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Abstract 

Remodelling of the immune system with age — immunosenescence — is a significant 

contributor to poor health in older adults, with increasing risk of infections, cancer and 

chronic inflammatory disease contributing to age-related multi-morbidity. What is seldom 

considered when examining the immune response of an aged individual is that the immune 

system is profoundly influenced by physical activity. Habitual physical activity levels decline 

with age, with significant consequences for muscle mass and function. Skeletal muscle is a 

major immune regulatory organ and generates a range of proteins, termed myokines, which 

have anti-inflammatory and immunoprotective effects. Several studies indicate that 

maintaining physical activity has immune benefits in older adults; for example, it reduces the 

systemic inflammation associated with chronic age-related diseases. Herein we discuss how 

physical activity can prevent or ameliorate age-related multi-morbidity by boosting immune 

function and consider whether physical activity could improve immunotherapy outcomes in 

age-related conditions such as cancer.  
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[H1] Introduction 

There is a continuing trend for increased human life expectancy across the globe, particularly 

in the developed countries1. Between 1990 and 2010, life expectancy in the UK increased by 

4.2 years in men and 1.9 years in women, but healthy life expectancy [G] did not keep pace, 

increasing at approximately half this rate2. We are thus living longer, but not healthier. 

Furthermore, ill health in old age is typically not due to any one disease, but instead many 

older adults are multi-morbid – defined here as the presence of two or more chronic 

conditions. For example, in a retrospective study of disease incidence in Minnesota from 

2005-2010, 22% of adult patients overall had two or more conditions and this rose to 77% in 

the over 65 year old group3. Understanding the drivers of age-related multi-morbidity and 

developing interventions to prevent or delay its occurrence is now a priority in many 

countries. 

 It is often not appreciated that increased population longevity is a relatively recent 

phenomenon, beginning around 250 years ago4. This is a relatively short time in the context 

of our genetic heritage, where our global physiology and accompanying immune system 

evolved to meet the demands of an active hunter–gatherer lifestyle5 (Figure 1). Our modern 

lifestyle goes against the blueprint laid down by this genetic inheritance, with inactivity and 

overeating resulting in impaired function across a range of systems in old age6, culminating in 

multi-morbidity and increased incidence of cardiovascular disease, obesity, type 2 diabetes 

and cancer6. Thus it is becoming increasingly clear that being sufficiently physically active 

across the life course is a central requirement for achieving a healthy old age7. Moderate to 

vigorous physical activity and cardio-respiratory fitness are both key predictors for reduced 

all-course mortality8,9, and the reverse is true for sedentary behaviour such as sitting or lying 

down10,11. Indeed, large cohort studies have revealed that physical activity and time spent 

being sedentary are independent variables affecting health and the ideal is to maintain 

adequate levels of physical activity and minimise sedentary time11. Unfortunately, physical 

activity tends to decline dramatically with age. For instance, less than 10% of UK adults aged 

over 65 meet the Chief Medical Officer’s recommendation for physical activity of 150 minutes 

of aerobic exercise a week. Further, as the immune system is readily influenced by physical 

activity12, increased inactivity across the lifespan may also contribute to reduced immunity in 

old age.  
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In this Review, we discuss the evidence suggesting that reduced physical activity with age is a 

major contributor to age-related immune decline, which in turn pre-disposes the individual 

to multi-morbidity. Physical activity and exercise are often used interchangeably (see Box 1). 

Here, physical activity is used to refer to the sum of any general body movement that raises 

energy expenditure above a basal level, whereas exercise denotes a specific form of physical 

activity, such as cycling or swimming, carried out for a set purpose. We consider active skeletal 

muscle as a major immune regulatory organ, with inactivity and sarcopenia [G] providing a 

mechanistic link between low levels of physical activity, age-related immune decline and the 

chronic diseases of old age. The potential of physical activity as an immune adjuvant to 

enhance responses to vaccines and immune-based cell therapies in older adults is also 

discussed. 

 

[H1] Physical activity and immune health 

An optimally functioning immune system is central to health, with cellular and humoral 

immunity required for protection against infections, responses to vaccines, detection and 

removal of cancers, and prevention of autoimmune disease. The immune system does not 

operate in isolation and is profoundly influenced by environmental factors, including physical 

activity12. Consequently, an association between physical activity, immunity and disease has 

been demonstrated in a range of population-level studies. Participation in regular bouts of 

moderately intense physical activity (for example, brisk walking or swimming), of at least 150 

minutes per week, confers protection against a myriad of immune and inflammatory 

disorders, as well as multi-morbidity and mortality13-15. Prospective studies have consistently 

shown that regular physical activity reduces the risk of infection16,17 and the burden of latent 

viral infections18. There is also ample evidence that physically active lifestyles reduce the risk 

of cancer, particularly those that disproportionately afflict older individuals, such as breast, 

colon and prostate cancer19. The benefits of physical activity are also apparent in older adults 

in the context of protection against frailty and cognitive impairment20,21. We therefore 

suggest that many of the benefits of physical activity on health are achieved through positive 

effects on the immune system. 
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An emerging body of work in animal models and humans also supports causative links 

between increased physical activity and disease prevention and management mediated by 

improved immunity. Rodent models have shown that moderate exercise can improve survival 

in mice infected with a lethal dose of influenza virus22. Here, protection was attributed to a 

reduction in inflammatory cell infiltration and a shift from a T helper 1 (Th1)- to a Th2-type 

cytokine profile in the lung23. Influenza and pneumonia remain major causes of death 

amongst older adults and prophylactic vaccination is less effective in this population, 

especially in those who are frail24. Exercise interventions have been shown to improve 

immune responses to both novel and recall antigens in seniors25, with two clinical trials in 

aged humans showing that increased physical activity can improve immune responses and 

extend protection provided by the influenza vaccine26,27. Exercise interventions have also 

been shown to improve disease symptoms in a range of inflammatory and autoimmune 

disorders, with the benefits seen including improvements in micro- and macrovascular 

function28 and decreased disease severity and pain in patients with rheumatoid arthritis29. 

Consequently, there is increasing interest in whether physical activity can preserve immunity 

into old age and thereby protect against multi-morbidity. 

 

[H1] Ageing and immunity 

The decline in immunity with advanced age has been termed ‘immunosenescence’ and 

contributes significantly to ill health in old age. For example, immunosenescence is associated 

with reduced efficacy of vaccinations30, increased susceptibility to viral and bacterial 

infections31, re-emergence of latent viruses (such as varicella zoster virus, which causes 

shingles32) and reduced immune surveillance potentially contributing to increased cancer 

incidence33. Another aspect of ageing that is, in part, influenced by immunosenescence is the 

increase in systemic inflammation, so-called ‘inflammageing’. Inflammageing is likely a 

generic driver of age-related multi-morbidity as the degree of inflammageing has been 

related to increased risk of most chronic diseases of old age34,35. Indeed, the influence of an 

active lifestyle on health in old age may lie in its impact upon inflammageing, as regular 

physical activity has been associated with reduced systemic inflammation in older adults36,37.  

[H2] Key features of the immune system in older adults. 
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Advanced age is associated with remodelling of both the innate and adaptive arms of the 

immune system which can eventually lead to compromised immunity and disease. As there 

have been many comprehensive and recent reviews of the changes to the innate and 

adaptive immune systems with age, we have summarised the key features of 

immunosenescence in Table 1. Key elements include: compromised migration and anti-

microbial function in neutrophils and monocytes, reduced natural killer (NK) cell 

cytotoxicity, reduced quality and quantity of antibody production by B cells, thymic atrophy 

and increased frequency of highly differentiated T cells that are often considered to be 

senescent due to their reduced proliferative capacity. Interestingly, these highly 

differentiated memory T cells38, as well as memory B cells39, exhibit secretion of pro-

inflammatory cytokines similar to the senescence associated secretory phenotype (SASP) 

[G] seen in non-immune senescent cells, thereby contributing to inflammageing [G].  

 Crucially, studies in both mice40 and humans41 have identified a suite of immune 

parameters as markers of biological age, suggesting that immunosenescence is an integral 

component of the ageing process and a driver rather than a consequence of age-related 

disease. In support of this proposal, several features of T cell immunosenescence are seen 

in the early stages of rheumatoid arthritis with no association with the duration of 

symptoms42, suggesting that immune ageing precedes rheumatoid arthritis rather than 

being a consequence of disease. Furthermore, other chronic inflammatory diseases that 

occur in childhood, such as spondyloarthropathies, do not show accelerated 

immunosenescence43. 

 

[H2] Lifelong physical activity and amelioration of immune ageing.  

The contribution of the age-related decline in physical activity to immunosenescence has 

received little attention but is likely to be a significant confounder in studies of immunity in 

older adults. The effects of maintaining physical activity throughout adulthood on immune 

ageing also remain largely unexplored as most studies of the ‘long term’ effects of increased 

physical activity have only lasted for 6-12 months. To address this issue, one study assessed 

immune cell phenotypes in physically active male and female non-elite cyclists (n=125) who 

had maintained a high level of physical activity for much of their adult lives. These older 
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adults, aged 55-79 years, showed few of the changes in physiological function routinely 

reported with advancing age, such as loss of muscle mass and function (sarcopenia), reduced 

insulin sensitivity, elevated cholesterol and high blood pressure44. The cyclists also showed 

few signs of immunosenescence, including reduced evidence of a decline in thymic output, 

with a frequency of recent thymic emigrants similar to that seen in young adults45. Systemic 

inflammation and induction of Th17 cell responses were also not increased and changes to 

regulatory T and regulatory B cell frequencies previously reported in aged humans46,47 were 

not seen in the cyclists. However, accumulation of CD28-CD57+ T cells with a 

senescent/exhausted phenotype still occurred and the frequency of these cells did not differ 

from age-matched non-exercising adults, suggesting that lifelong physical activity ameliorates 

rather than totally prevents immunosenescence45.  

 In a second study of healthy males aged 18-61 years (n=102) a positive correlation 

between aerobic fitness (VO2max [G]) and the frequency of naive T cells was also reported, 

though this study also found reduced levels of senescent CD28-CD57+ CD4+ and CD8+ T cells in 

the adults in the highest tertile for VO2max48. Improvements in thymic output might be due 

to effects of physical activity on the senescent/exhausted T cell pool. Physical activity has 

been shown to increase apoptosis of T cells with a senescent/exhausted phenotype49, which 

might increase the generation of progenitor cells50 to maintain a richer pool of naive cells with 

advancing age.  

 The benefit of maintained thymic output and naive T cell frequency in habitual 

exercisers was also suggested by a study of 65-85 year old men who had undertaken a 

moderate or high intensity level of physical activity for an average of 25 years. These adults 

showed higher antibody responses to influenza vaccination than age-matched controls who 

were not regular exercisers51.  

 Taken together, these studies suggest that the emergence of certain features of 

immunosenescence and the extent of immune remodelling is likely to be heavily influenced 

by insufficient physical activity as humans age. 

 

[H1] Mechanism of immune protective effect  

[H2] Skeletal muscle as an immune regulatory tissue. 
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Skeletal muscle is now recognised as an endocrine organ, capable of expressing and secreting 

cytokines (referred to as myokines) into the circulation during physical activity (Figure 2). IL-

6 was the first myokine identified. It is produced soon after the onset of physical activity, with 

the levels produced depending on the intensity and duration of activity52, reflecting muscle 

mass and contractile activity. IL-6 is a pro-inflammatory cytokine when it is generated via the 

NF-κB signalling pathway in response to cytokines such as TNF that are produced during 

infection or after tissue damage. In contrast, IL-6 generated in response to exercise is anti-

inflammatory, is induced via JUN N-terminal kinase (JNK) and activator protein 1 (AP1) 

signalling53 and leads to the production of regulatory mediators (such as IL-10 and IL-1 

receptor antagonist (IL-1RA)) by monocytes and macrophages54. IL-6 also stimulates the 

release of cortisol from the adrenal glands, thereby providing a second anti-inflammatory 

signal55. The benefit of IL-6 produced from exercising muscle was indicated in young adults in 

an experimental model of ‘low-grade inflammation’ in which the increase in plasma TNF 

concentration induced by low-dose administration of E. coli endotoxin was entirely blunted 

by 3h of prior ergometer cycling. These effects of physical activity were also mimicked by an 

infusion of IL-6, which similarly suppressed the endotoxin-induced TNF production56. Other 

novel myokines released from exercising muscle have also been reported to have metabolic 

and immune effects. Meteorin-like is a myokine that can induce ‘browning’ of adipose tissue, 

stimulate an eosinophil-dependent increase in IL-4 and promote the polarisation of M2-like 

macrophages [G]57. Whilst there are no data concerning net release of IL-6 or other myokines 

from skeletal muscle during physical activity in older people, increasing physical activity and 

reducing sedentary behaviour in older adults has been associated with lower levels of pro-

inflammatory cytokines58.  

 In addition to IL-6, other cytokines such as IL-759 and IL-1560 are expressed and 

released by exercising muscle. IL-7 is required for thymocyte development61, IL-7 and IL-15 

are lymphocyte proliferative factors (especially for naive T cells62) and the serum levels of 

these cytokines declines with age45. The potential mechanisms by which regular physical 

activity exerts a positive effect on thymic output and naive T cell numbers is likely to involve 

these myokines. In the study of older cyclists described above, these adults had higher serum 

levels of IL-7 and IL-15 compared with non-exercising older adults45. IL-15 also has metabolic 

effects protecting against visceral adiposity by preventing lipid deposition in pre-adipocytes 
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and reducing white adipose tissue63. As fat accumulation in the thymus is a hallmark of thymic 

cellular atrophy in humans64, increased IL-15 may also protect the thymus during ageing. 

However, a recent study comparing IL-15 expression by adipose tissue and skeletal muscle in 

older adults reported that adipose tissue had higher expression of IL-15 and that serum IL-15 

levels correlated with visceral fat mass but not muscle mass65. IL-15 is also required for NK 

cell development and cytotoxicity and the authors suggested that fat-derived IL-15 may 

support NK cell-mediated immunity in older adults. However, no details of the physical 

activity levels in these participants were provided. In lean older adults involved in regular 

physical activity we would argue that muscle is a major source of IL-15. Importantly, muscle 

is not associated with the adverse effects of adipose tissue, which is pro-inflammatory in 

nature and secretes a range of cytokines and adipokines that can contribute to inflammageing 

(Box 2).  

 Overall, the myokine hypothesis provides a framework that connects active skeletal 

muscle to the maintenance of a healthy immune system during ageing as physical inactivity, 

with age-related sarcopenia, both limit the immune regulatory function of muscle in old age. 

In addition, with the rapid progress of omics technologies, other proteins, RNA, or miRNA 

released from active skeletal muscle, possibly encased in exosomes, might well provide a 

greater understanding of this interaction with the immune system. Indeed a recent study 

revealed that 1 hour of cycling liberated high levels of extracellular vesicles, containing 

potentially novel myokines that were released into the circulation via this classical secretion 

independent route66.  

 

[H2] Effects of physical activity on innate immune cell function. 

Cross-sectional studies comparing sedentary and low-fitness elders with their physically active, 

highly fit peers have demonstrated multiple benefits for the innate immune system in addition 

to the T cell population changes described above (Figure 3). Regular physical activity in old 

age is associated with enhanced NK cell function67 and the maintenance of neutrophil 

bactericidal function and migratory dynamics68. In addition, exercise interventions have been 

shown to lower the numbers of circulating CD16+ inflammatory monocytes69, and improve 

neutrophil oxidative burst and phagocytosis70. Physical activity can also lower fat mass, 

reducing infiltration of inflammatory monocytes to adipose tissue and increasing polarisation 
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of adipose tissue-resident macrophages from an M1-like pro-inflammatory to an M2-like anti-

inflammatory phenotype71. This mechanism has been proposed to prevent or reverse chronic 

low-grade inflammation in adipose tissue that could otherwise contribute to the development 

of inflammageing with increased risk of age-related disease and multi-morbidity.  

 

Physical activity and control of latent viral infection. 

One other mechanism by which involvement in regular physical activity might contribute to 

prevention of immunosenescence, specifically age-related T cell remodelling, is through 

improvements in viral control. Accelerated T cell differentiation and exhaustion is partly 

driven by cytomegalovirus (CMV) infection, a prevalent latent herpes virus that persists for 

the lifetime of the host72. The virus is capable of periodic and subclinical reactivation, placing 

a significant burden on the T cell compartment. Moreover, CMV seropositivity has been linked 

with frailty, cognitive decline and poor immune responses to vaccines in older adults73. A 

recent cross-sectional study in a large (n=~1400) ethnically diverse cohort aged 21-91 years 

revealed inverse relationships between cardiorespiratory fitness and latent viral control, with 

the impact of VO2max on CMV control being more marked in those aged >65yrs18. These 

findings indicate that high cardiorespiratory fitness levels may protect against latent viral 

reactivation, which in turn will delay immunosenescence. Although the mechanisms through 

which physical activity can improve latent viral control remain to be determined, it is possible 

that each bout of physical activity causes an augmented redistribution of catecholamine-

sensitive CD8+ T cells with viral antigen specificity and a highly differentiated phenotype and 

that this increases anti-viral immune surveillance and helps to lower viral loads74,75. However, 

CMV serostatus is not always assessed in studies of physical activity and immunity and we 

would advocate that this must be done as it is another potential confounder in such analyses. 

 

[H2] Catecholamines and lymphocyte 2 adrenergic receptor signaling. 

Single bouts of exercise elicit a rapid and preferential mobilisation of lymphocyte subtypes 

with phenotypes associated with enhanced effector function, tissue migration, 

catecholamine sensitivity and antigen specificity76. NK cells are the most responsive group of 

lymphocytes, with even very brief physical activity causing 4-5-fold increases in peripheral 
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blood NK cell numbers77. These effects of physical activity are mediated through the 2-

adrenergic receptor (-AR) subtype78. The mobilisation of cytotoxic lymphocyte subtypes by 

catecholamines following exercise provides a possible mechanism for why frequent bouts of 

acute dynamic physical activity can protect against cancer. Pedersen et al. reported that 

voluntary wheel running reduced tumour incidence and growth by approximately 60% across 

five different mouse tumour models79. Depleting NK cells and repeating the experiments in 

athymic mice, which lack T cells but retain functional NK cells, confirmed that the anti-tumour 

effects of exercise were NK cell-mediated in mice. T cells mobilised by physical activity are 

more responsive to ex vivo stimulation with tumour antigens such as WT-1, PRAME and 

MAGE-A480. More recent work has shown that catecholamines present in plasma taken 

following a single exercise bout in healthy controls and in patients with breast cancer can 

reduce the viability of hormone-sensitive and hormone-insensitive breast cancer cell lines in 

vitro and mitigate tumour growth in vivo when the plasma-treated cells are transplanted into 

immune-compromised mice81. Taken together, these findings indicate that catecholamines 

released during physical activity play an important role in priming the tumour 

microenvironment as well as in facilitating the mobilisation and redistribution of tumour-

infiltrating lymphocytes, especially myokine-sensitive NK cells.  

 

[H2] CMV and age-related declines in NK cell -AR sensitivity. 

Ageing is the biggest risk factor for acquiring cancer and it is known that older adults mobilise 

fewer T cells and NK cells in response to intensity-controlled physical activity compared to 

their younger counterparts82. Furthermore, although the density of -AR expression on 

lymphocytes is unaltered with ageing, -AR sensitivity is substantially reduced83. Interestingly, 

previous exposure to CMV markedly inhibits NK cell mobilisation in response to exercise due, 

in part, to a CMV-induced increase in the proportion of NK cells expressing the activating 

receptor NKG2C, which respond poorly to catecholamines84. This suggests that CMV infection, 

and not age per se, is responsible for reducing the mobilisation and redistribution potential 

of the NK cell compartment in response to physical activity. Given that the catecholamine-

dependent redistribution of NK cells appears to be a fundamental mechanism by which 

physical activity can inhibit cancer acquisition and progression79, it is possible that those with 
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CMV might not get the same anti-tumour surveillance benefits of regular physical activity as 

their non-infected counterparts. Future studies investigating the effects of physical activity 

on NK cell catecholamine sensitivity and redistribution in the context of CMV and anti-cancer 

immunity are warranted.  

 

[H2] Physical activity and gut microbiota diversity. 

The intestinal microbiota plays an important role in the maintenance of host health and 

immunological protection. It is relatively stable throughout adult life until there is a marked 

reduction in biodiversity in old age85. This altered microbiota profile includes an increase in 

facultative anaerobes, including Streptococci and Enterobacteria and a decline in bacteria 

considered to be health promoting, such as Bifidiobacterium and Lactobacillus86,87. 

Furthermore, age-related impairment in innate immune defences (such as anti-microbial 

peptides, reactive oxygen species and α-defensins) favours bacterial overgrowth on epithelial 

surfaces and enterocytes respond by forcing an inflammatory response that drives dendritic 

cell-mediated differentiation of Th1 and Th17 cells88.  

 A role for reduced gut microbiota diversity in immunosenescence is only now being 

considered, though data supporting a causative link are restricted to rodent studies. In older 

humans89 and mice90 there is an association between microbiota diversity and systemic 

inflammation. Theveranjan et al. have reported that aged germ-free (GF) mice did not display 

inflammageing, their macrophage bactericidal function was intact and they did not have the 

raised leukocyte infiltration in the lungs seen in old non-GF mice. The GF mice were also 

longer-lived than control littermates91. To confirm that reduced microbial diversity was 

responsible for the raised systemic inflammation, rather than the presence of any microbiota, 

two approaches were used: the study generated mice with a minimal microbiota of low 

microbiota diversity and still saw an increase in serum IL-6 with age. Co-housing GF mice with 

old but not young traditionally housed mice also raised their systemic inflammation91.  

 The earliest evidence for beneficial effects of physical activity on the gut microbiota 

came from Matsumoto and colleagues, who reported an increase in gut microbiota diversity 

in exercised rats92. There is currently a paucity of human interventional studies examining the 

effects of physical activity on gut microbiota, particularly in older adults. One observational 
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study in elite rugby players has reported an increased relative abundance of Firmicutes with 

a reduced abundance of Bacteroides93. Allen et al. showed differential alterations in gut 

microbiota composition in lean and obese humans following a six week exercise intervention 

programme; specifically, they found an increased abundance of Faecalibacterium and 

Lachnospira with a reduced abundance of Bacteroides in lean participants, whereas an 

increased abundance of Bacteroides was seen in the obese participants. These changes 

reversed when the participants returned to their sedentary lifestyles94. However, the 

relationship between physical activity, gut microbiota and mucosal immunity across the life-

course remains under researched. 

 

[H1] Physical activity as a therapy 

[H2] Physical activity as an immune adjuvant. 

The strongest evidence to date supporting physical activity as a powerful immune adjuvant 

comes from vaccination studies in older adults. Periods of extended physical activity 

involvement, maintained high levels of habitual physical activity in old age and single bouts 

of exercise prior to vaccination have all been shown to improve immune responses to the 

influenza and pneumococcal vaccines26,27,51 as well as to experimental vaccines that contain 

novel antigens, such as keyhole limpet haemocyanin (KLH)25. The mechanism of action is likely 

a composite of localised inflammation and an infiltration of phagocytic and antigen-

presenting cells at the site of inoculation, priming of the T cell response, increased naive T cell 

frequency and improvements in B cell function25,45,48. Both dynamic whole-body exercise and 

localised resistance exercise that cause transient damage to the deltoid muscle prior to 

inoculation increase immune responses to the vaccine. However, more acute low-intensity 

exercise interventions, such as a single bout of 45 minutes brisk walking95, or 40-minute 

treadmill walking at an intensity of 55%-65% of maximum heart rate96 prior to vaccination, 

have so far failed to show any major or consistent improvements in vaccine responses in older 

adults.  

 As already stated, ageing remains the most significant risk factor for cancer 

development and there are many instances when cancer immunotherapy is less effective in 

the old97; this is particularly true for responsiveness to PD1, PDL1 and CTLA4 immune 
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checkpoint blockade therapy, chemotherapy and tyrosine kinase inhibitors. The degree to 

which changes in immune phenotype and function with age contribute to cancer 

development is unknown, though loss of cytotoxic function of NK cells and CD8+ cytotoxic T 

cells for example would likely reduce immune surveillance capabilities in older people. In an 

era of precision medicine, genetic engineering and immunotherapy, simple increases in 

physical activity may prove to be an effective adjuvant to both limit toxicity and increase the 

efficacy of cancer treatments, even against the backdrop of an aged immune system 

(reviewed in Ref. 98). However, a challenge facing patients with cancer is that they are often 

too sick and frail to undertake the required level of physical activity due to the debilitating 

nature of their cancer treatment. To circumvent this, physical activity interventions are now 

being delivered before initiating treatment in a procedure referred to as ‘pre-habilitation’99. 

A programme that comprised both aerobic and resistance exercise lasting approximately 24 

days prior to surgery for colorectal cancer significantly improved post-surgery recovery of 

physical function100. That pre-habilitation may be effective is further suggested by the 

observation that higher aerobic fitness (VO2max) levels prior to haematopoietic stem cell 

transplantation are inversely associated with risk of mortality and time spent in hospital101.  

 Physical activity might also help facilitate the recovery and manufacture of immune 

cells for immunotherapy. Single bouts of exercise increase the recovery and ex vivo 

manufacture of virus-specific T cells from virus-experienced healthy donors for the 

prophylactic and therapeutic treatment of post-transplant viral infections74,75. Exercise has 

also been shown to augment the ex vivo manufacture of tumour-antigen-specific T cells from 

healthy donors in preparation for allogeneic adoptive transfer immunotherapy as a means to 

prevent and treat relapse after allogeneic stem cell transplantation80. Moreover, single bouts 

of exercise mobilise CD34+ hematopoietic stem cells in to the bloodstream via the 2-AR and 

may serve as an adjuvant to recover more progenitor cells from the peripheral blood of 

healthy granulocyte colony-stimulating factor (G-CSF) mobilized donors prior to 

transplantation102.  

 

[H2] Physical activity as a therapy to prevent age-related multi-morbidity. 
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Advanced age is the single largest risk factor for multi-morbidity2 and there is now increased 

evidence from animal models that interfering with core ageing processes extends lifespan but 

also prevents a broad range of age-related diseases103. Whilst the current focus of this 

research is on pharmacological interventions to inhibit ageing processes104, it is worth 

considering that the broad health benefits of physical activity may be mediated through an 

impact upon basic ageing mechanisms. Until recently, the rate of an individual’s biological 

ageing was difficult to determine but in 2013 Horvath published an algorithm, the epigenetic 

clock, based on leukocyte DNA methylation at 350 CpG sites that correlated closely with 

chronological age and deviations from this association were indicative of increased mortality 

and morbidity105. A few studies are now emerging that have determined associations 

between physical activity and this biomarker of biological age. One study of over 4500 adults 

revealed that physical activity had a beneficial effect on the rate of epigenetic ageing as 

determined by this biomarker106. A smaller cross-sectional study of 248 seventy-nine year olds 

found no association between the epigenetic biomarker and physical activity levels measured 

objectively by accelerometry over 7 days107, though life-long involvement in physical activity 

may be the more important determinant of biological ageing6. An analysis of the same cohort 

from age 70 to 76 did reveal an association between an individual’s physical fitness (lung 

function, hand grip strength), with poorer function linked to a higher rate of change in DNA 

methylation108. 

 Although ageing is a highly complex process, through research in model organisms we 

are now beginning to understand many of the biological mechanisms driving ageing [G]109. 

These include reduced DNA damage repair, telomere shortening, reduced autophagy and 

compromised proteostasis, all potentially leading to induction of cell senescence. Several 

observational studies have shown an association between physical activity levels and 

telomere length, for example an analysis of data from 7813 women in the Nurse’s Health 

Study showed a modest positive benefit of physical activity on leukocyte telomere length110. 

A 30 year longitudinal study has shown that adults who undertook moderate levels of physical 

activity had longer telomeres in old age than those who did either low or very high levels of 

activity111, suggesting a dose-dependent effect on telomere length. Fewer researchers have 

carried out interventional studies to determine causality. A small 5 year study in men (n=10) 

with low risk prostate cancer were prescribed increased physical activity and showed longer 
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telomere length and higher telomerase activity compared with 25 controls with clinical 

surveillance only112. In contrast, a 12 month randomised controlled study of aerobic exercise 

in 200 post-menopausal women found no evidence of an improvement in the rate of 

leukocyte telomere shortening113. It is possible that 12 months of increased physical activity 

is not sufficient to modulate telomere shortening. 

 Senescent cells are proliferatively quiescent but metabolically highly active and 

contribute to ageing in several ways, including through their secretion of pro-inflammatory 

cytokines (the so-called senescence-associated secretory phenotype (SASP)) thus supporting 

the development of inflammageing. Removal of senescent cells has been shown to prevent 

age-related disease and extend lifespan in mice103. One tissue where senescent cells 

accumulate is adipose tissue and Schafer et al. have shown recently that exercise can prevent 

accumulation of these cells in diet-induced obesity in mice114. Physical activity is also able to 

increase autophagy, including in muscle115, which will have benefits for metabolism and 

proteostasis.  

 Physical activity may thus be able to counteract mechanisms associated with ageing 

including modulating telomere shortening, cell senescence, autophagy, inflammation and 

epigenetic changes and thereby ameliorate the ageing phenotype including the multi-

morbidity of old age. As immune cells from older adults also demonstrate the presence of 

these ageing mechanisms, including telomere shortening116, reduced autophagy117, a pro-

inflammatory phenotype38,39 and epigenetic changes associated with biological age105, 

physical activity may also mediate its beneficial effects on immunity by counteracting these 

core processes. 

 

[H1] Conclusions 

Hippocrates in 400 BC claimed that “Walking is man’s best medicine” and it is clear that 

physical activity has broad impacts upon health across the life course, many mediated 

through improved immunity and reduced systemic inflammation12. Maintaining a high level 

of physical activity across the lifespan is arguably the blueprint passed down from our 

evolutionary heritage and can ameliorate most of the typical aged phenotype, including 

immunosenescence44,45,98. To firm up the case for a causative link between physical activity, 
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immunosenescence and health much more interventional studies in humans are required. 

The link between immunosenescence and disease also requires further evidence to show 

reduced morbidity when immune ageing is selectively targeted. To date this has only been 

achieved following short-term treatment with rapamycin analogues to inhibit mammalian 

target of rapamycin (mTOR), which was shown to improve responses to influenza vaccines in 

older adults and reduce influenza-like infections118. If physical activity interventions can then 

be shown to modulate the immune system through the same mechanisms (for example, 

through inhibition of mTOR), this will help to provide support for the direct benefits of 

physical activity for ameliorating immunosenescence. Furthermore, the current literature 

reports that physical activity is useful as an adjuvant to immunotherapies such as vaccination 

and immune cell therapy. It is important going forward to stratify physical activity prescription 

for dose and intensity and to determine in which age-related diseases it will be effective. 
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Box 1: Definitions of physical activity and exercise 

The US Centers for Disease Control and Prevention defines physical activity as “Any bodily 
movement produced by the contraction of skeletal muscle that increases energy expenditure above 

a basal level. Physical activity generally refers to the subset of physical activity that enhances 

health.” Exercise is defined as “A subcategory of physical activity that is planned, structured, 
repetitive, and purposive in the sense that the improvement or maintenance of one or more 

components of physical fitness is the objective.”  

 

Box 2: Adipose tissue and inflammageing 

Adipose tissue produces a range of pro-inflammatory cytokines, termed adipokines. In 

addition, adipose tissue contains macrophages and senescent cells that contribute to the 

pro-inflammatory output. The increase in adiposity with age thus contributes to 

inflammageing and in turn to age-related disease.  

 

Figure 1. The evolution of increased longevity 

Our nearest primate relatives such as chimpanzees and gorillas live for approximately 10-15 

years in the wild once they reach maturity. 5 million years of evolution resulted in a doubling 

of life expectancy in the hunter-gatherer tribes such as the Ache and Hiwi and this lifespan 

persisted into the modern 18th century humans. Just 250 years later, as a result of improved 

sanitation and health care, life expectancy has doubled again4 and our modern more 

sedentary lifestyle is thus maladjusted to our genetic inheritance with consequences for 

health in old age.  

 

Figure 2. Muscle as an immune regulatory organ 

In the absence of infection skeletal muscle is a major source of cytokines, termed myokines. 

Active muscle produces a range of myokines including IL-6 which has anti-inflammatory 

actions via the induction of IL-10 and IL-1RA by monocyte/macrophages. Muscle derived IL-

15 has a range of actions including promoting the survival on naïve T cells, enhancing NK cell 

production and cytotoxicity and influencing fat deposition by inhibition on lipogenesis. IL-7 

has thymoprotective actions helping to maintain thymic output. Skeletal muscle also 

produces a range of growth factors, including IGF-1 and Meteorin-like (MTRNL) which 

promote conversion of white to brown adipose tissue, increases IL-4 secretion and 



19 

 

macrophage M2 polarisation. Increased physical activity leads to reduced intermuscular 

adipose tissue, which is a source of the inhibitory muscle growth factor myostatin. 

 

Figure 3. Physical activity as an immune adjuvant 

Maintaining a physically active lifestyle prevents age-related declines in lymphocyte 2-

adrenergic receptor (2-AR) sensitivity, allowing for the catecholamine-mediated 

redistribution of NK cells and viral-specific T cells (VSTs) between the blood and tissues with 

each bout of physical activity. Lymphocytes and monocytes mobilised in to the blood with 

physical activity can potentially be collected for immune cell therapeutics (e.g. allogeneic 

adoptive transfer immunotherapy). The frequent redistribution of NK cells and VSTs with each 

exercise bout increases immune surveillance, reducing the frequency of latent viral 

reactivation. This in turn reduces the antigenic load placed on the T cell compartment and 

prevents the accumulation of senescent/exhausted T cells whilst also maintaining the number 

and diversity of peripheral naïve T cells. Physical activity can also increase apoptosis of 

senescent/exhausted T cells which increases the production of hematopoietic progenitor 

cells. Maintaining a diverse pool of naïve T-cells with physical activity with advancing age will 

reduce infection risk and increase protection provided from vaccines.  
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Table 1. Changes to immune cell numbers, phenotype and function with age. 

 

Cell type or tissue Effects of ageing on cell 

numbers and phenotype 

Effects of ageing on 

cell functions 

References 

Neutrophil Increased numbers Decreased chemotactic 

accuracy; decreased 

bactericidal properties 

(e.g. phagocytosis , 

ROS and NET 

generation) 

119,120 

Monocyte Increased total numbers; 

increased proportions of 

CD14+ 16++ non-classical 

monocytes; decreased 

proportions of CD14+ 16- 

classical monocytes; 

equivalent levels of TLR2, 

TLR4, TLR5 expression 

Decreased 

phagocytosis, 

efferocytosis, ROS 

generation; increased 

basal production of 

pro- inflammatory 

cytokines; decreased 

cytokine production in 

response to LPS, 

TLR1/TLR2 or TLR7 

stimulation; equivalent 

cytokine production 

following TLR2/TLR6, 

TLR4, and TLR5 

stimulation 

121,122  

NK cell and NKT cells Increased total NK cell 

and NKT cell numbers; 

decreased invariant NKT 

cell numbers; increased 

proportions of CD56Dim 

NK cells; decreased 

expression of CD94, 

KLRG1, NKp46 expression 

on NK cells 

 

Reduced NK cell-

mediated cytotoxicity 

at the single-cell level; 

reduced perforin 

release; equivalent 

levels of NK cell-

mediated antibody-

dependent cell 

cytotoxicity  

123,124 

Dendritic cell Decreased or equivalent 

numbers of plasmacytoid 

DCs and myeloid DCs;  

Reduced phagocytosis; 

reduced recruitment to 

lymphoid organs; 

reduced induction of T 

125,126 
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Equivalent levels of MHC 

II, CD11c and CD123 

expression; equivalent 

levels of TLR7 and TLR9 

expression 

cell proliferation , IFNγ 
and IL-12 secretion 

Thymus Decreased stromal cell 

and thymocyte 

cellularity; decreased 

numbers of double-

positive thymocytes; 

increased adipocyte 

infiltration; decreased 

levels of thymus-

enhancing cytokines (e.g. 

IL-7 and KGF); increased 

levels of thymus-

suppressive cytokines 

(e.g IL6 and TNF)  

Decreased naïve T cell 

output; decreased 

numbers of recent 

thymic emigrants 

127,128  

T cell Decreased CD3+ T cell 

numbers; decreased 

proportions of naive T 

cells, increased 

proportions of memory T 

cells; increased 

proportions of T cells 

with 

senescent/exhausted 

phenotype (CD28-ve, 

CD57+ve,KLRG1+ve, 

PD1+ve); increased 

proportions of regulatory 

T cells 

Decreased T cell 

proliferation; increased 

secretion of pro-

inflammatory 

cytokines; decreased 

CD4+ helper T cell 

activity; decreased 

CD8+ T cell 

cytotoxicity; increased 

Th17 cell polarisation 

38, 46, 129, 130  

Bone marrow Decreased numbers of 

pre-B cells; fewer niches 

for B cell development 

Reduced expression of 

transcription factors 

crucial for B cell 

differentiation (e.g. 

E47); reduced 

secretion of IL-17 by 

stromal cells; 

decreased B cell 

lymphopoiesis 

131,132 

B cell Decreased total B cell 

numbers; decreased 

proportions of naive B 

cells and regulatory B 

cells, increased 

Reduced antibody 

production, clonal 

diversity and lower 

antibody affinity; lower 

IL-10 secretion by 

regulatory B cells  

39,47 
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proportions of memory B 

cells 

 

Abbreviations: ROS, Reactive oxygen species; NET, neutrophil extracellular trap; TLR, Toll-like receptor; LPS, 

lipopolysaccharide; TNF, tumour-necrosis factor; KLRG1, killer cell lectin-like receptor subfamily G member 1; 

NKp46, natural killer cell p46-related protein; KGF, keratinocyte growth factor;  
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Glossary terms 
 

Healthy life expectancy. 

Life expectancy is the predicted total number of years an individual  

is likely to live and the proportion of life that will be spent in good health is termed healthy  

life expectancy or healthspan. 
 

Sarcopenia.  

Sarcopenia refers to a condition of low muscle mass and function (strength) and  

commonly occurs with age or chronic illness. The European Working Group on Sarcopenia in  

Older People has defined low muscle mass as >2 standard deviations from the mean value 

 for young adults and low strength as a walking speed of less than 0.8m/s and hand grip 

 strength of <30 kg in males, <20 kg in females. 
 

M1 and M2-like macrophages.  

‘M1’ and ‘M2’ are classifications historically used to define macrophages activated in vitro as 

pro-inflammatory (when ‘classically’ activated with IFN and LPS) or anti-inflammatory (when 

‘alternatively’ activated with IL-4 or IL-10), respectively. However, in vivo macrophages are 

highly specialized, transcriptomically dynamic and extremely heterogeneous with regards to 

their phenotypes and functions, which are continuously shaped by their tissue 

microenvironment.  Therefore, the M1 or M2 classification is too simplistic to explain the 

true nature of in vivo macrophages, although these terms are still often used to indicate 

whether the macrophages in question are more pro- or anti-inflammatory. 

Biological mechanisms driving ageing. 

The biological mechanisms driving the ageing process in many species have been proposed 

to consist of various responses to cell and organelle damage. They include the accumulation 

of senescent cells, altered nutrient sensing, reduced mitochondrial fitness and stem cell 

function. Inflammation is one of the key downstream mediators as senescent cells release 

pro-inflammatory cytokines. 

Senescence-associated secretory phenotype (SASP). 

Senescent cells are classically proliferatively quiescent but highly active metabolically. They 

have a rich secretory output termed the SASP, which contains pro-inflammatory cytokines 

and chemokines, matrix metalloproteinases and growth factors such as VEGF. The SASP is 

thought to be a key mediator of the ageing process. 

Inflammageing. 

Inflammageing describes the two to four fold increase in systemic levels of inflammatory 

cytokines (e.g. TNF, IL-1β and IL-6) and reduced levels of anti-inflammatory cytokines (e.g. 

IL-10) seen with advanced age. The degree of inflammageing is associated with increased 

risk of a range of age-related diseases including cardiovascular disease, osteoporosis, cancer 

and dementia. 

VO2max.  

VO₂ max is the maximum rate of oxygen consumption measured during incremental 
exercise. The value is a measure of an individual’s cardiorespiratory fitness as it represents 

the maximum rate at which the heart, lungs and muscles can use oxygen during exercise.  
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