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ABSTRACT

 

Aim

 

Distribution modelling relates sparse data on species occurrence or abundance
to environmental information to predict the population of a species at any point in
space. Recently, the importance of spatial autocorrelation in distributions has been
recognized. Spatial autocorrelation can be categorized as exogenous (stemming from
autocorrelation in the underlying variables) or endogenous (stemming from activities
of the organism itself, such as dispersal). Typically, one asks whether spatial models
explain additional variability (endogenous) in comparison to a fully specified habitat
model. We turned this question around and asked: can habitat models explain addi-
tional variation when spatial structure is accounted for in a fully specified spatially
explicit model? The aim was to find out to what degree habitat models may be in-
advertently capturing spatial structure rather than true explanatory mechanisms.

 

Location

 

We used data from 190 species of the North American Breeding Bird
Survey covering the conterminous United States and southern Canada.

 

Methods

 

We built 13 different models on 190 bird species using regression trees.
Our habitat-based models used climate and landcover variables as independent
variables. We also used random variables and simulated ranges to validate our results.
The two spatially explicit models included only geographical coordinates or a contagion
term as independent variables. As another angle on the question of mechanism vs.
spatial structure we pitted a model using related bird species as predictors against a
model using randomly selected bird species.

 

Results

 

The spatially explicit models outperformed the traditional habitat models
and the random predictor species outperformed the related predictor species. In addi-
tion, environmental variables produced a substantial 

 

R

 

2

 

 in predicting artificial ranges.

 

Main conclusions

 

We conclude that many explanatory variables with suitable
spatial structure can work well in species distribution models. The predictive power
of environmental variables is not necessarily mechanistic, and spatial interpolation
can outperform environmental explanatory variables.
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INTRODUCTION

 

Explaining and predicting the abundance and distribution of

species is one of the fundamental tasks of ecology (Andrewartha

& Birch, 1954; Guisan & Thuiller, 2005). The ability to model

species distributions has proved to be vital to species conserva-

tion, land management and protected area design (Scott & Csuti,

1997; Ferrier, 2002) because complete censuses of threatened

species are typically impractical.

Accordingly, the field of distribution modelling has developed

rapidly in the past two decades, spawning a rich literature and

methodology (for overviews of the field see Guisan & Zimmermann,

2000; Scott

 

 et al.

 

, 2002; Guisan & Thuiller, 2005). At the same time,

the development of remote sensing and high-resolution climate
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interpolations has given distribution modelling a strong impetus

to use explanatory variables from one category: the physical

habitat. Records of species occurrences have increased but not

kept up with the dramatic increase in information about the

physical environment; data on species abundances covering

large extents are still very rare. With the help of the statistical

models, sparsely sampled species censuses are related to the

physical environment, allowing the prediction of occurrences at

all points where physical environment variables are available,

which is nearly everywhere. Although this approach is typically

correlative, it is assumed to be capturing the essential mecha-

nisms underlying species distributions, albeit in a phenomeno-

logical fashion.

Unfortunately, most large-spatial-scale censuses of species

record only presence/absence information rather than abun-

dance. The ready availability of data about the physical environment

and presence/absence data has led to the status quo of distribu-

tion modelling becoming presence/absence models predicted

using habitat characteristics only (Scott 

 

et al

 

., 1993). The sheer

number of tools developed in this specific application of the field

(see the list in Guisan & Thuiller, 2005) is an indicator of the

dominance of this approach, attributable at least in part to its

practicality. While different modelling strategies have been

explored [e.g. spatially explicit presence/absence models (Pereira

& Itami, 1991; Augustin

 

 et al.

 

, 1996), spatially explicit abundance

models (Lichstein

 

 et al.

 

, 2002) and community-based models

(Elith

 

 et al.

 

, 2006)], presence/absence-based habitat models still

dominate current practice. Habitat modelling has even been

expanded in temporal scope: it is now used for predicting species

occurrences 100 years into the future, with the goal of predicting

the consequences of human-induced climate change (e.g. Iverson

& Prasad, 1998; Bakkenes

 

 et al.

 

, 2002; Skov & Svenning, 2004;

Thomas

 

 et al.

 

, 2004; Hijmans & Graham, 2006).

Many modellers have noted spatial structure in the residuals of

species distribution models and have found that spatially explicit

models outperform spatially implicit models (Lennon, 2000; Keitt

 

et al.

 

, 2002; Lichstein

 

 et al.

 

, 2002; Bahn

 

 et al.

 

, 2006; Segurado

 

et al.

 

, 2006). In species distributions, such spatial patterns can

result from either the spatial patterns in underlying conditions

and resources (

 

exogenous

 

 to the dependent variable), such as soil

or temperature, or from population processes that directly generate

spatial patterns in the species abundances (

 

endogenous

 

 to the

dependent variable), such as dispersal (Bahn

 

 et al.

 

, 2006). The

dominant thinking is that the niche part of the model captures

the effects of local conditions on species in a mechanistic way,

and also captures the spatial structure of the local conditions

themselves (exogenous), as long as all important predictors are

included (Diniz-Filho

 

 et al.

 

, 2003). The question remains: can all

spatial structure in distributions be explained by the spatial

structure in the niche variables (exogenous autocorrelation), or

is there residual spatial structure caused, for example, by the

movement of organisms (endogenous autocorrelation)? Cur-

rently, it seems that the majority of studies (Lichstein

 

 et al.

 

, 2002;

Hawkins

 

 et al.

 

, 2003; Bahn

 

 et al.

 

, 2006) support the notion that

endogenous sources of spatial structure are important in species

distributions (but see Diniz-Filho

 

 et al.

 

, 2003).

However, this line of thinking assumes that all spatial structure

implicitly captured by environmental variables is legitimately

and mechanistically explained by environmental variables. Under

this assumption, endogenous spatial effects gain credibility only

if there is spatial structure left in the residuals of a niche-based

model. The ‘new kid on the block’ — endogenous spatial effects —

is left with the burden of proof that it has something additional

to offer. We question this view and ask: what if environmental

variables capture spatial structure in a haphazard way by

randomly matching the type and scale of spatial structure present

in a species distribution? Why is an endogenous spatial effect

required to demonstrate that it cannot be explained away by

environmental variables, while environmental variables do not

have to prove that they can explain variability in species distribu-

tions above and beyond what can be modelled by pure spatial

interpolation? Such a question would seem perfectly normal to a

mining engineer, who is used to modelling ore deposits with only

spatial interpolation (kriging) between bore holes and needs to

be convinced that introducing covariates is of any predictive value.

In the present study, we turn the standard question around

and ask: how much can niche models explain that is not attributable

to coinciding spatial structure? We approach this question by

contrasting niche models with pure spatial interpolation models.

We also model artificial ranges with empirical environmental

variables, to gauge the feasibility of environmental variables

explaining distributions haphazardly by randomly capturing

spatial structure. Finally, we ask whether all variables with a suit-

able spatial structure could be decent predictors, and investigate

this question by contrasting the use of related bird species as pre-

dictors with the use of random bird species.

 

METHODS

 

We used data from the North American Breeding Bird Survey

(BBS) for our empirical investigation. The data were averaged at

the route level at 1368 locations over 5 years (1996–2000). The

locations covered the conterminous USA and southern Canada.

We excluded locations in Alaska because they were too disjunct.

We used all routes that had the highest reliability rating from the

administrators of the BBS. We used all 190 land bird species that

had at least 200 occupied locations (i.e. that were recorded at

least once in the 5 years in at least 200 locations) and that were

taxonomically stable over the time period covered (i.e. species

that were joined or split were excluded). For each species we

defined the range boundary using the Ripley–Rasson estimate

(Ripley & Rasson, 1977) based on all occupied locations (with a

non-zero averaged abundance). Only locations within this range

were used in the individual species models leading to an average

of 797 

 

±

 

 26 (SE) locations per species.

The restriction of modelled sites to the range of the species was

necessary to avoid excessive numbers of unoccupied locations in

the data. High numbers of locations with zero abundance lead to

strongly skewed distributions and models with inflated 

 

R

 

2

 

. The

latter is due to the ease with which independent variables can

segregate out habitat far outside of the range: for example, a

model that includes tundra for a sub-tropical bird will be very



 

Distribution models

 

© 2007 The Authors 

 

Global Ecology and Biogeography

 

, Journal compilation © 2007 Blackwell Publishing Ltd

 

3

 

successful at predicting low abundances in the tundra and thus

will have a high 

 

R

 

2

 

, but will not be correspondingly interesting

since we already know that the bird does not occur anywhere

close to the tundra. Including sites known to be unsuitable and

unoccupied leads to higher 

 

R

 

2

 

 but less useful models. A moderate

to high number of unoccupied locations was present within the

range of all bird species. These unoccupied locations characterize

unsuitable habitat better than unoccupied locations outside of

the range, where it is unknown whether birds are absent due to

unsuitable conditions or due to their failure to colonize the loca-

tion. To support this choice, we also ran the core models without

restricting locations to the range of species for comparison.

We find that using abundance in distribution modelling rather

than presence/absence has advantages. First, the measures of

goodness-of-fit are more intuitive, better known and possibly

more robust than the measures used in presence/absence models.

The measures currently most accepted in binary models — AUC

(area under the curve) of ROC (receiver operating characteristic)

curves and Cohen’s Kappa (Manel

 

 et al.

 

, 2001; McPherson

 

 et al.

 

,

2004) — are not as widely and as intuitively understood as the 

 

R

 

2

 

of an ordinary linear regression. 

 

R

 

2

 

 surrogate measures are

seldom used in conjunction with logistic regressions because

they are typically low (for reasons why the coefficient of determi-

nation is typically very low with binary responses see Cox &

Wermuth, 1992). Second, presence/absence modelling obscures

the abundance structure of species distributions and, with it,

the potential additional information contained in the orders of

magnitude variation in abundance across regions, which is treated

as identical by presence/absence information. We square root

transformed the abundance (count) data to approach a normal

distribution (Zar, 1996). Regression tree models are invariant to

monotonic transformations in the independent variables but not

in the dependent variable.

We used regression trees (RTs) to build statistical models that

explain and predict bird abundances (Breiman, 1984). We calcu-

lated the models using the package 

 

rpart

 

 (Therneau & Atkinson,

1997) for R (R Development Core Team, 2005) — both in version

2.2.0. This technique recursively partitions the data into two

groups at an optimal value of an independent variable. This optimal

splitting value is found by testing all values of all independent

variables in the data set as potential locations for a split, and

picking the one split that best homogenizes the resulting groups

with respect to the sums of squares in the dependent variable.

For example, this technique might determine that a split of all

locations by average January temperature > –5 

 

°

 

C leads to an

optimal grouping into low and high abundance. Then the algorithm

would continue searching for the next split within each of the

newly formed groups, until given stopping criteria are reached.

In our case these stopping criteria were: at least 15 cases had to be

left in a node to allow a search for a new split, at least 5 cases had

to end up in each new group after a split and each split had to

increase the 

 

R

 

2

 

 by at least 0.001. The resulting regression tree is

a hierarchical accumulation of splitting rules, leading to 

 

n

 

 + 1

‘terminal groups of cases’ or ‘endnodes’ in a tree with 

 

n

 

 splits.

Any combination of values of independent variables unambiguously

leads into one endnode, which gives a prediction for the dependent

variable as the average of the dependent variables of the cases in

this endnode from the original training set.

Typically, the above stopping criteria lead to over-fitted trees

that do very well at explaining the training data but perform

poorly on reserved or new data. Algorithms exist to scale back or

prune a tree so that there is an optimal trade-off between explaining

the learning data set and predicting upon a reserved data set. We

pruned the RTs using a 10-fold cross validation (CV) and the one

standard error rule (Breiman, 1984). In 10-fold cross validation,

90% of the data are used to create a model, which is then tested

against the reserved 10%. This process is repeated 10 times until

all data have been used as a reserve once. This method is more robust

than traditional methods, with a constant split in the training and

validation data sets, while still testing the model against different

data than that for which the model was fit. This approach is

thought to err on the side of under-fitting rather than over-fitting

(Breiman, 1984), giving us confidence that neither the habitat model

nor the spatial interpolation model performance estimates were

biased from over-fitted models. The 

 

R

 

2

 

-like measures (derivatives

of reductions in deviance) we present here were also calculated

during CV. Therefore, the models were tested on reserved data

not included in building the RTs in the given step of CV, and the

 

R

 

2

 

-like measures not only signify goodness-of-fit of the models

but also their predictive abilities (Therneau & Atkinson, 1997).

The benefits of RTs over ordinary least squares regression are

manifold in our situation. Had we used ordinary regressions or

general linear models (GLMs), any automated method of variable

selection (e.g. stepwise) would have been subject to Freedman’s

paradox (Freedman, 1983) and any attempt to select variables for

190 species and 11 models by hand and expert opinion would

have been daunting and subjective. RTs gave us an imperfect but

solid and objective way of variable selection allowing for an

objective comparison among the different model types. In this

context it is important to note that RTs not only take care of vari-

able selection but also model nonlinearities and interactions —

another major potential source of error and subjective decisions

in ordinary multiple regressions. In addition, RTs do not have

distributional assumptions for the model errors. Had we used

ordinary regressions, we would have had to check all models for

Gaussian distribution of the errors and would have had to apply

subjective remedial measures in the many cases of violations that

would have had arisen. Furthermore, in RTs the deviance

explained at every split and thus by every variable is known, so

that a partitioning of variance method such as introduced by

Borcard 

 

et al

 

. (1992) was unnecessary to determine which vari-

ables (or groups of variables) explained which part of the vari-

ance. And finally, the ease of interpretation is typically greater in

regression trees than in multiple regressions. A regression tree

gives a clear path of the ‘decisions’ taken to get to a certain pre-

dicted abundance in an endnode, which is simply the average

abundance of all cases from the training data set found in that

endnode. For example, such a path may state that locations with

July temperature < 25 

 

°

 

C and January temperature > 

 

−

 

5 

 

°

 

C and

coniferous forest > 70% can on average expect 2.2 bird detections

of a certain species at a typical BBS point count. The effect of a

discrete value of a variable is immediately obvious in the model,
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while in a multiple regression, for example, slope coefficients of

several variables have to be viewed in conjunction with each

other and an intercept to interpret a model.

We used a range of models to investigate the performance of

habitat models and how it relates to spatial patterns. First, we

built classical habitat models (HAB) based on a large variety

of environmental data and rooted in niche theory (Guisan &

Zimmermann, 2000).

The environmental climate data came from the CRU CL 1.0

data set (New 

 

et al

 

., 1999) available at http://www.cru.uea.ac.uk/

~timm/grid/CRU_CL_1_0_text.html on a 0.5

 

°

 

 resolution grid.

0.5

 

°

 

 corresponds to roughly 55 km and the average distance

between nearest neighbours in the BBS data set as we used it is

42.4 

 

±

 

 30.9 km (SD). Thus the resolution of the climate data was

appropriate. The weather variability variables were calculated

from the United States Historical Climatology Network (HCN)

Serial Temperature and Precipitation Data available at http://

www.ncdc.noaa.gov/ol/climate/research/ushcn/ushcn.html. The

vegetation landcover data came from the USGS Land Cover/

Land Use categories available at http://edcsns17.cr.usgs.gov/glcc/

glcc_version1.html#NorthAmerica in a Lambert azimuthal pro-

jection where the USGS 24 land use categories were collapsed

into 11. For each of the 11 land cover classes, the percentage cover

of a circle 20 km in radius around the BBS route mid-point was

calculated and used as an independent variable. Finally, the nor-

malized difference vegetation index (NDVI) came from a NOAA/

NASA Pathfinder AVHRR 8-km resolution composite averaged

over 1982–92 for the month of June. We included 27 environ-

mental variables representing landcover (

 

n

 

 = 11), temperature

and precipitation means (

 

n

 

 = 6), temperature and precipitation

extremes (

 

n

 

 = 2), seasonality in temperature and precipitation

(

 

n

 

 = 4), year to year variation in temperature and precipitation

(

 

n

 

 = 3), and the NDVI, which is a measure of productivity. The

variety of environmental data we included meets or exceeds all

habitat modelling studies we know of. In particular, some authors

have shown that just two to three climatic variables are sufficient

(e.g. Bartlein

 

 et al.

 

, 1986; Austin

 

 et al.

 

, 1990); our model included

these typical two or three variables as well as 23 more.

We used two spatial models not containing environmental

variables to estimate how much variation in the distributions

could be explained through endogenous and exogenous spatial

patterns. The spatial models, which are a form of spatial inter-

polation, can recover both the endogenous spatial patterns caused

by environmental variables and the exogenous spatial patterns

caused by population dynamics and movement. However, they

can only recover variation caused by exogenous (environmental)

sources insofar as these sources vary in a spatially smooth and

autocorrelated way. Even if all environmental variables were

autocorrelated and spatially smooth at a suitable scale, the recovery

of variation produced by environmental effects through purely

spatial models should still be imperfect, because while autocorre-

lation means more similarity of neighbours than expected by

random chance, it does not mean that neighbours need be

identical or even very similar.

We used two different spatial interpolation techniques. The

first, which includes geographical coordinates as independent

variables (COORD), takes advantage of large-scale spatial trends

(Legendre & Legendre, 1998) such as the hypothesized bell-curve

structure of abundance across a species’ range (Brown, 1995).

The second, which uses the average of a neighbourhood (conta-

gion; CONT) as an independent variable, takes advantage of

fine scale spatial autocorrelation (Augustin

 

 et al.

 

, 1996; Araújo &

Williams, 2000).

The COORD models using regression trees can dissect the

species’ range into geographical regions somewhat like a poly-

nomial trend surface, but in a more flexible way. Thus they can use

coarse spatial patterns for non-causal interpolation/prediction.

We used coordinates projected in Lambert equal-area azimuthal,

central meridian-100 and reference latitude 45.

The second spatial null model, CONT, was aimed at fine-scale

spatial interpolation. We wanted to determine if a simple distance

weighted average of species abundances at neighbouring loca-

tions would make for a good predictor in a distribution model.

We selected 200 km as a suitable maximum neighbourhood,

given that birds are very mobile and that we had found auto-

correlation with similar ranges in residuals of ordinary linear regres-

sion models of bird abundances. Within this neighbourhood, the

average number of neighbours was 23.7 

 

±

 

 16.8 (SE) (range 0–

87), the average distance to neighbours was 130.2 

 

±

 

 47.4 km and

the average distance to the closest neighbour was 42.3 

 

±

 

 25.7 km.

We distance weighted the average abundance of neighbours

using a spherical model (Legendre & Legendre, 1998):

where weight

 

ij

 

 is the weight assigned to the neighbour 

 

j

 

 of the

location 

 

i

 

, and distance

 

ij

 

 is the distance of neighbour 

 

j

 

 to location

 

i

 

. We standardized the weights so that their sum over all neigh-

bours of a location 

 

i

 

 was 1, and then used them for a weighted

average of the abundances at the neighbouring locations, giving

the one contagion value per location 

 

i

 

.

In a similar spirit to the contrasting of niche models and pure

spatial models, we contrasted models that included related species as

predictors with models containing random species as predictors.

Species interactions (especially competition within a guild)

are often cited as influencing species distributions (MacArthur,

1972). With birds, family membership is a reasonable approxi-

mation for a guild, as members of a family typically eat similar

food in a similar fashion and thus should be more likely to share

a similar distribution. Therefore, we hypothesized that using the

abundances of species from the same family as predictors for

a species’ distribution would be more likely to lead to useful

predictions than using a random selection of predictor bird species.

An alternative hypothesis was that other bird species would work

as predictors by randomly having a suitable spatial structure. In

this case, family membership should not matter.

For the first type of model, we included the abundance of pre-

dictor species from the same family aiming at modelling positive

or negative species interactions (RESP, for RElated SPecies). This

approach led to a varying number of predictors for each species,

ranging between 0 and 27 with a mean of 10.3 

 

±

 

 0.62 (SE). The

second type of model used a random selection of predictor species,

  

weight
distance km distance km

weightsij
ij ij

j

  
  . /   . ( / )

=
− +

∑
1 1 5 200 0 5 200

3

http://edcsns17.cr.usgs.gov/glcc/glcc_version1.html#NorthAmerica
http://www.cru.uea.ac.uk/~timm/grid/CRU_CL_1_0_text.html
http://www.ncdc.noaa.gov/ol/climate/research/ushcn/ushcn.html
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which may or may not be from the same family, rather than related

species (RASP, for RAndom SPecies). It used exactly the same

number of predictor species as the first type of model (RESP).

We used simulated data to determine the susceptibility of RTs

to random effects, to validate our conclusions on the partitioning

of explanatory power, and to gain further insights into the

explanatory power of random spatial structure matches. We

generated two types of simulated data with 190 variables each

across the 1368 locations: complete spatial randomness (CSR)

and simulated ranges that were constructed around randomly

placed centres (SIM).

Including many independent variables in multiple regressions

can lead to high 

 

R

 

2

 

 values even if the variables are not connected

to the dependent variable (Freedman, 1983). We used a completely

spatially random data set (CSR) to investigate the susceptibility

of the RT models to the selection of random predictors from a

large data set. In addition, this complete random data set is most

consistent with the classical meaning of a null hypothesis in the

traditional statistical sense of 

 

H

 

0

 

 or no effect, which in regression

models would be the inclusion of an intercept only. The data

were generated from a lognormal distribution, following closely

the distribution of real abundances. In addition, we added simi-

lar numbers of zeros to the simulated data as were found in the

real bird data. However, the random data and the zeros were

randomly distributed across all locations, so that no spatial patterns

or coherent ranges resulted.

The simulated ranges (SIM), in contrast, were closely

modelled on the characteristics of real ranges. The idea was to

create ranges that mimicked real ranges in characteristics and

scale, but were not causally related to environmental conditions

in any way. Trying to predict these artificial ranges with real

environmental data could then tell us how much variability

environmental predictors might be explaining through a random

spatial match of structure.

We started out with random locations as centres. We then gen-

erated an artificial range with abundance decaying with distance

from the centre following a Gaussian distribution (Brown 

 

et al.

 

,

1995). We used a scaling factor [(sum of real range + 

 

a

 

)/

 

b

 

] to

model the sum of the abundance at all locations after the real

bird ranges. The sigma of the Gaussian distribution was scaled to

result in a similar number of occupied locations in the real and

the simulated distributions [(number of occupancies + 

 

c

 

)/

 

d

 

].

The simulated abundances were thus based directly on charac-

teristics from the real bird ranges (number of occupied locations

and total sum of abundance) and calculated according to the

following formula:

with

where 

 

a

 

, 

 

b

 

, 

 

c

 

 and 

 

d

 

 are scaling parameters derived from empirical

trials; 

 

x

 

i

 

 is the Euclidean distance between location 

 

i

 

 and the

centre, 

 

π

 

 is the ratio of the circumference of a circle to its diameter,

sum.det

 

j

 

 is the sum of all abundances for real bird species 

 

j

 

, and

no. occ

 

j

 

 is the number of occupied locations for real bird species

 

j

 

. The empirically derived values for 

 

a

 

, 

 

b

 

, 

 

c

 

 and 

 

d

 

 were 50, 0.0001,

220.6777 and 0.001505665, respectively.

In addition, we added random noise to the abundances and set

all abundances < 0.2 to 0, to create a range boundary. With this

method we created 190 random ranges that resembled the 190

original ranges very closely in the distribution of: (1) total sum of

abundances; (2) standard deviation in abundances; (3) number

of occupied sites; and (4) maximum abundance. The simulated

abundances were square root transformed analogously to the real

bird abundances.

 

RESULTS

 

We ran 13 models. Descriptions of the models and summarized

results are in Table 1. We found that spatial interpolation

(COORD and CONT) led to better predictive models than habitat-

based models (HAB) and selecting species at random as predictor

variables led to better models than species interaction models

(RESP) based on related birds. While the 190 habitat models (HAB)

based on climate and landcover had an average 

 

R

 

2

 

 of 0.32 

 

±

 

 0.015

(SE), the models that used coordinates as the only independent

variables (COORD) resulted in an average 

 

R

 

2

 

 of 0.36 

 

±

 

 0.016, and

the model that used the contagion term as the only independent

variable (CONT) led to an average 

 

R

 

2

 

 of 0.43 

 

±

 

 0.014.

Combining the HAB and COORD models led to an inter-

mediate 

 

R

 

2

 

 of 0.34 

 

±

 

 0.015. In multiple regressions, introducing

additional independent variables cannot decrease the 

 

R

 

2

 

. In

regression trees this can happen because they are not forward-

looking and do not select splits with consideration for future

splits. Thus, if many additional variables are included that are

decent predictors, such as the 27 environmental variables included

here, even if slightly inferior to the original few predictors — here

the two coordinates — they can by random chance capture splits

by being the slightly better predictor in a specific situation but

subsequently lead to slightly worse trees. If the additional variables

were terrible predictors, however, RT would practically never pick

them by random chance (see test results below). In the combined

HAB and COORD model, environmental variables captured an

 

R

 

2

 

 of 0.25 compared with 0.09 captured by the coordinates. This

result also indicates that the information content in environmental

variables and coordinates with regard to bird distributions is very

similar. Otherwise, one would expect that the addition of 27 envir-

onmental variables would add to the 

 

R

 

2

 

 of the COORD model, by

explaining different parts of the variability in the bird distributions.

It appears that the two kinds of variables compete to explain the

same part of the variability rather than complementing each other.

However, when the environmental variables were added to the

CONT model, they were only able to capture an 

 

R

 

2

 

 of 0.02 and

the overall 

 

R

 

2
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The abundances of related birds as independent variables

(RESP) led to models with an average R2 of 0.24 ± 0.015. Despite

the fact that these abundances are rarely included in traditional

habitat models, this R2, when viewed alone, was large enough to

lend support to the idea that species interactions might play an

important role in driving species ranges. However, using the same

number of species as independent variables per predicted bird,

but picking these species randomly (RASP), rather than using

family members, led to an increase in average R2 to 0.33 ± 0.016.

Combining our two predictive models by adding the 27 envir-

onmental variables and the related bird species as independent

variables in a single model led to an average R2 of 0.38 ± 0.015,

only slightly higher than the COORD null model and lower than

the CONT null model. In contrast, adding coordinates to the

contagion model did not improve the R2 (0.42 ± 0.014, vs. 0.43 ±
0.014 for the contagion model only), indicating that the coordin-

ates did not contain information important beyond what the

contagion (averaged neighbourhood) could explain. This last

fact suggests that the relevant spatial processes might be on the

scale of a few hundred kilometres rather than a continental scale.

The simulated ranges, which were constructed spatially com-

pletely independently of real ranges and environmental data,

gave an impression of how much variability could be explained

by random coincidence of spatial structure alone without any

functional connection. Using the same selection of the number

of independent variables as in the related bird species approach,

only this time selected from simulated ranges, the average R2 was

0.09 ± 0.009. Conversely, using the simulated ranges as depend-

ent variables and the unrelated environmental variables as in-

dependent variables led to an average R2 of 0.24 ± 0.011. Using

coordinates in models on simulated ranges led to an average R2 of

0.42 ± 0.008. The increase in R2 from models on real ranges using

coordinates as predictors (0.36 ± 0.016) to models on simulated

ranges is likely explained by the better spatial coherence and

more regular shape of the simulated ranges. Conversely, the

higher R2 when real bird ranges were modelled by related birds,

rather than simulated ranges (0.24 ± 0.015 vs. 0.09 ± 0.009), is

likely due in part to species interaction and in part to natural

ranges tracing bioregions, barriers and other natural structures

that species may share without necessarily having direct interaction.

The RT models were not subject to Freedman’s paradox

(Freedman, 1983). Including 189 completely spatially random

(CSR) variables as independent variables led to an average R2 of

0.00 ± 0.002. The number of variables included did not in and of

itself seem to have an effect on the average R2. After all, including

190 random variables still led to an R2 of 0.00 ± 0.002, and the

contagion model with only one independent variable out-

performed a combined habitat and related species model with an

average number of roughly 37 independent variables. We included

the number of available variables and the average number of

variables included per model in Table 1.

Running the models without a range restriction on included

locations increased the R2, as expected, to 0.41 ± 0.015 for the

HAB model, 0.47 ± 0.015 for the COORD model, 0.52 ± 0.013

for the CONT model and 0.43 ± 0.009 for the SIM model with

environmental variables as predictors. Thus, the relationships

between the models were virtually unchanged except for a dra-

matic increase in the predictive power of environmental variables

on simulated ranges. However, as explained in the methods

section, we do not find these values of R2, based on a combination

of modelling the range itself and modelling abundances within the

range, as informative or interesting as the ability of the different

models to predict within the range.

DISCUSSION

In this study we asked whether environmental variables could

add predictive power to pure spatial interpolation at a coarse

scale. We found no indication that environmental variables were

able to add any predictive power above and beyond what spatial

interpolation could provide. Spatial models had on average a

higher R2 than habitat-based models. While habitat variables

Table 1 Results from the 13 regression tree models. SE is one standard error of the mean R2 of 190 species models. The average number of 
variables included in the regression tree models is k, while p is the number of variables that were available to the models. The average number 
of locations included for the 190 species was 797 ± 26 (SE).

Dependent variable Independent variable(s) R2 SE k p

Bird abundance Environment 0.32 0.015 2.96 27

Bird abundance Coordinates 0.36 0.016 1.56 2

Bird abundance Contagion 0.43 0.014 0.95 1

Bird abundance Coordinates + environment 0.34 0.015 3.05 29

Bird abundance Contagion + environment 0.42 0.014 1.13 28

Bird abundance Related birds 0.24 0.015 2.18 10.3

Bird abundance Random birds 0.33 0.016 2.98 10.3

Bird abundance Environment + related birds 0.38 0.015 3.59 37.3

Bird abundance Coordinates + contagion 0.42 0.014 1.02 3

Bird abundance Simulated ranges 0.09 0.009 1.29 10.3

Simulated ranges Environment 0.24 0.011 2.03 27

Simulated ranges Coordinates 0.42 0.008 1.93 2

Bird abundance 189 random variables 0.00 0.002 0.29 189
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were somewhat competitive when compared with and added

into a model with coordinates, suggesting that they convey very

similar information in relation to species distributions, they were

clearly outperformed by the fine-scale contagion variable. In a

classic partitioning of variance approach (Borcard et al., 1992),

the ‘environment’ partition would have been zero, because the

models combining spatial and environmental variables ended up

having lower R2 than the pure spatial models. (The reduction in

R2 from adding environmental variables is arguably an artefact of

RTs, but the point remains that the environmental variables had

no additional capacity to explain variability in the species distri-

bution than what had already been captured in the spatial variables.)

Why did spatial interpolation outperform habitat 
models?

We cannot be certain why spatial interpolation outperformed

habitat models. Possible explanations fall somewhere between

the extremes of: (a) environmental variables had no explanatory

power and were but poor surrogates for spatial variables, capturing

spatial structure haphazardly; and (b) spatial variables were

merely good surrogates for environmental variables that explained

nothing but outperformed the included habitat variables because

the measurement, scale and/or inclusion of environmental vari-

ables was poor. We believe that the explanation lies closer to (a)

than (b) for the following reasons: (1) environmental variables

performed well at predicting artificial ranges; (2) our set of

included environmental variables met or exceeded the standards

of other current distribution models at a coarse scale; and (3) the

success of using randomly selected species as predictors for a

target species’ distribution also points to the importance of spatial

structure to making good predictors.

Regarding point (1), environmental variables generated a

substantial R2 in predicting artificial ranges. This R2 was about

75% of the R2 generated by environmental variables explaining

real bird ranges. The explanatory power of environmental

variables on simulated ranges indicates that the spatial structure of

environmental variables alone could account for three-quarters

of the explanatory power of environmental variables on real

ranges, independent of the actual biological implications of the

environment. Not much explained variance would then be left

for the alleged mechanistic function of environment on species

distributions. In addition, climate follows natural structures

such as mountain ranges and coasts, which species also follow,

possibly at least in part independently of climate effects. This

means that climate has an even higher potential to spatially

predict species ranges without a causal connection in real ranges

than in the simulated ranges. The 75% figure may thus be too

low rather than too high.

On point (2), the comparatively low R2 of the environmental

models could be partly caused by an inadequate set of included

variables. We have no defence against such a claim other than that

we included all the types of variables typically included in habitat

models and more. In addition to land cover, which accounted for

only 0.4% of the explained variability in the environmental

models, we included all the usual measures of climate (precipitation,

temperatures and their extremes), which accounted for 73.4% of

the explained variability. We also included within-year and

between-year variability in climate, which accounted for 25.0%

of the explained variability, and the NDVI index of productivity,

which accounted for 1.2% of the explained variability. The latter

two groups of variables are an addition to typical habitat models

that performed well (e.g. Bartlein et al., 1986; Austin et al., 1990).

Thus, while we cannot exclude the possibility that spatial models

performed better than environmental models because the envi-

ronmental variables were of poor quality and/or poorly selected,

we can at least claim that that would then also be the case for

most, if not all, other published habitat-based distribution

models at such a coarse scale.

On point (3), we note that the predictive abilities of other spe-

cies as independent variables may have little to do with ‘species

interactions’. Indeed, this is made likely by the fact that randomly

chosen species outperformed closely related species in predic-

tion. Alternative explanations could be that other species are

good integrators over environmental and other abiotic condi-

tions and thus make for good predictors, or that other species

offer a wide range of spatial structures that lend themselves to

modelling other species distributions in a haphazard way

(enhanced by being realized on the same physical landscape with

barriers, eco regions and other structural–spatial features). If the

former were true, we would have expected that related species

work better as predictors than random species, because they

should have more similar environmental preferences. Therefore,

we conclude that the latter hypothesis has some merit. Also, if

other species were simply good integrators over the environ-

ment, we would have expected no increase in R2 when environ-

mental variables were included as predictors in a model that

already contains random predictor species (observed increase

from 0.33 to 0.42).

Regression tree models

We have great confidence in the regression tree models we used

for automated variable selection and creation of the 11 models

for 190 species. Even when offered a high number of random

variables, the models did not construct spurious relationships or

R2 distinguishable from zero. The objective variable selection of

the RTs ensured that we did not influence the performance of dif-

ferent kinds of models through our own knowledge and percep-

tions of ecological phenomena. The 10-fold cross-validation

ensured that the pruned RTs were stable and that the listed R2-

like measures were based on data not included in the creation

of the models. For our comparative purposes this modelling

strategy was ideal.

A criticism of RT models is that they do not look ahead, mean-

ing that the first split is selected purely by its performance in

reducing the variance but does not take into account how well

the following splits perform. In practice, this could mean that the

initial best split sets up the two groups of data so that only poor

splits or none can follow and the resulting tree could be inferior

in total explained variability to a tree started with the second best

or worse split than the first split but followed by a strong tree.
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Because the possibilities of permutation grow exponentially with

tree size, building ‘ahead-looking’ trees that take into considera-

tion more than the best split are computationally too costly.

The reduction in R2 from the spatial models to models includ-

ing spatially explicit variables and environmental variables has to

be understood in the light of the inability of the regression trees

to look ahead. While the environmental variables performed

slightly worse than the spatial variables, they were more numer-

ous and thus had a better chance of randomly having a slight

edge over the spatial ones for one particular split. However, they

would then set the tree up for an overall loss in R2, compared to a

scenario in which it is run with only the spatial variables.

An additional caveat in the use of RT in the context of distri-

bution modelling is that the variance calculation underlying the

split algorithm does not take spatial autocorrelation into

account. Thus, the variable and split selection could be subject to

red-shift (Lennon, 2000). In previous unpublished work, V.B.

has observed that autocorrelation in the residuals of RT models is

lower than in the residuals of multiple linear regression models

based on the same variables. The reason is likely to be that the

data partitioning method for the RTs allows them to geographi-

cally subdivide the data based on spatially implicit information

contained in environmental variables even if no spatially explicit

variables are included. In addition, a red-shift would rather favour

environmental variables (Lennon, 2000) than bias against them,

so that our results on the predictive power of habitat models

should, if anything, be biased in their favour.

Caveats

An important aspect of our work is scale. Scale has been shown

to influence virtually all aspects of ecology, and species distribu-

tions are no exception. It is rightly thought that distributions at a

fine scale are determined by the most immediate requirements of

species survival and reproduction: nutrients, space, shelter, etc.

At the coarser scale at which our study was set such direct require-

ments give way to more indirect, large-scale variables such as climate

(Thuiller et al., 2003). Our study is valid only in the context of

such a coarse scale and the alleged working of coarse-scaled variables.

Similarly, our study targeted only common species (> 200

locations of occurrence) for statistical reasons. Rarer species

may have more narrow niches and thus lend themselves better

to environmental modelling than to spatial interpolation due to

their sparse distribution. Thus, an extrapolation of our results to

rare species, different scales, different geographical areas or other

organisms has to be conducted with the scrutiny and reservation

that any form of extrapolation deserves.

Last but not least, any form of spatial interpolation for predic-

tion is based on pre-existing local information on the abundance

(or presence) of the dependent variable, here the abundance of

the bird species. For example, the range of the neighbourhood

we selected for the contagion variable was 200 km, based on

the authors’ experience with the data set. The contagion model

has zero predictive capability beyond these 200 km, while the

environmental model presumably retains predictive capabilities

beyond this distance. In particular, an extrapolation in geo-

graphical space soon renders the spatial interpretation models

useless, while the environmental model may perform decently if

the geographical extrapolation remains within the range of en-

vironmental conditions covered by the model. This effect is con-

tinuous: with everything else being equal, the sparser the existing

coverage of sample locations for the dependent variable, the

worse the spatial interpolation will perform.

Spatial patterns

Given the success of the spatial interpolation models, it is worth

looking more closely at the biological mechanisms enabling

them. Some researchers have hypothesized that spatial auto-

correlation, or the influence of neighbours, is caused by dispersal

sensu latu, leading to a connection between neighbouring

populations (Selmi & Boulinier, 2001; Trenham et al., 2001;

Bahn et al., 2006). However, such a functional connection is

neither widely accepted by ecologists nor currently widely used

in distribution models. Quite a number of studies use spatial

models, including either coordinates or local neighbourhood for

species distribution models (e.g. Augustin et al., 1996; Araújo

& Williams, 2000; Lichstein et al., 2002). However, the most

cited reason for using spatially explicit models is to address the

statistical problems stemming from the lack of independence

in residuals and less often to recover an ecological mechanism.

In short, spatial autocorrelation is often treated as a nuisance rather

than a source of additional predictive power.

We concur with colleagues who use spatially explicit models

and thus include spatial autocorrelation as an additional strong

predictor, an approach long adopted by mining engineers who

use kriging as a predictive tool (Costanza & Ruth, 2001). Ignor-

ing spatial autocorrelation or only acknowledging its effect on

the estimation of degrees of freedom seems to squander a very

important source of information, as we demonstrated in this

research. Specifically, our work puts a challenge out to ecologists

and distribution modellers: can ecological mechanisms be used

to create better models than merely copying the abundance or

presence/absence value of a neighbouring site 50–100 km away?

The success of coordinates and contagion relative to environ-

ment in modelling species distributions suggests that we are

missing fundamental ecological elements underlying distribu-

tions when we model them using environmental conditions only.

Moreover, our results suggest that conservation planners could

do better by simply sampling the species very sparsely (as is already

done for input to habitat models) and creating a smoothed sur-

face from the results. If resources allow, a combination of both

approaches in spatially explicit models, such as general linear

models with a neighbourhood-based covariance matrix in the

errors, or conditional autoregressive models (CARs), would be

ideal. The success, however, would depend on the careful selec-

tion of variables. In our work here, such a combined model did

not perform better than the contagion model alone.

Our research cannot explain the phenomenon of strong

spatial autocorrelation, which is so useful in prediction. However,

several plausible processes leading to such strong spatial struc-

tures beyond what can be explained by the environment are
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known or can be hypothesized. For example, it is possible that

population processes such as dispersal give species more spatial

structure than the environment. At the same time, environmen-

tal dynamics and lack of equilibrium in the distribution with the

environment could further weaken the niche approach. In other

words, some of the same dynamics (e.g. cycles of good and bad

years, dispersal and dispersal limitation, lags in population

growth and recolonization) that decrease the predictive power of

environmental conditions may increase autocorrelation in distri-

butions and perpetuate a strong peak and tail distribution pat-

tern at the range scale. Instead of ignoring these patterns or

treating them as a nuisance that invalidates statistical analyses

(by introducing dependence in the residuals), we suggest that

they should be viewed as an opportunity to create better distri-

bution models and to make progress in the as yet underappreci-

ated field of population dynamics in species distributions.

Conclusion

Our study is not to be misunderstood as a condemnation of

habitat-based distribution modelling. Initiatives such as the GAP

programme (Scott et al., 1993) are valuable contributions to con-

servation efforts, working in an emergency triage environment

where any result is better than none. Most often the information

available for species is much poorer than the data we worked

with; information on abundances covering large extents and

with good spatial coverage as used in our research is a rare excep-

tion. Often only a few museum-collection data points are avail-

able (Graham et al., 2004). Therefore, rather than condemning

habitat-based distribution modelling, our point was to deepen

our understanding of the successes and failures of habitat models

and the relative importance of the mechanisms driving species

distributions.

In conclusion, the predictive power of habitat-based models at

a coarse scale may be in substantial part due to coincidence in

spatial structure between habitat variables and species distribu-

tions rather than a functional relationship. Other spatially struc-

tured predictors, such as a random selection of other birds as

predictor variables, reach similar levels of predictive power as

environmental variables, and variables capturing spatial structure

directly outperform habitat variables. The future lies in better

understanding why spatial patterning in species distributions is

such a strong predictor, which processes lead to the spatial pat-

terning, and how these processes can be modelled mechanistically

rather than phenomenologically.
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