterol mmol/L [24]

Triglycerides mmol/L [24]

C-reactive protein (CRP) mg/L [5]

Serum fibrinogen g/L [12]

Gamma glutamyl transferase (gamma GT) IU/L [14]

Serum creatinine g/L [20]

Glycated haemoglobin (HbA1c) % [11]

Forced Expiratory Volume (FEV1) % [18]

AST/ALT ratio — [21]

Family history of CHD < 60 years yes/no [3,5]

Ethnicity White Caucasian; South Asian; Black/Afro-Carribean; Chinese/East Asian; Other/
Mixed; Unknown

[3]

Townsend deprivation index* 1st quintile (most affluent)– 5th quintile (most deprived); unknown [3]

Hypertension yes/no [2–4]

Rheumatoid arthritis yes/no [3]

Chronic kidney disease yes/no [3]

Atrial fibrillation yes/no [3]

Chronic obstructive pulmonary disease (COPD) yes/no [15]

Severe mental illness yes/no [16]

Prescribed anti-psychotic drug yes/no [17]

Prescribed oral corticosteroids yes/no [19]

Prescribed immunosuppressant yes/no [13]

* Measures area level deprivation in the population based on unemployment, non-car ownership, non-home ownership, and household overcrowding
+ Inclusion in published cardiovascular risk algorithms or literature on other potential cardiovascular risk factors

https://doi.org/10.1371/journal.pone.0174944.t001
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under the receiver operating characteristic curve (AUC). Standard errors and 95% confidence

intervals were estimated for the c-statistic using a jack-knife procedure [30]. Additionally,

using thresholds corresponding to the 10-year CVD risk of> 7.5% as recommended by the

ACC/AHA guidelines [2] for initiating lipid lowering therapy, binary classification analysis

was used to compare observed and expected prediction of cases and non-cases in the valida-

tion cohort. This process provided sensitivity, specificity, positive predictive value (PPV), and

negative predictive value (NPV). The statistical analyses assessing algorithm performance were

performed using STATA 13 MP4.

Results

Data extraction

There were a total of 383,592 patients from 12 million patients in the CPRD database at base-

line (1 Jan 2005) who met eligibility criteria. After excluding 5,336 patients with coding errors

(i.e. non-numerical entries for blood pressure/cholesterol) and extreme outlying observations

(> 5 SDs from the mean), the analysis cohort consisted of 378,256 patients. This cohort was

then randomly split into a 75% sample of 295,267 patients to train the machine-learning algo-

rithms and the remaining sample of 82,989 patients for validation (Fig 1).

Study population characteristics

From a total cohort of 378,256 patients who were free from CVD at baseline, there were 24,970

incident cases (6.6%) of CVD during the 10-year follow-up period. There were significantly

fewer women than men (42% F, 52%M) in CVD cases while there was only slightly more

women than men in non-CVD cases (52% F, 48%M). The mean baseline age of CVD patients

was 65.3 years compared to 57.3 years in non-CVD patients (p< 0.001). Further characteris-

tics of CVD and non-CVD patients are presented in Table 2.

Machine-learning variable rankings

All variables listed in Table 2 were inputs for the machine-learning models and trained using a

cohort of 295,267 patients with 19,487 incident CVD cases (6.6%) of developing over the

10-year follow-up period. Variable importance was determined by the coefficient effect size for

the ACC/AHA baseline model and machine-learning logistic regression. Random forest and

gradient boosting machine models, based on decision-trees, rank variable importance on the

selection frequency of the variable as a decision node while neural networks use overall weight-

ing of the variable within the model. The top 10 risk factors for the CVD prediction algorithms

are presented in Table 3.

The standard risk factors in the ACC/AHA algorithm stratified by gender were age, total

cholesterol, HDL cholesterol, smoking, blood pressure, and diabetes. Several of these risk fac-

tors in the ACC/AHAmodel (age, gender, smoking) were present as top ranked risk factors

for all four machine-learning algorithms. However, diabetes, which is prominent in many

CVD algorithms, was not present in the top ranked risk factors for any of the machine-learn-

ing models (though HbA1c was included as a proxy in random forest models). Other new risk

factors not found in any previous risk prediction tools but determined by machine-learning

included medical conditions such as COPD and severe mental illness, prescribing of oral corti-

costeroids, as well as biomarkers such as triglyceride levels. Random forest and gradient boost-

ing machines were most similar in risk factor selection and rankings, with some discrepancies

in ranking order and substitution of BMI for systolic blood pressure. Logistic regression and

neural networks prioritised medical conditions such as atrial fibrillation, chronic kidney
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disease, and rheumatoid arthritis over biometric risk factors. Neural networks also put less

weighting on age as a risk factor, and included ‘BMI missing’ as a protective risk factor of

CVD. Full variable selection rankings can be found in S1 Table.

Prediction accuracy

The prediction accuracy according to the discrimination (AUC c-statistic) is shown in Table 4

for all models

Fig 1. Patient cohort data extraction procedures.

https://doi.org/10.1371/journal.pone.0174944.g001
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Table 2. Characteristics of patients aged 30 to 84 in the CPRD study cohort who were free from CVD at baseline. Patients are stratified by first CVD
event during the 10-year follow-up period.

Risk Factor Variables Units CVD (n = 24,970) No CVD (n = 353,286) P-Value

Age* years (SD) 65.3 (11.1) 57.6 (12.8) < 0.001

BMI+ kg/m^2 (SD) 27.9 (4.94) 27.9 (5.21) 0.323

Systolic blood pressure* mmHG (SD) 141 (17.6) 137 (17.2) < 0.001

Total cholesterol* mmol/L (SD) 5.60 (1.11) 5.56 (1.06) < 0.001

HDL cholesterol* mmol/L (SD) 1.39 (0.41) 1.46 (0.43) < 0.001

LDL cholesterol mmol/L (SD) 3.45 (0.91) 3.40 (0.88) < 0.001

Triglycerides+ mmol/L (SD) 1.69 (0.85) 1.57 (0.83) < 0.001

CRP+ mg/L (SD) 10.0 (13.7) 8.37 (11.5) < 0.001

Serum fibrinogen+ g/L (SD) 3.86 (1.22) 3.73 (1.33) 0.129

gamma GT+ IU/L (SD) 41.3 (33.7) 39.3 (33.6) < 0.001

Serum creatinine+ umol/L (SD) 91.9 (17.3) 87.6 (16.0) < 0.001

HbA1c+ % (SD) 7.26 (1.61) 7.14 (1.64) < 0.001

FEV1+ % (SD) 66.2 (16.3) 67.8 (16.9) 0.007

AST/ALT ratio+ — (SD) 1.04 (0.36) 1.01 (0.35) < 0.001

Female* % 41.8 52.8 < 0.001

Smoking* % 23.4 20.5 < 0.001

Family history CHD < 60 years % 5.00 5.51 < 0.001

Ethnicitya: South Asian % 2.27 1.90 0.004

Ethnicitya: Black/Afro-Caribbean % 0.66 1.20 < 0.001

Ethnicitya: Chinese/East Asian % 0.54 0.58 0.465

Ethnicitya: Other/Mixed % 0.85 1.32 < 0.001

Ethnicitya: Unknown % 43.5 57.1 < 0.001

SESb: 2nd Townsend quintile % 15.8 16.0 < 0.001

SESb: 3rd Townsend quintile % 13.7 13.6 < 0.001

SESb: 4th Townsend quintile % 12.6 11.8 < 0.001

SESb: 5th Townsend quintile (most deprived) % 7.95 6.91 < 0.001

SESb: Unknown % 34.6 34.5 < 0.001

Hypertension % 31.8 25.2 < 0.001

Diabetes % 15.0 10.1 < 0.001

Blood pressure treatment* % 28.3 21.9 < 0.001

Rheumatoid arthritis % 1.55 0.91 < 0.001

Chronic kidney disease % 0.99 0.48 < 0.001

Atrial fibrillation % 4.64 2.20 < 0.001

COPD % 3.97 2.02 < 0.001

Severe mental illness % 0.34 0.32 0.563

Anti-psychotic drug prescribed % 15.2 12.7 < 0.001

Oral corticosteroid prescribed % 13.2 9.55 < 0.001

Immunosuppressant prescribed % 13.3 9.70 < 0.001

BMI missing % 3.48 5.87 < 0.001

LDL cholesterol missing % 25.1 24.6 0.041

Triglycerides missing % 11.7 12.3 0.004

CRPmissing % 88.5 89.9 < 0.001

Serum fibrinogen missing % 99.0 99.0 0.207

gamma GT missing % 64.8 69.1 < 0.001

Serum creatinine missing % 16.1 21.5 < 0.001

HbA1c missing % 79.6 85.9 < 0.001

(Continued)
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The ACC/AHA risk model served as a baseline for comparison (AUC 0.728, 95% CI 0.723–

0.735). All machine-learning algorithms tested achieved statistically significant improvements

in discrimination compared to the baseline models (from 1.7% for random forest algorithms

to 3.6% for neural networks)

Classification analysis

The ACC/AHA baseline model predicted 4,643 cases correctly from 7,404 total cases, resulting

in a sensitivity of 62.7% and PPV of 17.1%. The random forest algorithm resulted in a net

increase of 191 CVD cases from the baseline model, increasing the sensitivity to 65.3% and

PPV to 17.8% while logistic regression resulted in a net increase of 324 CVD cases (sensitivity

67.1%; PPV 18.3%). Gradient boosting machines and neural networks performed best, result-

ing in a net increase of 354 (sensitivity 67.5%; PPV 18.4%) and 355 CVD (sensitivity 67.5%;

PPV 18.4%) cases correctly predicted, respectively.

The ACC/AHA baseline model correctly predicted 53,106 non-cases from 75,585 total non-

cases, resulting in a specificity of 70.3% and NPV of 95.1%. The net increase in non-cases

Table 2. (Continued)

Risk Factor Variables Units CVD (n = 24,970) No CVD (n = 353,286) P-Value

FEV1 missing % 96.3 97.7 < 0.001

AST/ALT ratio missing % 85.2 88.2 < 0.001

*core risk factor for ACC/AHA 10-year CVD risk equations
+missing values present
areference category is White Caucasian
breference category is 1st Townsend quintile (most affluent)

https://doi.org/10.1371/journal.pone.0174944.t002

Table 3. Top 10 risk factor variables for CVD algorithms listed in descending order of coefficient effect size (ACC/AHA; logistic regression),
weighting (neural networks), or selection frequency (random forest, gradient boostingmachines). Algorithms were derived from training cohort of
295,267 patients.

ACC/AHA Algorithm Machine-learning Algorithms

Men Women ML: Logistic
Regression

ML: Random Forest ML: Gradient Boosting
Machines

ML: Neural Networks

Age Age Ethnicity Age Age Atrial Fibrillation

Total Cholesterol HDL Cholesterol Age Gender Gender Ethnicity

HDL Cholesterol Total Cholesterol SES: Townsend
Deprivation Index

Ethnicity Ethnicity Oral Corticosteroid
Prescribed

Smoking Smoking Gender Smoking Smoking Age

Age x Total Cholesterol Age x HDL Cholesterol Smoking HDL cholesterol HDL cholesterol Severe Mental Illness

Treated Systolic Blood
Pressure

Age x Total Cholesterol Atrial Fibrillation HbA1c Triglycerides SES: Townsend
Deprivation Index

Age x Smoking Treated Systolic Blood
Pressure

Chronic Kidney Disease Triglycerides Total Cholesterol Chronic Kidney Disease

Age x HDL Cholesterol Untreated Systolic
Blood Pressure

Rheumatoid Arthritis SES: Townsend
Deprivation Index

HbA1c BMI missing

Untreated Systolic
Blood Pressure

Age x Smoking Family history of
premature CHD

BMI Systolic Blood Pressure Smoking

Diabetes Diabetes COPD Total Cholesterol SES: Townsend
Deprivation Index

Gender

Italics: Protective Factors

https://doi.org/10.1371/journal.pone.0174944.t003
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correctly predicted compared to the baseline ACC/AHAmodel ranged from 191 non-cases for

the random forest algorithm to 355 non-cases for the neural networks. Full details on classifi-

cation analysis can be found in S2 Table.

Discussion

Compared to an established AHA/ACC risk prediction algorithm, we found all machine-

learning algorithms tested were better at identifying individuals who will develop CVD and

those that will not. Unlike established approaches to risk prediction, the machine-learning

methods used were not limited to a small set of risk factors, and incorporated more pre-exist-

ing medical conditions. Neural networks performed the best, with predictive accuracy improv-

ing by 3.6%. This is an encouraging step forward. For example, the addition of emerging

biochemical risk factors, such as high sensitivity C-reactive protein, has recently achieved less

than 1% improvement in CVD risk prediction [31].

Strengths

To our knowledge, this is the first investigation applying machine-learning to routine data in

patients’ electronic records, demonstrating improved prediction of CVD risk in a large general

population. The study also illustrates use of a range of machine learning methods, as well as

evaluation techniques, that are lacking in existing applications of machine-learning to clinical

data [32]. Our results are consistent with much smaller studies [33,34] in more selected popu-

lations. For example, a cohort study of 5,159 men in Northern Germany [34] found a similar

3.2% improvement in accuracy of prediction of coronary risk using a probabilistic neural net-

work model.

The current study’s use of an array of machine-learning algorithms has suggested intriguing

variations in the importance of different risk factors depending on the modelling technique.

Models based on decision trees resembled closely to each other, with gradient boosting

machines out-performing random forests. Neural networks and logistic regression placed far

more importance on categorical variables and CVD-associated medical conditions, clustering

patients with similar characteristics in each groups. This may help inform further exploration

of diverse predictive risk factors, and future development of new risk prediction approaches

and algorithms.

Finally, the importance of missing values or non-response are not often assessed in develop-

ment of conventional CVD risk prediction tools [2–5]. This study suggests that missing values,

in particular, for routine biometric variables such as BMI, are independent predictors of CVD.

Table 4. Performance of themachine-learning (ML) algorithms predicting 10-year cardiovascular disease (CVD) risk derived from applying train-
ing algorithms on the validation cohort of 82,989 patients. Higher c-statistics results in better algorithm discrimination. The baseline (BL) ACC/AHA
10-year risk prediction algorithm is provided for comparative purposes.

Algorithms AUC c-statistic Standard Error* 95% Confidence
Interval

Absolute Change from Baseline

LCL UCL

BL: ACC/AHA 0.728 0.002 0.723 0.735 —

ML: Random Forest 0.745 0.003 0.739 0.750 +1.7%

ML: Logistic Regression 0.760 0.003 0.755 0.766 +3.2%

ML: Gradient Boosting Machines 0.761 0.002 0.755 0.766 +3.3%

ML: Neural Networks 0.764 0.002 0.759 0.769 +3.6%

*Standard error estimated by jack-knife procedure [30]

https://doi.org/10.1371/journal.pone.0174944.t004
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This is consistent with subjective assessment by clinicians who may not record normal BMI

values if patients appear at lower CVD risk [23].

Limitations

It is acknowledged that the “black-box” nature of machine-learning algorithms, in particular

neural networks, can be difficult to interpret. This refers to the inherent complexity in how the

risk factor variables are interacting and their independent effects on the outcome. However,

improvements in data visualization methods have improved understanding of these models,

illustrating the importance of network connections between risk factors [35] (See example

visualising our neural network model in Fig 2).

It is also recognised that as the number of potential risk factors increases, the complexity of

the models can cause over-fitting, yielding implausible results. We addressed this by active and

appropriate choice of pre-training, hyper-parameter selection, and regularisation [36].

Although we have cross-validated the performance of the machine-learning algorithms

using an independent dataset, an approach commonly used for the development of established

cardiovascular risk algorithms applied to clinical practice [2–5,24,37], it must be acknowledged

that the jack-knife procedure may yield more accurate results as demonstrated in genomic or

proteomic datasets [38,39]. Moreover, these established risk prediction algorithms for use in

clinical practice have been developed from a binary classification framework which can often

result in an unbalanced dataset. Ensemble learning have been demonstrated as a solution to

construct balanced datasets to enhance prediction performance [40]. These methods are not

yet commonplace for developing risk prediction models in clinical datasets but their utility

should be explored in future studies.

Finally, we note the study was performed in a large cohort of primary care patients in the

UK. However, its demonstration of machine-learning methods, and use of routine clinical

data available within electronic records in several countries [41], underline applicability to

other populations and health systems.

Fig 2. Illuminating “black-box” understanding of machine-learning neural networks: visualization of
the risk factors and their association with cardiovascular disease developed fromCPRD primary care
study population.Green lines are positive predictors, red lines are negative predictors, and the thickness of
the line represents the weight (importance) of the risk factor to the outcome.

https://doi.org/10.1371/journal.pone.0174944.g002
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Future implications

CVD risk prediction has become increasingly important in clinical decision-making since the

introduction of the recent ACC/AHA and similar guidelines internationally [2,42]. Machine-

learning approaches offer the exciting prospect of achieving improved and more individual-

ised CVD risk assessment. This may assist the drive towards personalised medicine, by better

tailoring risk management to individual patients [43,44].

The improvement in predictive accuracy found in the current study should be further

explored using machine learning with other large clinical datasets, in other populations, and in

predicting other disease outcomes. Future investigation of the feasibility and acceptability of

machine-learning applications in clinical practice will be needed. As the computational capac-

ity in health care systems is improving, the opportunities to exploit machine-learning to

enhance prediction of disease risk in clinical practice will become a realistic option [7]. This

might increasingly include predicting protein structure and function from genetic sequences

from patients’ clinical profiles [7]. This will inevitably require exploration in future studies on

utility and clinical applicability other computationally demanding machine-learning algo-

rithms such as support vector machines and deep learning for integration into primary care

electronic health records. In several countries, electronic health records across health care

organisations are held on central servers. This may allow new algorithm development to be

performed off-site using cloud computing software, and then returned to the clinical setting as

applications programme interfaces (APIs) for PCs, mobile devices and tablets.

Conclusion

Compared to an established risk prediction approach, this study has shown machine-learning

algorithms are better at predicting the absolute number of cardiovascular disease cases cor-

rectly, whilst successfully excluding non-cases. This has been demonstrated in a large and het-

erogeneous primary care patient population using routinely collected electronic health data.
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