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Abstract 

Plasmon-assisted transformations of organic compounds represent a novel opportunity for 

conversion of light to chemical energy at room temperature. However, the mechanistic insights of 

interaction between plasmon energy and organic molecules is still under debate. Herein, we 

proposed a comprehensive study of the plasmon-assisted reaction mechanism using unsymmetric 

iodonium salts (ISs) as an organic probe. The experimental and theoretical analysis allow to 

exclude the possible thermal effect or hot electron transfer. We found that plasmon interaction 

with unsymmetrical ISs led to the intramolecular excitation of electron followed by the 

regioselective cleavage of C–I bond with the formation of electron-rich radical species, which 

cannot be explained by the hot electron excitation or thermal effects. The high regioselectivity is 

explained by the direct excitation of electron to LUMO with the formation of dissociative excited 

state according to quantum-chemical modeling, which provide a novel opportunities to the fine 

control of reactivity using plasmon energy. 
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The plasmon can be considered as one the most groundbreaking approach for the 

activation of organic reactions.1-8 Nowadays, plasmon activation has been widely applied 

for the Pd-catalyzed cross-coupling reactions,9-11 hydrogenation,12-15 cycloaddition,16,17 

oxidative reactions,18-20 polymerization,21-23 methane reforming,24 and so forth, whereby 

the utilization of plasmon allows achieving good yield of desired compounds under 

extremely mild conditions. Nevertheless, despite these impressive advances, the exact 

mechanism of plasmon activation of organic compounds has not been fully described 

yet.3,25,26 Hence, a vivid discussion is currently on-going regarding the critical question: 

how does the energy of plasmon induce the excitation of molecule to the transition state?27-

31 As a result, three main hypotheses have been proposed: (1) reaction acceleration through 
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plasmonic heating, (Figure 1A);32-34 (2) transfer of a hot electron to the organic molecule, 

followed by the formation and relaxation of the excited state (Figure 1B); and (3) 

intramolecular excitation of an electron to the LUMO orbitals via the decay of the optically 

excited surface plasmon (SP) (Figure 1B).28,35,36  

The all proposed mechanisms have been probed by theoretical and experimental studies 

in a range of (organic) transformations, but the final point in these discussions have not 

been set. One possible key issue into understanding the mechanism of plasmon-induced 

organic reactions involves analyzing their regioselectivity, which may act as a reporter of 

the reaction path of the interaction of the plasmon with the organic molecule. According to 

the published results, both the plasmonic heating and the hot electron transfer should lead 

to the formation of similar products, in contrast to the intramolecular. The modern studies 

have been mainly dedicated to the chemoselectivity problem, especially in the 

hydrogenation of acetylene,12,13,15,37 oxidation of benzylic alcohol19 and reduction of nitro-

compounds.38 The regioselectivity has been studied poorly, with only a handful of 

contributions dedicated to these issues, such as the regioselective cleavage of the C–O bond 

in the SN2 reaction.36 However, the regioselectivity study is able to provide a deeper insight 

into the mechanism issues from the chemistry point of view and predict new possible 

pathways for plasmon-induced transformations. 

Recently we reported the plasmon-induced modification of thin gold films by symmetric 

iodonium salts (ISs).39 Obviously, in the case of symmetric IS, the regioselectivity of 

homolytic decomposition is not an issue. However, the application of unsymmetrical ISs 

for the surface modification deserves more attention due to the lower price and versatile 

synthetic procedures.40-43 In general, the selectivity of C–I bond cleavage, especially 
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homolytic, can be considered as the highly challenging issue in the chemistry of ISs. 44,45 

The homolytic decomposition of unsymmetrical ISs often leads to the formation of product 

mixtures with extremely low selectivity,46-49 as seen in the application of unsymmetrical 

ISs for the modification of carbon surfaces.39,43,50,51 Nevertheless, improved selectivity 

towards the formation of radicals of the electron-rich aryl substituents has been observed 

in the SET-reactions, such as in the metal-free coupling of ISs.52-54 Thus, the evaluation of 

regioselectivity issues has a great demand from the plasmon-assisted reactions mechanisms 

as well as from the common reactivity point of view. 

 

Figure 1. Proposed mechanisms for plasmon-assisted reactions: (A) plasmonic heating; (B) 

transfer of hot carrier to the organic molecule followed by the formation and relaxation of 

excited state; (C) intramolecular excitation of electron. 

 

In this contribution, we perform in-depth study of plasmon-driven regioselective homolysis 

of C–I bond in the unsymmetrical ISs using the surface modification of gold-coated optic fibers 
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and quantum-chemical calculations (Scheme 1). Moreover, we demonstrate the extraordinary 

regioselectivity of C–I bond homolysis under plasmon excitation leading to the selective transfer 

of the more electron-rich aryl radical to the surface, which opens up new opportunities for the 

design of functional materials. 

 

Scheme 1 Utilization of unsymmetrical ISs 1–5 as an organic probe for plasmon-induced 

reactions. 

 

In order to study the reactivity of the ISs, the series of salts 1–5 was prepared containing the 

electron-poor 3-(trifluoromethyl)phenyl and the electron-rich moieties (Scheme 1, 1–4) and (4-

nitrophenyl)(3-(trifluoromethyl)phenyl)iodonium triflate 5 containing two electron-withdrawing 

substituents according to published procedure.55-57 These precursors were then subjected by the 

plasmon-assisted homolyses using LED irradiation with λ=595 nm (corresponded to the maximum 

of the plasmon resonance peak of fiber – Figure S1D) using the gold-coated optical fiber, where 

the plasmon has been excited by the light passing through the fiber in order to prevent the direct 

interaction of ISs with photons (Scheme 1).39,58 The gold-coated fibers were immersed in the 

solution of ISs 1–5 (3 mM in water/methanol (2:1)) and the surface modification progress was 
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monitored by the shift of the SPR maximum (Figure S3–S7). It should be also noted that the 

reaction with ISs without light did not lead to the formation of an organic layers on the surface 

(SI) (Figure S2), which is in a good agreement with previously published data.39 Similarly, LED 

illumination/irradiation at λ=405 nm did not result in any changes in surface properties (Figure 

S9). So, reaction take place only under plasmon activation of ISs. In the next step we performed 

the estimation of the surface grafting time using the saturation of plasmon absorption band shift 

for different IS as a function of substituent. Surprisingly, the time required for the full saturation 

of available surface sites for the modification was found to be independent of the type of ISs. Thus, 

full coverage was completed after 120 minutes (saturation of the SPR shift) with the formation of 

homogenous organic close-to-monomolecular layer (according to AFM measurements, Figure 

S8).  

The chemical composition of layers has been studied by SEM-EDX, XPS, Raman spectroscopy 

and AFM (detailed assignation is provided in Figure S1–S9). According to the common views on 

the thermal mechanism (Figure 1A), we expected the formation of mixed layers containing both 

aryl groups – electron-rich and electron poor as in conventional heating.40,50 Surprisingly, for the 

ISs 1–4, we did not observe the presence of the CF3 groups in the XPS and Raman spectra (Figure 

S3–S8). On the Raman spectra of gold fiber modified by ISs 1–4 we did not observe high intensity 

peaks in the region 1100–1300 cm-1, indicating the absence of CF3 groups (Table S1). However, 

we found Raman peaks, which can be assigned to the electron-donating part of ISs (Figure S3A–

S7A, Table S1). For instance, on the Raman spectra of fiber with grafted IS-1, there are 

characteristic vibrations of methylphenyl groups at: 816, 968, 1467 cm-1 (Ar C-H), 1564, 1431, 504, 

586, 484 (Ar C-C).  
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The observed effects are able to sufficiently improve the applicability of ISs for the 

modification and introduction of reactive groups to the surface because the introduction of reactive 

amino-groups have not been possible via iodonium chemistry due to unavailability of substrates. 

Such unusual reactivity of ISs can be explained by the effects of plasmon on the reaction path. 

Mentioned above concepts about plasmon interaction with organic molecules consume the initial 

excitation of electrons to LUMO orbital (intrinsic (Figure 1C) or hot electrons (Figure 1B)) or the 

simple plasmonic heating (Figure1A).  

In order to exclude the heating effects on the C–I bond homolysis, we performed a range of 

control experiments. Firstly, for the rough estimation of reaction temperature, we tracked the 

temperature of gold-coated fiber during the plasmon-induced grafting of IS-1. As have been 

reported previously, the plasmon excitation is able to promote the local heating, which can affect 

on the reaction pathway.59 Thermovision measurements revealed the increase of the fiber 

temperature by ~1 °C after 2 hours of irradiation (Figure S10 A,B), ruling out the possible thermal 

IS-1 decomposition during irradiation of the sample during plasmon excitation (see Fig. S10 and 

related discussion). An additional control involved the simple heating of IS-1 solution in the 

presence of the plasmonic fiber at 40 °C (i.e. some 10° C above the temperature reached during 

the irradiation) for 3 hours, without any noticeable changes in XPS and Raman spectra. Only 

increase of temperature to 60°C resulted in spectral changes: the XPS analysis as well as Raman 

spectroscopy revealed the formation of mixed layers containing close-to-equal content of (3-

(trifluoromethyl)phenyl and 4-methylphenyl) groups (Figure S10). Thus, the simple plasmon 

heating cannot explain the regioselectivity of C–I bond homolysis. Due to this reason, we applied 

the quantum-chemical modelling for the explanation of the observed regioselectivity. 
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In contrast, the homolysis of the IS-5 under plasmon led to the formation of mixed layers 

containing both the 3-CF3- and 4-NO2-groups (Figure 2, Figure S7). This fact was confirmed by 

the appearance of strong Raman peaks of nitro group at 1312 and 768 cm-1 and CF3 groups – 1081, 

1150, 1265 cm-1. Moreover, we observed the partial reduction of the NO2 groups to the NH2 

moieties, presumably via the well-known plasmon-assisted process (appearance of peaks at 1050 

and 1592 cm-1 and N–H component of N1s XPS signal at 400 eV)60.  

 

Figure 2. (A) SERS spectra of gold-coated fiber before and after decomposition and grafting 

of IS-1, IS-5 after irradiation; XPS spectra: C1 region of (B) pristine gold fiber, (C) 

decomposition of IS-1 after irradiation, (D) decomposition of IS-5 after irradiation, (E) F1s 

region of gold fiber before and after decomposition of IS-1, IS-5 after irradiation. 

 

Initially, we carried out the modelling of three possible pathways for the homolysis of C–I 

bonds in the ISs 1–5. As expected, the enthalpy of activation for the homolysis of both C–I bonds 

are similar (see section 9.1 in SI). Thus, we analyzed the effect of plasmon on the organic molecule 
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in frame of the aforementioned hypothesizes. First model includes the excitation of hot electron to 

the ISs with the formation of neutral radical specie in D1 state (143 kcal/mol) (Figure 3A). The 

relaxation of D1 state led to the formation of dissociative D0 state (3.9 kcal/mol), which 

spontaneously decomposed to the appropriate 3-(trifluoromethyl)phenyl radical and 4-iodotoluene 

(see section 9.2 in SI). Thus, according to the calculation results, the reaction pathway based on 

the excitation of hot electrons and the formation of neutral radical did not correlate with the 

observed reaction regioselectivity. 

 

Figure 3. (A, B) Quantum-chemical evaluation of plasmon-assisted homolysis of C–I bonds 

in IS-1. (C) Plausible mechanism. 
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Next, we carried out the TDDFT-calculation of the process depicted in Figure 3B involving the 

intramolecular excitation of an electron from LUMO to HOMO through the decay of SP, as has 

been proved by Kim.28 The excitation of electron led to the formation of positively charged excited 

state S1, which has been found to be dissociative (according to Figure 3). Moreover, the cleavage 

of C–I bond in this case proceeded with the homolysis of C–I bond located on electron-rich aryl 

groups (86 kcal/mol). This tendency has been observed in all range of ISs bearing electron-

donating aryl groups (see section 9.3 in SI and related discussion). Contrariwise, the 

decomposition of iodonium cation 5 led to the formation of both radicals (3-

(trifluoromethyl)phenyl and 4-nitrophenyl) with perfect fit with experimental data, where the 

formation of mixed layer have been observed (Figure 2). Noteworthy, that decomposition of IS-5 

via excitation by hot electrons led to the formation of 3-(trifluoromethyl)phenyl radical with high 

regioselectivity, which does not fit to the experimental data. 

Thus, the results of theoretical and experimental investigations proved that the plasmon is able 

to change the reaction pathway and regioselectivity of C–I bond cleavage in the unsymmetrical 

ISs. Moreover, the proposed reaction can be considered as a one more example of selective organic 

transformations proceeding through the direct excitation of electron from HOMO to LUMO with 

the formation of dissociative excited state.61,62 We believe, that the observed effects are able to 

sufficiently explore the border of plasmon application in organic synthesis and provide the deeper 

insight to the mechanism of interaction between plasmon and organic compounds.  

 

Associated content 
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The following files are available free of charge. 

Characterization of pristine gold-coated fiber (Figure S1). Control experiment without light 

(Figure S2). Plasmon induced grafting of ISs 1–5 (Figure S3–S7). Assignation of SERS peaks. 

Characterization of surface by AFM analysis (Figure S8). Control experiment with alternative 

wavelength (Figure S9). Control experiment with thermal induced grafting of IS-1 (Figure S10). 

Description of the samples preparation and measurement techniques. Description of the procedure 

for obtaining of ISs 1–5. Calculation details and geometry of ISs 1–5 (S1, S2, D0) and 

decomposition pathways. Thermal decomposition of IS-1. 
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