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Abstract

Two major approaches address the need to predict species distributions in response to

environmental changes. Correlative models estimate parameters phenomenologically by

relating current distributions to environmental conditions. By contrast, mechanistic

models incorporate explicit relationships between environmental conditions and

organismal performance, estimated independently of current distributions. Mechanistic

approaches include models that translate environmental conditions into biologically

relevant metrics (e.g. potential duration of activity), models that capture environmental

sensitivities of survivorship and fecundity, and models that use energetics to link

environmental conditions and demography. We compared how two correlative and three

mechanistic models predicted the ranges of two species: a skipper butterfly (Atalopedes

campestris) and a fence lizard (Sceloporus undulatus). Correlative and mechanistic models

performed similarly in predicting current distributions, but mechanistic models predicted

larger range shifts in response to climate change. Although mechanistic models

theoretically should provide more accurate distribution predictions, there is much

potential for improving their flexibility and performance.
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I N T R O D U C T I O N

Rapid anthropogenic changes in climatic conditions and

land use necessitate accurate predictions of how species will

respond to environmental changes. Despite this need,

fundamental questions persist about how to predict distri-

butions most accurately (Pearson & Dawson 2003; Araujo &

Guisan 2006). One primary question is whether a statistical

relationship between species localities and environmental

conditions is sufficient to predict future distributions (and

over what temporal and spatial scales) or whether accurate

predictions require a more mechanistic understanding of the

processes underlying distributions (Kearney 2006). We

address this question by comparing two major approaches

for modeling the geographic distributions of species:

correlative and mechanistic approaches. Correlative models

implicitly incorporate biological processes by statistically

estimating environment-range associations from occur-

rences. Mechanistic models explicitly capture hypothetical

biological processes and derive their parameters from the

phenotypes of organisms, which are then used to construct

distributional models. The models differ in their ability to

characterize the abiotic, biotic, and historical niches of a

species (Soberon 2007), although existing models focus

primarily on abiotic constraints.

Correlative models generally require only data on the

localities of specimens and their associated environmental

conditions. These models have been applied in a wide

variety of contexts (Elith et al. 2006), such as understanding

species invasions (Peterson & Vieglais 2001; Thuiller et al.

2005), predicting glacial refugia (Hugall et al. 2002; Strasburg

et al. 2007), delimiting species (Raxworthy et al. 2007; Rissler

& Apodaca 2007; Stockman & Bond 2007), defining

modes of speciation (Graham et al. 2004), and identifying

conservation hotspots (Rissler et al. 2006). A correlative

model can accurately predict range dynamics if (1)
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constraints on the range omitted by the model, such as

correlations between environmental variables, remain con-

stant and (2) the independent variables correspond to the

underlying processes that constrain the range (Pearson &

Dawson 2003; Dormann 2007). However, the major

assumption of correlative models – that processes setting

range limits remain fixed in time and space – will likely be

violated when making dynamic predictions, such as range

shifts during climate change (Williams & Jackson 2007),

particularly when extrapolated well beyond current condi-

tions. Despite the likely limitations of correlative models and

the theoretical appeal of mechanistic models, we do not

know whether mechanistic models can offer more accurate

predictions about past, present and future ranges. However,

a mechanistic (biophysical) and correlative model were

found to differ in their predictions for the distribution of an

Australian gecko under past climates, possibly because past

climates no longer exist and were thus not incorporated into

correlations between contemporary range boundaries and

current climates (Strasburg et al. 2007).

Mechanistic models differ from correlative models

because they rely on our understanding of the dominant

processes that underlie survival and reproduction to predict

a geographic range (Helmuth et al. 2005; Kearney & Porter

2009). For this reason, the ideal mechanistic model (i.e. one

that describes all important processes potentially constrain-

ing a species� range) should better predict range dynamics

than would a correlative model. However, mechanistic

models require an accurate understanding of a species�
fitness relationships with the environment and estimates of

many phenotypic parameters under a wide range of

environmental conditions (Table 1). Errors in parameters

can compound leading to poor accuracy in prediction. In

addition, these models are typically tailored to certain

species, and thus require substantial revision before they can

be applied to new species.

Presently, the relative advantages and disadvantages of

correlative and mechanistic models are largely speculative.

To date, the few comparisons of the abilities of correlative

and mechanistic models to predict observed distributions

have examined only a single mechanistic model. These

comparisons have been focused on another issues (Buckley

2008 on geographic trait variation; Morin & Thuiller 2009 on

future predictions) or only included a qualitative comparison

(Kearney & Porter 2009; Strasburg et al, 2007). Hijmans and

Graham (2006) compared several correlative models to the

predictions of a mechanistic plant growth model (treated as

the true distribution). Detailed comparisons between and

among correlative and mechanistic models can provide

insights about the constraints on species� ranges as well as

assess the models� predictive capacities.

Here, we compare four approaches to modeling species�
ranges that span the correlative and mechanistic spectrum.

Specifically we address two basic questions. First, how do

range predictions based on phenomenology and those based

on mechanism differ? Second, how simple can we make a

mechanistic model and still generate useful predictions? We

address these questions by comparing the performances of

correlative models to three types of mechanistic models

under current climate conditions and a uniform warming of

3 �C, which represents a moderate scenario for the next

century (Solomon et al. 2007). Specifically, we compare the

ability of these models to predict the ranges of two focal

organisms: the sachem skipper (Atalopedes campestris Boisdu-

val 1852) and the eastern fence lizard (traditionally Sceloporus

undulatus Bosc and Daudin 1801, but see below). These

organisms were chosen because their use in previous

theoretical and empirical studies enabled us to parameterize

the mechanistic models (see Crozier & Dwyer 2006; Buckley

2008). We note that populations of eastern fence lizards,

Sceloporus undulatus, were recently divided into four major

lineages, which have each been proposed as evolutionary

species (Leache & Reeder 2002; Wiens et al. 2010).

Although we parameterized our models using primarily

data for one of these lineages, we apply this prediction to all

four lineages to be consistent with previous modeling

exercises (Buckley 2008). In our Discussion, we address the

potential errors resulting from our application of the models

to a clade with geographic variation in the phenotype. For

simplicity, we refer to these four lineages of the species

group as Sceloporus undulatus (sensu lato). We reran correlative

models including specimen localities for species parapatric

Table 1 The biotic and abiotic data required for parameterizing five classes of range models and the current and potential model components

[demography, biotic constraints (species interaction and movement limitations), and evolution

Model

Data requirements Components and extendibility

Biotic Abiotic Demography Biotic constraints Evolution

Correlative Localities Data layers Implicit Updating

Biophysical threshold Traits, thresholds Heat flux variables Traits

Life history Demography Data layers 4 Possible Curves

Foraging energetic Traits Heat flux variables 4 Possible Traits
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with S. undulatus (S. cautus, S. belli and S. woodi, Leache &

Reeder 2002) to confirm that omitting these localities did

not alter model predictions.

We used multiple approaches for correlative and mech-

anistic modeling. For the correlative models, we used two

statistical algorithms to relate locality data to bioclimatic

variables describing temperature and precipitation. For the

mechanistic models, we used three approaches that vary in

their degree of complexity and the specific way that traits are

linked to range limits. The first mechanistic model that we

explore computes an environmental threshold for persis-

tence based on an organism�s physiology. This model

computes the energy budget of an organism with a specified

set of traits (e.g. size, critical thermal limits, solar reflectivity)

under particular environmental conditions (Bakken 1992;

Porter et al. 2000, 2002). The model produces spatially

explicit maps of ecologically relevant parameters, such as the

potential duration of activity or the food required to meet

energetic costs. To predict a range limit, however, one must

assume an environmental threshold, such as time required

for development. This threshold represents a hard limit

(biophysical threshold) that only partially correlates with demog-

raphy (Kearney & Porter 2004). If the model is accurate, then

it should accurately predict that occupied sites are within

these hard limits. The other two mechanistic models predict

the range by explicitly computing population dynamics. The

life history model uses empirical relationships between

environmental temperature and organismal performances

to characterize fitness across a range of specified environ-

ment (Crozier & Dwyer 2006). The foraging energetic model

uses optimal foraging theory to link individual energetics

to population dynamics (Buckley & Roughgarden 2005;

Buckley 2008). We quantitatively compare these models and

discuss reasons for differences in model predictions.

M E T H O D S

Environmental and distributional data

Throughout our comparison, we standardized the origin and

resolution of data. We used average monthly values of air

temperature, variation in daytime air temperature, soil

temperature, wind speed, relative humidity, elevation and

albedo (1961–1990 with 10¢ resolution, New et al. 2002) for

an equal-area projection and equal-area grid cells (343 km2)

equivalent to 10 min near the equator. We restricted our

analysis to the United States (despite the presence of both

species in Mexico) due to data availability. For the

correlative models, we initially used variables describing

temperature, diurnal temperature range, precipitation, wind

speed and humidity to derive variables analogous to the

WorldClim climate data commonly used in correlative

models (http://www.worldclim.org, 1960–1990, Hijmans

et al. 2005). The correlative models were subsequently

implemented with only the temperature variables (maxent

temp and GLM temp), to ensure comparability with the

prime drivers of the mechanistic models. For the biophysical

and foraging energetic models, we used the data to model

hourly temperatures using a sine approximation. The use of

temperature and wind speed at the standard weather station

height of 2 m may underestimate the temperatures experi-

enced by lizards close to the ground. Indeed, model

predictions are quite sensitive to our choice of environ-

mental data (Figure S1 and Appendix S1). We note that the

use of monthly data eliminated a potential advantage of the

mechanistic model – the ability to include stochastic, daily

variation; this variation seems crucial to accurately modeling

important events that lead to mortality or reproductive

failure (Helmuth et al. 2002, 2005). However, using more

finely resolved climatic data in the correlative models would

be impractical and we wanted to maintain data comparability

between the modeling approaches (potentially at the

expense of some mechanistic model performance). We

assembled locality data and a range map for each species

(Appendix S1). Range maps typically use large polygons to

describe the outer edges of a species range. This limits our

ability to assess the models� performance in describing

patchiness within the range.

Correlative models

We used Maximum Entropy (maxent) and Generalized

Linear Models (GLM) to correlate species� localities and

climate data. Distributions were modeled using the MAXENT

software, version 3.2.1 (Phillips et al. 2006), which derives

the distribution maximizing information entropy subject to

constraints set by the association between the presence

points and the environmental variables (Phillips et al. 2004).

Logistic regression in Matlab was also used to relate the

bioclimatic data and species� localities. In this approach, we

found the reduced set of bioclimatic variables in the logistic

model that minimized the Akaike Information Criterion

(AIC) by applying an iterative process of removing variables

from the full model until no further improvements in AIC

occurred (Burnham & Anderson 2002). Logistic regression

could not be used for S. undulatus because absences were

unavailable. In such cases, absence-dependent methods

sometimes are applied after inclusion of pseudo-absences.

However, more commonly, presence-only techniques are

applied. We took this approach and only applied maxent to

the data for S. undulatus. We standardized the thresholds of

occurrence probability used to predict range limits to 10%

for maxent models (Stockman & Bond 2007) and 50% for

GLM models (Liu et al. 2005), which are the thresholds most

commonly used. While more sophisticated statistical algo-

rithms for choosing a threshold can improve predictive
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ability (Liu et al. 2005), we use a fixed-threshold because it is

the most common implemented method.

Mechanistic models

Biophysical threshold models

Biophysical models are often invoked to calculate operative

environmental temperatures (Te, the steady-state tempera-

ture of an animal with specified thermal and radiative

properties in a given environment). Operative environmen-

tal temperatures are calculated by adjusting air temperature

for absorbed radiation, wind speed, and animal morphology

(Bakken et al. 1985; Campbell & Norman 2000). The

duration of foraging at any given location can be assessed by

examining whether Tes falls within an observed range of

field-body temperatures. This duration provides a basis for

modeling potential energy gain and population dynamics in

the foraging energetic model; the duration of foraging can

be used directly to predict range limits if a biological

threshold is determined a priori (e.g. annual foraging

duration required for development).

For S. undulatus, we used the modeling approach of

Campbell & Norman (2000) as implemented in Buckley

(2008). The approach is similar to, but less detailed than, the

ecophysiological models of Porter and colleagues (Porter et

al. 2000, 2002, 2006; Kearney & Porter 2004). Lizards were

considered active when operative temperatures (calculated

for full sun and full shade, where observed radiation equals

zero) overlapped the observed range of field body temper-

atures for activity. To link this biophysical model to a

geographic range boundary, we calculated a priori the time

required for a female to procure sufficient energy for

reproduction. First, we estimated maximal surplus energy by

subtracting the field metabolic rate (estimated as twice the

resting metabolic rate, or 10.8 J g)1 h)1) from the metab-

olizable energy intake (16.4 J g)1 h)1) at the mean preferred

body temperature of 33 �C (Angilletta 2001a,b). We then

multiplied the mean annual egg production of S. undulatus

(22.5 eggs) and the energetic content of individual eggs

(3268 J) to calculate annual energetic requirements. Given

this requirement, we determined the minimal duration of

foraging at the assumed rate of energy gain that was required

to produce eggs (1315 h). This criterion assumes that, on

average, populations of S. undulatus remain constant in size,

such that a female must produce 22.5 eggs to offset the

expected mortality.

We used a biophysical threshold to predict a range limit

for A. campestris by predicting a priori the degree days

required for embryonic or larval development. Degree days

accumulated incrementally for each 1 �C that mean tem-

perature on a given day exceeded the minimal developmen-

tal threshold (15.5 �C, data: http://www.ncdc.noaa.gov).

We chose the mean degree days required for the completion

of two generations (834 degree days, Crozier & Dwyer

2006) as the threshold for determining the range limit. Two

generations per year is the minimum observed in natural

populations (Crozier & Dwyer 2006).

Life history models

Life history models use empirical estimates of survivorship

and fecundity to model the annual per capita rate of

population growth (k) as a function of temperature, T. The

range of a species is defined as those areas in which

populations are self-sustaining (i.e. k ‡ 1). The model for

A. campestris is detailed in Crozier & Dwyer (2006). Briefly,

Crozier & Dwyer (2006) split the life cycle into winter

survivorship, F(T), and net summer recruitment, R(T),

where k = F(T)R(T) (Appendix S1). Winter survivorship

was fitted to empirical data as a logistic function of

temperature; census data were used to estimate reproductive

rates; and field experiments were used to develop a

relationship between the number of summer generations

and the degree days available for development. We then

used maps of degree days to generate location-specific

estimates of net summer recruitment.

We implemented an analogous model to calculate k for S.

undulatus, except that we did not separate winter and

summer survivorship [i.e. k = R(T) = R0(T)] because these

data do not exist. The model was derived from demographic

data from field populations across the U.S. (Angilletta et al.

2004, 2006; Niewiarowski et al. 2004). Specifically, we

assumed the following: lizards mature at 1 or 2 years of age

depending on environmental temperature (see Angilletta

et al. 2004); annual survivorships of juveniles and adults

remain constant over time but vary with temperature; and

annual fecundity remains constant throughout life but varies

with temperature. Given these assumptions, the per capita

net recruitment is

R0 ¼
XL

x¼a
SjðT ÞaðT ÞSaðT Þx�a

mðT Þ;

where T is mean annual temperature, a is age at maturity

(years, a = 1 if T > 15 �C and a = 2 otherwise), sj is the

annual probability of juvenile survival (sj = 0.324T ) 0.012),

sa is the annual probability of adult survival (sa =

)0.029T + 0.728), m is the annual fecundity (m = )0.391T2

+ 12.560T ) 73.038), and L is the maximal lifespan in years.

We assumed L = 4, but the range prediction was invariant

within the biologically reasonable range of 3–5 years. The

range prediction was also invariant to thermal effects on age

at maturity because the earlier maturation associated with

increased temperature is cancelled by a higher mortality rate

(potentially due to longer exposure to predators during

activity; Angilletta et al. 2004). Consequently, the probability

of surviving to maturity is nearly independent of tempera-

ture and can be assumed to be constant, S a
j ¼ 0:089.
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Foraging energetic models

Rather than empirically estimating recruitment, the next set

of models derives recruitment rates from the energetic yield

of foraging. The population dynamic models were based on

a biophysical model that estimated the potential duration of

foraging (Appendix S1). We modeled the net energetic yield

from this foraging and translated this energy into offspring

to estimate recruitment. The model for S. undulatus is

detailed in Buckley (2008). Energetic yield was calculated

using an optimal foraging model for a territorial central

place forager (which is an appropriate behavioral assump-

tion for this lizard). The model incorporates empirical

estimates of metabolic rates, lizard running speed, prey

density, and density-dependence via a restricted foraging

range. Population dynamics were modeled using empirical

estimates of the energetic cost of producing an egg and

mortality rates.

For A. campestris, we developed a model analogous to

the life-history model for S. undulatus, but we estimated R0

based on foraging energetics, R0 = bE ) c, where the

energetic yield of foraging E (J s)1) was estimated from

empirical data. Here, b is the reproductive rate per unit of

net energetic yield and c discounts egg production by

metabolic costs during inactivity. Energetic yield was

calculated as a function of foraging time (Appendix S1).

We used the average of resting metabolic rates (ew) for the

gulf fritillary, Agraulis vanillae, and the cloudless sulfur,

Phoebis sennae (ew = 0.0019 J s)1) (May 1992) because rates

for A. campestris have not been measured. Rates of net

foraging profitability (E) were averaged between these two

butterfly species and among eleven nectar plants species

(E = 0.29 J s)1) (May 1992). We estimated m as the

product of the quantity of eggs produced per joule for

Euploea core (0.0081 eggs J)1, Hill 1989) and the seasonal

(summer) probability of surviving to adulthood (12%,

Crozier 2004). We examined the sensitivity of the model

predictions to the four parameters derived from other

species (ew, E, m and net foraging rate). Halving or

doubling the values of each parameter (data on parameter

ranges was not available) contracted or expanded the range

predictions by less than 1%. The model is not sensitive to

these parameters because the differences in energy input

and use resulting from varying each parameter has a small

influence on the model relative to differences in activity

time. We assumed a 10-day life span for adults. We further

assumed that 10% of potential activity time was allocated

to foraging and 50% was allocated to searching for

oviposition sites. These assumptions represent free param-

eters that did not qualitatively influence our predictions.

We additionally used empirical relationships to include the

thermal dependence of egg maturation and ovipositing

and density dependence for nectar in the model

(Appendix S1).

Comparison of models

We relied on two indices to compare model predictions to

grid cell presences (corresponding to the range polygon): the

sensitivity index and the specificity index. The sensitivity

index (%+) is the proportion of true presences correctly

predicted (true presences predicted divided by the total

number of true presences, Manel et al. 2001). The specificity

index (%)) is the proportion of true absences correctly

predicted (true absences predicted divided by the total

number of true absences, Manel et al. 2001). Model

performance (% true) combines the first two metrics by

calculating the percentage of all cases that are correctly

predicted (true presences plus true absences divided by total

cases, Manel et al. 2001). We also examined the percent of

specimen localities and survey data correctly predicted. For

ranges predicted following climate change, we examined the

expansion, contraction, and maintenance of range area as a

proportion of initial range area. We also compared the

predicted range area before and after climate change.

R E S U L T S

Sceloporus undulatus

The most striking difference among the predictions for

S. undulatus was that the correlative model more closely

predicted the western limit of this species, whereas the

mechanistic models predicted that thermally suitable habitat

was available throughout the southern United States (Figs 1

and 3a and Figure S1). The prediction of the western range

boundary in the maxent model is partially, but not entirely,

due to the inclusion of precipitation (as indicated by

comparison with the maxent model with temperature only).

While the northern limit was predicted reasonably well by

the correlative, life-history, and foraging energetic models,

the biophysical threshold model severely underpredicted

this boundary. The proportion of grid absences and

presences as well as localities correctly predicted (% true)

by the maxent model was somewhat higher than those for

the other models (Table 2). The maxent model with only

temperature exhibited weaker performance than the life

history and foraging energetic model.

The predicted shift in the range of S. undulatus in

response to a uniform warming of 3 �C varies among

models (Figs 1 and 3b).The ratios of range area after

warming to the range area before warming predicted by

the mechanistic models (biophysical threshold model: 4.09,

life history:1.40, foraging energetic:1.55) exceed those

predicted by the correlative models (maxent: 1.10, maxent

temp:1.00). Analogously, the range expansion predicted by

the mechanistic models were more substantial (life

history:51%, foraging energetic:55%) than those predicted

by the correlative models (maxent: 14%, maxent temp:

Review and Synthesis Correlative and mechanistic range models 1045
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6%). The biophysical threshold model, which underpre-

dicted the current range, predicted a range expansion of

309% following climate change. Only the life-history and

maxent models predicted range contractions at the

southern limit (11% and 4%, respectively). The maxent

model based on temperature alone predicted no net change

Correlative

Maxent

Maxent temp

Life history

Foraging energetic

+3C

Current

Mechanistic

Biophysical threshold

Figure 1 Range predictions for Sceloporus undulatus in current climates (light gray) and predicted range expansions following a uniform 3 �C

temperature increase (dark gray). Localities (o) and the atlas range polygon are shown.

Table 2 We compare range predictions to atlas range polygons and county occurrences using the sensitivity index (%+), the specificity index

(%)), and the model performance (% true). We also report the percent of specimen localities (% localities) and survey data (presences: %

survey + and absences: % survey )) correctly predicted

Model

S. undulatus A. campestris

%+ %) % true % localities %+ %) % true % survey + % survey )

Correlative–maxent 0.97 0.76 0.85 0.99 0.80 0.75 0.78 0.98 0.46

Correlative–maxent temp 0.42 0.86 0.67 0.41 0.51 0.93 0.73 0.85 0.69

Correlative-GLM 0.64 0.89 0.78 0.73 0.81

Correlative-GLM temp 0.66 0.91 0.80 0.68 0.82

Biophysical threshold 0.04 0.95 0.57 0.04 0.67 0.85 0.77 0.81 0.70

Life history 0.82 0.66 0.73 0.84 0.60 0.90 0.76 0.79 0.69

Foraging energetic 0.84 0.71 0.76 0.84 0.85 0.44 0.63 0.91 0.40
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in the range following a 3 �C warming, due to a 6% range

expansion balanced by a 6% range contraction.

Atalopedes campestris

All models predicted qualitatively similar ranges for

A. campestris, but the foraging energetic model overpredicted

the range more than the other models (Figs 2 and 3a and

Figure S2). This overprediction suggests that we mischar-

acterized the ability of this species to acquire sufficient

resources for persistence or that something other than

resource acquisition limits the range. The life-history model

imposed an additional constraint related to winter temper-

ature beyond the developmental time constraint reflected in

Correlative

Maxent

Maxent temp

GLM

GLM temp

Life history

Foraging energetic

+3C

Current

Mechanistic

Biophysical threshold

Figure 2 Range predictions for Atalopedes campestris in current climates (light gray) and predicted range expansions following a uniform 3 �C

temperature increase (dark gray). Presences (o) and absences (x) from the 4th of July butterfly count are indicated along with the atlas range

polygon.
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the biophysical threshold model. The inclusion of a winter-

survival constraint contracted the range prediction and leads

to under-prediction in cold regions. The biophysical and

life-history models excluded the recently colonized part of

the range in the state of Washington. The maxent model

slightly overpredicted the northern range edge, whereas the

GLM model underpredicted certain portions. All models

performed similarly in quantitative metrics (73–80% pre-

dictive success), with the exception of the foraging energetic

model (63% predictive success).

The range shifts predicted by mechanistic models for A.

campestris following a 3 �C warming were more consistent

than those predicted for S. undulatus (Figs 2 and 3b). The

ratio of predicted range area following a 3 �C warming to

initially predicted range area varied among models (maxent:

1.21, maxent temp: 1.00, GLM: 1.39, GLM temp: 1.36,

biophysical threshold model: 1.67, life history: 1.44, foraging

energetic: 1.16). The correlative models predicted smaller

range expansions (maxent: 27%, maxent temp: 6%, GLM:

39%, GLM temp: 36%) than did the biophysical threshold

and life-history models (67% and 44%, respectively). The

difference between the predictions of these mechanistic

models suggests that developmental time will respond more

strongly to warming than will winter survivorship. Range

expansion in the foraging energetic model may be con-

strained by resource availability (estimated by landcover,

16%), which may be altered by climate change. Only the

correlative models predicted slight range contractions at the

southern limit (maxent: 6%, maxent temp: 6%, GLM: 1%,

GLM temp: 0%). As was the case with S. undulatus, the

maxent model based on temperature alone predicted no net

range change following a 3 �C warming due to a 6% range

expansion in the north balanced by a 6% range contraction

in the south. For both species, the maxent model based on

temperature alone predicted a more restricted range than the

maxent model with additional environmental variables.

D I S C U S S I O N

Challenges in mechanistic modeling

In the most extensive comparison of correlative and

mechanistic models to date, we found that the correlative

and mechanistic models performed similarly when predict-

ing contemporary ranges. In some cases, the mechanistic

models generated poor predictions, potentially revealing

important insights into model development. Mechanistic

models might fail to predict a species� current range for two

reasons.

First, a mechanistic model focuses on particular con-

straints, but these constraints (and those identified by

correlative models) might not be the most important ones in

all areas of a species� range. In addition, because current

mechanistic models focus on a limited set of abiotic

constraints (primarily thermal constraints), the interaction

between different abiotic constraints and those between

abiotic and biotic constraints could cause observed ranges to

deviate from predicted ranges. Our mechanistic models

focused entirely on thermal constraints; therefore, we

expected them to over-predict the range, especially where

we think biotic factors also limit distributions. Consistent

with this prediction, the sensitivity index (%+, correct

prediction of presence) exceeded the specificity index (%)
correct prediction of absence) for the life-history and

foraging energetic models of S. undulatus� range (Table 2).

Furthermore, correlative models based on both temperature

and precipitation overpredicted the range of S. undulatus in

the western U.S. This overprediction may reflect a biotic

constraint resulting from interactions with other lizards in

the Sceloporus undulatus species group. Indeed, the regions of

overprediction are currently occupied by species that are

(a)

(b)

Figure 3 A comparison of range models for Sceloporus undulatus and

Atalopedes campestris. We depict (a) the proportion of grid cells that

with true predicted presences, false absences, false presences, and

true absences generated by comparing the model predictions with

the range polygon and county localities and (b) the proportional

range expansion, contraction, and maintenance in response to a

uniform 3 �C temperature increase varies between models.
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closely related to the populations traditionally designated as

Sceloporus undulatus (Leache & Reeder 2002; Wiens et al.

2010). Given that these members of the S. undulatus species

group share similar behaviors, physiologies, and morpho-

logies, we were not surprised to learn that the mechanistic

models predicted the occurrence of lizards beyond the range

observed for the clade that we considered (i.e. the four

major lineages traditionally classified at S. undulatus).

Moreover, we would have overpredicted the range of

S. undulatus far more had we considered only the lineage that

was recently designated at S. undulatus (sensu stricto) and

ignored the three other lineages that were traditionally

included in S. undulatus (now classified as S. cowlesi,

S. consobrinus, and S. tristichus; Wiens et al. 2010). Thus, our

analyses for fence lizards illustrates how a comparison of

mechanistic and correlative models helps to distinguish a

species� realized and fundamental niches (Kearney 2006)

and provide predictions that can be tested by experimen-

tation. Also, correlative models, when used in conjunction

with mechanistic models, can suggest particular traits or

processes to include in a mechanistic model. For example,

the correlative models suggest that including precipitation

can improve model performance.

Second, mechanistic models can perform poorly when

parameters are estimated with error. Parameters such as the

minimal activity time for population persistence have not

been measured reliably in the field yet have a strong effect

on the predicted range. Error in key parameters likely

explains our under-prediction of the range in some regions,

because mechanistic models make predictions based on

estimates of the minimal conditions necessary for survival

and growth. For example, we note that grid cell means are

unlikely to capture the range of temperatures available in any

given location. Our biophysical model for S. undulatus likely

underestimated the operative temperatures experienced by

lizards due to using air temperatures recorded at a height

above lizards (Figure S1). Furthermore, our use of monthly

data might have limited the predictive power of the

mechanistic models. In this species group (Leache and

Reeder 2002), unique phenotypes may behave in signifi-

cantly different ways, creating error when modeling the

entire range from the mean phenotype. However, few

studies have explicitly incorporated geographic variation in

traits or genetic variation across a range in mechanistic

models (but see Buckley 2008; Morin & Thuiller 2009).

Thus more integration between evolutionary biologists and

ecologists is needed to improve our predictions of species

ranges.

Extrapolating range models

Mechanistic models exhibited similar or weaker perfor-

mance in predicting current distributions relative to

correlative models, despite the extra effort and additional

data required for their implementation. However, mecha-

nistic models do address two major criticisms that have

been levied against correlative models. First, statistical

models predict the probability that a species occupies a

grid rather than a rate of population growth (but see Keith

et al. 2008, which incorporates stochastic population

dynamics), making it difficult to define the threshold

probability that should delimit the range (Phillips & Dudik

2008; Warren et al. 2008). Second, correlations might not

reflect the mechanisms underlying a species� distribution

(Olden & Jackson 2000; Meynard & Quinn 2007). This

misrepresentation can result from overfitting models to

error in the original data (Olden & Jackson 2000; Burnham

& Anderson 2002; Elith et al. 2006; Randin et al. 2006) or

failing to represent complex non-additive relationships

with environmental variables (Araujo & Guisan 2006;

Meynard & Quinn 2007). The ability of the model to

predict an existing range does not necessarily reflect its

ability to predict the future range, especially when the

environment changes or the range is not at equilibrium

(Thuiller 2004; Urban et al. 2007). Species from the same

region have shifted to different extents and in different

directions during paleological changes in climate (Davis

1981; Graham et al. 1996; Jackson & Overpeck 2000; Wing

et al. 2005), suggesting that a standard correlative model

would have failed to predict these distributions (reviewed

in Williams & Jackson 2007).

The ability of correlative and mechanistic models to

predict current distributions is broadly similar in our

comparison. However, the mechanistic models tended to

exhibit more pronounced responses to a uniform warming

of 3 �C. The reasons for this difference remain uncertain

but could relate to how these models predict species

ranges. Specifically, mechanistic models tend to aggregate

responses over time whereas correlative models assess

responses based on temporal averages. For example, if

climate change increases activity time in a specified

location, the increased activity time will sum across hours

in a biophysical threshold model. However, a recent

comparison of a mechanistic model based on physiological

probabilities and an ensemble correlative model (Morin &

Thuiller 2009) suggested that correlative models predict

greater climate responses for plants than mechanistic

models; in this case their mechanistic model may be less

sensitive to climate change due to its inclusion of

phenotypic plasticity and local adaptation. Our comparison

suggests that forecasting or hindcasting distribution models

will be essential to assess which class of models yields

more realistic predictions of range dynamics (Randin et al.

2006). Unfortunately, we lack sufficient knowledge of the

historical distributions of most species, and particularly our

focal species, to hindcast their distributions. Previous
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efforts to hindcast ranges with multiple correlative models

have revealed mixed success in predicting range dynamics

(Araujo et al. 2005; Randin et al. 2006). Mechanistic models

have succeeding in hindcasting thermal stresses consistent

with past range changes (Jones et al. 2009; Wethey and

Woodin 2008).

Selecting and improving range models

In light of the similar performances of the models

considered here, we suggest that the intended application

should inform the choice of a modeling approach. To

predict the current distribution of a well-sampled species

with a distribution in equilibrium, correlative models should

provide both expediency and performance. If a species is

known to be constrained by a particular physiological

condition, a biological threshold model would be a solid

choice requiring only information about morphological and

physiological traits. However, as our comparison demon-

strates, an inappropriate threshold or microclimate charac-

terization can lead to erroneous predictions even for well-

studied species. The choice of life-history and foraging

energetic models may be restricted to those cases where

demographic constraints aggregated over time crucially

determine the range. Demographic models are more

difficult to implement, but offer increased flexibility and

extensibility that might be needed when predicting distri-

butions in novel environments (Table 1). The detailed

empirical studies required to implement the life-history

models can be prohibitive. The emphasis on species� traits in

the foraging energetic model can facilitate parameterization

and minimize the assumptions required to predict range

dynamics. However, using parameter values from related

species will often be required (as was done here for

A. campestris), and this approach can introduce error.

Mechanistic models might also be preferred if complex

spatial and temporal patterns of thermal stress (e.g.

biophysical mechanistic models) are central to constraining

distributions; these are averaged in correlative models and

even in some broad-scale mechanistic models (Helmuth et

al. 2002, 2005). Applying mechansitic models to marine

systems has enabled addressing multiple aspects of thermal

stress that can be used to predict distributions (Wethey &

Woodin 2008; Jones et al. 2009). Mechanistic models might

also be preferred when phenotypes vary across the range

because the range implications of this variation can be

directly addressed using mechanistic models (Buckley 2008;

Kearney & Porter 2009). However, correlative models can

indirectly address phenotypic variation by modeling lineages

rather than species (Peterson & Holt 2003; Rissler et al.

2006). In fact, improving both correlative and mechanistic

models will require greater information on geographic

variation in traits (phenotypic and genotypic) across a range.

Our comparison highlights three avenues for improving

mechanistic models (and some of these suggestions can also

be applied to correlative models). First, we need to develop

mechanistic models that are sufficiently general to enable

application to a variety of species while remaining feasible to

parameterize. Crucial to this goal is collecting the behavioral

and physiological data needed to parameterize these models.

This effort will require intensive studies of focal species in

the laboratory and field. These models should explicitly

predict population growth, rather than organismal perfor-

mance, to maintain a tight link with absolute fitness and to

limit the arbitrary nature of performance thresholds that we

encountered with our biophysical model.

Second, the sensitivity of the models to parameter

uncertainty should be analyzed to prioritize further data

collection and to clarify the proportion of the total error that

might be accounted for by this source. Sensitivity analyses

for the A. campestris life-history (Crozier & Dwyer 2006) and

foraging energetic models and the S. undulatus foraging

energetic (Buckley 2008) model reveal that changes in the

value of individual parameters (other than threshold values)

are unlikely to qualitatively influence our model comparison.

Taking the example of a bioenergetic model for S. undulatus,

sensitivity analysis found that the range predictions were

relatively robust to altering insect abundance by 50%

(Buckley 2008). While prey availability is important, the

sensitivity analysis suggests that collecting empirical data on

thermal traits is a higher priority than data on prey

availability. We have not included sensitivity analyses for

the other models used here as these models are less

amenable to such analyses. However, a similar approach can

be achieved using the correlative approach by examining the

effects of systematically excluding independent variables or

by adding noise that changes the correlation structure

among independent variables. Here, the evaluation of

mechanisms is less clear, but this approach still might help

reveal important processes that determine species� ranges (as

revealed by our correlative predictions based strictly on

temperature). Regardless, such sensitivity analyses will better

inform researchers who adopt either mechanistic or

correlative approaches.

Third, we can improve both mechanistic and correlative

models by including a range of important, but often

neglected, mechanisms. Generally, extending a mechanistic

model is more straightforward because it explicitly describes

demographic processes. One important extension to mech-

anistic models would be to include biotic interactions

because these interactions can constrain a species� range

substantially (Davis et al. 1998; Pulliam 2000; Heikkinen et al.

2007). Species� interactions constrain the localities used to

parameterize correlative models. This can be problematic as

species� interactions often change during climate change

(Dormann 2007; Williams & Jackson 2007). Correlative
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models including data on other species distributions can

explicitly address these biotic constraints (Araujo & Luoto

2007), but their performance will be affected by changes in

communities. Including evolutionary dynamics is another

important initiative (Kearney & Porter 2009). Range models

based on organismal traits can be modified to accommodate

a variety of existing theories about adaptation to changing

environments (Lynch & Lande 1993; Gilchrist 1995).

Likewise, life-history models could be used to predict the

range implications of evolution by enabling the evolution of

performance curves, which depict the relationship between

an environmental variable and fitness (Huey & Kingsolver

1993). Finally, movement rates could be added to models to

allow for a lag between environmental change and the

species ability to track this change (Guisan & Thuiller 2005).

This factor might be especially important for poor

dispersers, but might not be necessary for good dispersers

(Crozier & Dwyer 2006).

Besides improving mechanistic models per se, we could

also combine mechanistic and correlative approaches. This

integrated approach provides a promising middle ground

that could enable sound and practical predictions of range

dynamics in changing environments. Given the large

amounts of time and effort required to parameterize

mechanistic models, correlative models will continue to

provide much-needed predictions about species for which

we currently lack mechanistic data (Guisan & Thuiller 2005).

In the end, we see value in a dynamic interplay between

mechanistic and correlative modeling approaches. Environ-

mental factors found to increase the accuracy of correlative

models might suggest additional processes to add to a

mechanistic model. These elusive signals embedded in

correlative models can then inform mechanistic approaches

which will help elucidate the biological constraints on

species� ranges. A viable hybrid approach would include the

output of a mechanistic model, such as potential activity

times and growth rates, in a correlative model that includes

other factors that likely play a role but their mechanistic

relationships with environmental variation have not yet been

described or parameterized. Assuming the underlying

mechanism constraining a species� range is characterized

by these biologically informed parameters, hybrid models

might predict dynamics better than correlative models

based solely on environmental variables. One issue is

whether correlated outputs from mechanistic models (as

most are currently dependent on temperature) can predict

distributions as well as less-correlated environmental

variables.

C O N C L U S I O N

Climate change, human land use, and species introductions

have created a strong need for accurate models of species�

ranges. Already species are shifting ranges in response to

changing climates in individualistic ways, meaning that we

cannot just assume simple poleward shifts (Parmesan 2006).

Novel climates are expected to form as multiple climate

variables shift non-linearly across the globe (Williams &

Jackson 2007). Our comparison has revealed that correlative

and mechanistic models perform similarly at predicting

current distributions, but predict differential responses to a

uniform warming. Using hindcasting to test the range

models will be essential to assessing whether correlative

models are sufficient for predicting range dynamics.

Furthermore, we need to improve the generality of

mechanistic models while also extending the models to

incorporate species interactions, dispersal limitations, geo-

graphic variation in genotypic and phenotypic traits, and

adaptive evolution. Such efforts will require the collection of

large amounts of data on physiologies, behaviors, and life

histories throughout entire regions. At the same time,

correlative models will be needed to suggest important

mechanisms for consideration in developing mechanistic

models and for unstudied organisms. Given the current rate

of climate change, we should not need to wait too long to

validate current model predictions under substantially

altered conditions.
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Appendix S1 Supplementary methods.

Figure S1 A sensitivity analysis of the range predictions for
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