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Purpose: Increasing evidence suggests radiomics features extracted from computed tomography

(CT) images may be useful in prognostic models for patients with nonsmall cell lung cancer

(NSCLC). This study was designed to determine whether such features can be reproducibly obtained

from cone-beam CT (CBCT) images taken using medical Linac onboard-imaging systems in order to

track them through treatment.

Methods: Test-retest CBCT images of ten patients previously enrolled in a clinical trial were

retrospectively obtained and used to determine the concordance correlation coefficient (CCC) for

68 different texture features. The volume dependence of each feature was also measured using the

Spearman rank correlation coefficient. Features with a high reproducibility (CCC> 0.9) that were not

due to volume dependence in the patient test-retest set were further examined for their sensitivity

to differences in imaging protocol, level of scatter, and amount of motion by using two phantoms.

The first phantom was a texture phantom composed of rectangular cartridges to represent different

textures. Features were measured from two cartridges, shredded rubber and dense cork, in this

study. The texture phantom was scanned with 19 different CBCT imagers to establish the features’

interscanner variability. The effect of scatter on these features was studied by surrounding the same

texture phantom with scattering material (rice and solid water). The effect of respiratory motion on

these features was studied using a dynamic-motion thoracic phantom and a specially designed tumor

texture insert of the shredded rubber material. The differences between scans acquired with different

Linacs and protocols, varying amounts of scatter, and with different levels of motion were compared

to the mean intrapatient difference from the test-retest image set.

Results: Of the original 68 features, 37 had a CCC >0.9 that was not due to volume dependence.

When the Linac manufacturer and imaging protocol were kept consistent, 4–13 of these 37 features
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passed our criteria for reproducibility more than 50% of the time, depending on the manufacturer-

protocol combination. Almost all of the features changed substantially when scatter material was

added around the phantom. For the dense cork, 23 features passed in the thoracic scans and 11 features

passed in the head scans when the differences between one and two layers of scatter were compared.

Using the same test for the shredded rubber, five features passed the thoracic scans and eight features

passed the head scans. Motion substantially impacted the reproducibility of the features. With 4 mm

of motion, 12 features from the entire volume and 14 features from the center slice measurements

were reproducible. With 6–8 mm of motion, three features (Laplacian of Gaussian filtered kurtosis,

gray-level nonuniformity, and entropy), from the entire volume and seven features (coarseness, high

gray-level run emphasis, gray-level nonuniformity, sum-average, information measure correlation,

scaled mean, and entropy) from the center-slice measurements were considered reproducible.

Conclusions: Some radiomics features are robust to the noise and poor image quality of CBCT

images when the imaging protocol is consistent, relative changes in the features are used, and patients

are limited to those with less than 1 cm of motion. C 2015 American Association of Physicists in

Medicine. [http://dx.doi.org/10.1118/1.4934826]
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1. INTRODUCTION

Lung cancer is the leading cause of all cancer deaths in the

United States.1 Nonsmall cell lung cancer (NSCLC) accounts

for approximately 85% of all newly diagnosed lung cancer

cases.1,2 The high mortality rate has prompted numerous

research studies to identify patient-specific prognostic factors

with the goal of individualizing treatment.3–5 Models built

using radiomics features, or imaging features, are one novel

approach for identifying patients with the highest risk for dis-

ease progression, poor survival, or other clinical outcomes.6–12

Radiomics features are extracted from the region-of-interest

(ROI) in an image in order to assign a quantitative value to that

ROI. Data mining and machine learning techniques are then

used to build models and capture valuable insights from those

imaging features. In the context of tumor analysis, univariate

or multivariate models using these features have typically been

built to diagnose lesions,13–15 identify secondary effects,16 or

predict outcome.6,12

Recent publications have demonstrated that a wide vari-

ety of radiomics features may predict NSCLC patient out-

comes when extracted from computed tomography (CT),6,12,17

contrast-enhanced CT,18,19 or positron emission tomography

(PET)20–22 images. However, no studies have yet examined

whether there is a potential for imaging features extracted from

cone-beam CT (CBCT) images to be useful. Unlike CT or PET

images, which are used for diagnosis and treatment planning,

CBCT images are generally used to check patient positioning

before radiation treatment and accordingly are acquired using

low imaging doses. The resulting images include substantially

more scatter than diagnostic CT images because of the flat-

panel detector design. Additionally, the CBCT scan time is

relatively long, up to 1 min, which increases the probability

of motion artifacts. Despite these limitations on CBCT image

quality, these images are often acquired before every fraction

of treatment or at least weekly and as a result could provide

a source for tracking patient imaging feature changes during

the course of treatment. This is important because changes in

imaging features could become a timely biomarker for early

detection of tumor response.

Reproducibility of radiomics features extracted from

CBCT images must be investigated first so that the models

built from these features can be consistently and reliably

applied to different institutions and cohorts. The purpose of

this study was to identify the impact of different imaging

protocols, levels of scatter, and amounts of motion on imaging

features extracted from CBCT images. Only after the effects

of these parameters are characterized and understood can

guidelines for the use of texture features in CBCT be

developed, and the feasibility of tracking features through

treatment established.

2. METHODS

2.A. Patient test-retest CBCT images

CBCT images were acquired from patients who were part

of a previous IRB-approved clinical trial.23 Inclusion criteria

for the trial were diagnosis of a stage II–IIIb NSCLC tumor,

Karnofsky performance score >70 or ECOG score 0–1, and

suitability for treatment with concurrent chemoradiation. Ex-

clusion criteria were small cell tumor histology, prior radiation

to the treatment field, pregnancy, and the presence of implanted

devices that prohibited radiation treatment. We retrospectively

searched the imaging history for each of the patients included

in the clinical trial for repeat CBCT images. From this search,

only ten patients were found who had two sets of CBCT images

obtained within 15 min of each other using the same imager.

Patient characteristics are tabulated in Table I.

All CBCT patient images were acquired using the thoracic

imaging protocol on a Varian Linac: peak tube voltage of

110 kVp, tube current of 20 mA, and exposure time (total

pulsed beam-on time) of 7–14 s. Images were reconstructed

as a 512×512 grid with pixel dimensions of 0.8 and 2.5 mm

slice thickness. For each of these ten patients, we deformably

transferred the GTV contour from the treatment plan to their
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T I. Characteristics of the ten patients whose images were used in this

study.

Characteristics

Number of

patients

Percent of patients

(%)

n, number of patients 10 NA

Median age (range) 65.5 (49–80) NA

Median GTV volume (range) (cm3) 77.5 (17–315) NA

Gender

Male 3 30

Female 7 70

Tumor stage

II 1 10

III 9 90

Tumor histology

Squamous cell carcinoma 2 20

Adenocarcinoma/other 8 80

two CBCT image sets using our in-house deformation im-

age registration software, CT-assisted targeting.24,25 The im-

ages and contours were imported into our biomarker soft-

ware (details below) to extract the values for the imaging

features.

The concordance correlation coefficient (CCC) was calcu-

lated for each feature using this test-retest image set. Features

whose CCC <0.9 were not considered reproducible and were

excluded from the rest of our analysis.26,27 This test removed

features that were not reproducible even when measured in

images obtained from the same patient within 15 min using

the same imager. The cutoff value of 0.9 was chosen based

on the recommended criteria of McBride that considered a

correlation of 0.9 to reflect moderate strength-of-agreement

and all correlations <0.9 to be poor. The Spearman correlation

coefficient (rs) was also calculated between each feature and

the ROI volume. The Spearman coefficient was calculated for

the test and retest image volumes individually. Any feature

with rs >0.85 in both image sets was excluded from the rest

of our analysis in order to remove features whose CCC was

high only because of that feature’s strong correlation with

volume.28,29 The cutoff value of 0.85 is within the range of

values of that has been cited in the literature as representative

of strong correlations such as Zou et al.28 who considered any

rs > 0.8 to be strongly correlated and Mukaka29 who inter-

preted only rs > 0.9 to have very high correlations. Because

the purpose of this step was to reduce the likelihood of false

positives in the following experiments where each feature was

independently examined for its reproducibility under different

conditions and not to establish an explicit volume dependence,

we selected a relatively high cutoff to remove only the most

egregious relationships.

For the remaining features, the mean intrapatient test-retest

differences were calculated with Eq. (1). These values were

used as benchmarks for reproducibility in our subsequent

phantom studies. This criterion was used because we expected

a phantom to change substantially less from scan to scan than

a patient. In Eq. (1), Npats is the number of patients and xn, t and

xn,r are the nth patient’s test and retest values, respectively,

Mean intrapatient difference=

Npats


n=1

|(xn, t− xn,r)|

Npats

. (1)

2.B. Texture phantom

The Credence Cartridge Radiomics phantom was used to

evaluate the impact of different scanners, protocols, scatter

levels, and amounts of motion on texture values extracted

from CBCT images, Fig. 1. This phantom was designed at

our institution specifically for investigating the reproduc-

ibility of texture features.30 The phantom is a hollow,

acrylic, rectangular prism. Inside are cartridges of 10.1×10.1

× 3.2 cm3 made of different materials: wood, dense cork,

regular cork, shredded rubber, acrylic, and resin. The phantom

also contains four 3D printed cartridges with tessellated

hexagons of different sizes. A previous analysis of the

phantom imaging characteristics conducted at our institution

using CT scans demonstrated that the texture values extracted

from the shredded rubber and dense cork cartridges were

closest to values obtained from patients.30 For this reason,

only these two materials were used in this analysis. A ROI of

6.0×6.0×2.0 cm3 was positioned at the center of these two

materials for feature extraction in each image, Fig. 1. This

size was used because it was close to the median size of the

patient GTV volumes (77.5 cm3) and to avoid including the

edges of the phantom in the ROI.

2.C. Texture features and preprocessing

For this study, a comprehensive set of 68 texture features

was initially selected (Table II). Features were selected to

cover the diverse range of features that have been used

in previous texture feature studies using CT images of

NSCLC.6–8,10,11,13–15,17,31,32 The features were all calculated

using the open-source Imaging Biomarker EXplorer ()

software, which is available for download at http://bit.ly/

IBEX_MDAnderson.33 Selected features included first-order

descriptors from the intensity histogram (Hist); second-

order features to describe spatial relationships in gray level

intensities from the co-occurrence matrix (COM),17,34 run-

length matrix (RLM),35 and neighborhood gray-tone differ-

ence matrix (NGTDM);36 and Laplacian of Gaussian (LoG)

filtered features, which can highlight tumor characteristics

not visible in the original image.6,31 In subsequent tables

and figures, features are named for the feature category

and then the feature name (e.g., contrast from the COM

is listed as COMcontrast). Features with longer names are

abbreviated with the abbreviations listed in Table II (e.g., long

run emphasis from the RLM is listed as RLMlre). Specific

parameters for the calculation of each feature in  are

included in the supplementary material.37

The patient ROIs were preprocessed with a thresholding

step to exclude air, bones, and normal lung tissue. Values

less than −150 HU or greater than 200 HU were excluded

for the patient images. For the motion phantom, a lower

threshold of −700 HU was used to ensure none of the
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F. 1. (A) The texture phantom used in this study and [(B)–(D)] CBCT images of the phantom with the ROIs used. Only the (B) shredded rubber and (C) dense

cork cartridges were used for the current analysis.

surrounding lung-equivalent material was included in the ROI.

Thresholds were not used for the texture phantom ROIs in

order to ensure that all of the voxels within the ROI would be

included.

All the images were also rescaled to 8-bit images before

calculating the COM, RLM, and NGTDM features; this was

done to reduce the effect of noise on the texture features and

prevent sparsely populated matrices from being produced.

The Hist features were calculated both with and without

8-bit rescaling. The LoG features were calculated without

the rescaling step because the Gaussian filter already acts to

smooth the images and reduce noise. The LoG features were

calculated at two different scales: a fine filter (fineFilt) with a

window size of 5 and sigma of 1 and a medium filter (medFilt)

with a window size of 7 and sigma of 1.5.

2.D. Effect of scanners

During the course of treatment, a patient may receive some

of his or her dose fractions on a different Linac than the

one used for the first fraction, and thus the daily or weekly

CBCT images would be from separate machines. Addition-

ally, images from different patients that are accumulated for a

radiomics study are likely to come from different imagers. To

determine whether these differences have an influence on the

resulting texture values, we imaged the texture phantom with

the CBCT imagers on 19 Linacs, including nine Elekta Linacs

and ten Varian Linacs. Two scans were acquired per machine:

one with the default head protocol and one with the default

thoracic protocol for that machine. The standard image recon-

struction was used for all scans. The characteristics of these

Linacs and scans are described in Table III. Each scan was

classified as a Varian head scan (V -head), Varian thorax scan

(V -thorax), Elekta head scan (E-head), or Elekta thorax scan

(E-thorax). For each texture feature, the absolute difference

between values measured from every possible pair of scanners

was calculated. These differences were then categorized by

the types of scans being compared (e.g., V -thorax scan vs

E-head). The differences were compared individually to the

mean intrapatient difference for each feature. If the difference

between two scans was less than the mean intrapatient differ-

ence, the comparison passed and the feature was considered

reproducible between those two scans. The mean intrapatient

difference was used as the criteria, because it was assumed that

the phantom would demonstrate substantially less variation

than the patients when scanned under different conditions.

The overall percentage of passing scans for each comparison

category was recorded. A high percentage of passing scans

Medical Physics, Vol. 42, No. 12, December 2015
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T II. Texture features that were used in this analysis. Abbreviated versions of the feature names are listed in parentheses next to their corresponding feature.

Histogram Co-occurrence matrix Run length matrix

Neighborhood

difference matrix LoG filtered features

(Without rescaling) Autocorrelation (autoCorr) Gray-level nonuniformity (glnuN) Busyness (Fine filter)

Max Cluster-prominence (clusProm) High gray-level run emphasis (hglre) Coarseness Entropy

Mean Cluster-shade (clusShade) Long run emphasis (lre) Complexity Mean

Median Cluster-tendency (clusTend) Long run high gray-level emphasis

(lrhgle)

Contrast Standard deviation (std)

Entropy Contrast Long run low gray-level emphasis

(lrlgle)

Uniformity (unif)

Energy Correlation (corr) Low gray-level run emphasis (lglre) Kurtosis (kurt)

Standard deviation

(std)

Difference-entropy (diffEnt) Run length nonuniformity (rlnuN) Skewness (skew)

Uniformity (unif) Dissimilarity (dissim) Run percentage (runPerc)

Kurtosis (kurt) Energy Short run emphasis (sre)

Skewness (skew) Entropy Short run high gray-level emphasis

(srhgle)

Variance

(With rescaling) Homogeneity (homog) (Medium filter)

Max Homogeneity2 (homog2) Entropy

Mean Information measure correlation (infoMC) Mean

Median Information measure correlation2 (infoMC2) Standard deviation (std)

Entropy Inverse difference moment norm

(invDiffMN)

Uniformity (unif)

Energy Inverse difference norm (invDiffN) Kurtosis (kurt)

Standard deviation

(std)

Inverse variance (invVar) Skewness (skew)

Uniformity (unif) Max probability (maxProb)

Kurtosis (kurt) Sum average (sumAvg)

Skewness (skew) Sum entropy (sumEnt)

Variance Sum variance (sumVar)

Variance (var)

implies that the feature is reproducible between that subset of

Linacs.

2.E. Effect of scatter

CBCT image quality is largely limited by the amount of

scatter created by the volume being imaged. The impact of

different amounts of scatter from different sized patients on

texture values is unknown. The texture phantom used in this

study is relatively small and does not well approximate the

amount of scatter created by a patient. To determine whether

increased scatter would substantially change texture feature

values, we imaged the texture phantom on its own, then with

one layer (thickness of 2.5–8 cm on each side) of scatter

material (solid water equivalent and sandwich size Ziploc bags

of rice), and then with two layers (thickness of 5–11 cm on

each side) of scatter material, Fig. 2. These three setups were

imaged with both the head and thoracic protocols on a Varian

Linac.

The absolute differences in each of the features for both

protocols with either one layer or two layers of scatter mate-

rial versus no surrounding scatter material and the difference

between one layer of scatter and two layers of scatter were

calculated. The log of the ratio of these differences in phantom

values to the mean intrapatient differences was then calculated

as the metric for this test, Eq. (2). A negative value for the log

of the ratio implies the phantom differences were less than the

mean intrapatient difference and passed while a positive value

implies the phantom differences were larger and thus that the

feature failed,

log10

(

phantom diff

mean intrapatient diff

)

. (2)

2.F. Effect of motion

A third source of uncertainty in texture values obtained

from CBCT images is the effect of motion. Motion has a larger

effect on values measured from CBCT images than conven-

tional CT images because the scans take longer to acquire. To

analyze the effect of this motion, we used a CIRS dynamic-

motion phantom, Fig. 3 (CIRS, VA). This motion phantom has

a width of 30 cm, height of 20 cm, and length of 15 cm. These

thicknesses provide some scatter and were on par with the

overall thicknesses created in Sec. 2.E studying only scatter.

No extra scatter material was added around the phantom.

This anthropomorphic phantom has a rod made of lung-

equivalent material that can be programmed to move cyclically

Medical Physics, Vol. 42, No. 12, December 2015
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T III. Scan characteristics for the phantom CBCT images used in this study.

ID Manufacturer Protocol Image size (pixels) Pixel size (mm) Slice thickness (mm) Tube voltage (kVp) Exposure timea (ms) Tube current (mA)

1 Elekta Head 410 1.0 5.00 120 20 32

2 Elekta Head 410 1.0 3.00 120 20 32

3 Elekta Head 410 1.0 4.00 120 20 32

4 Elekta Head 410 1.0 4.00 120 20 32

5 Elekta Head 410 1.0 5.00 120 20 32

6 Elekta Head 410 1.0 4.00 120 20 32

7 Elekta Head 410 1.0 4.00 120 20 32

8 Elekta Head 410 1.0 2.00 120 40 40

9 Elekta Head 410 1.0 2.00 120 40 40

1 Elekta Thorax 270 1.0 5.00 100 10 10

2 Elekta Thorax 270 1.0 3.00 100 10 10

3 Elekta Thorax 270 1.0 4.00 100 10 10

4 Elekta Thorax 270 1.0 4.00 100 10 10

5 Elekta Thorax 270 1.0 5.00 100 10 10

6 Elekta Thorax 270 1.0 4.00 100 10 10

7 Elekta Thorax 270 1.0 4.00 100 10 10

8 Elekta Thorax 270 1.0 2.00 100 10 10

9 Elekta Thorax 270 1.0 2.00 100 10 10

10 Varian Head 512 0.5 2.50 100 7 300 20

11 Varian Head 512 0.5 2.50 100 7 480 20

12 Varian Head 384 0.7 2.50 100 7 160 20

13 Varian Head 512 0.5 2.50 100 7 460 20

14 Varian Head 512 0.5 2.50 100 7 560 20

15 Varian Head 512 0.5 2.50 100 7 300 20

16 Varian Head 512 0.5 2.50 110 13 180 20

17 Varian Head 512 0.5 1.98 100 7 470 20

18 Varian Head 512 0.5 1.98 100 7 350 20

19 Varian Head 512 0.5 1.98 100 7 350 20

10 Varian Thorax 512 0.9 2.50 110 13 160 20

11 Varian Thorax 512 0.9 2.50 110 13 480 20

12 Varian Thorax 384 1.2 2.50 110 12 900 20

13 Varian Thorax 512 0.9 2.50 110 13 600 20

14 Varian Thorax 512 0.9 2.50 110 13 660 20

15 Varian Thorax 512 0.9 2.50 110 12 980 20

16 Varian Thorax 512 0.9 2.50 110 13 180 20

17 Varian Thorax 512 0.9 1.98 125 13 395 20

18 Varian Thorax 512 0.9 1.98 125 13 275 20

19 Varian Thorax 512 0.9 1.98 125 13 275 20

aFor Elekta machines, the exposure time represents the pulse length, for Varian machines, the exposure time represents the full beam-on time.

with different respiratory rates through the phantom lungs.

This rod has a cavity designed for the placement of different

tumor-equivalent or dose measurement inserts. For our anal-

ysis, we created a block of the shredded rubber material that

had the size and shape of this cavity (height of 4.5 cm and

diameter of 4.1 cm). Then the phantom was programmed to

move the rod using a 1 −2cos4(t) waveform with peak-to-peak

amplitudes of either 0, 2, 4, 6, 8, 10, 15, 20, or 25 mm. This

waveform has been shown to be representative of respiratory

motion.38,39 A new CBCT scan was acquired using the same

thoracic protocol on a Varian Linac for each programmed

motion.

A 3D ROI encapsulating the shredded rubber material was

delineated manually on the images of the phantom acquired

with no motion. This ROI was copied to the images with

motion. Texture values were then calculated for each image

set. Equation (2) was used to determine at which amplitude of

motion features ceased being reproducible. Here, the absolute

difference between the texture value measured from images

with motion and the values measured without motion was

calculated and used as the phantom difference values in the

numerator of Eq. (2). The values were compared to the mean

intrapatient difference values, and as before, negative values

implied passing, while positive values implied failing. This

test was repeated using only the center slice of the motion

phantom’s original 3D ROI. The values from only the cen-

ter slice were expected to be more reproducible because the

average density change in the center of the image is less than

at the edges, especially as the tumor motion increases. This

test was done to determine if texture features could be reliably

measured from tumors with large motion if the edges were

excluded.

Medical Physics, Vol. 42, No. 12, December 2015
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F. 2. To measure the effect of scatter, the texture phantom was imaged with and without surrounding scatter material.

3. RESULTS

3.A. Patient test-retest CBCT images

In the first part of this study, we examined whether any

features should be excluded because they were not reproduc-

ible even when measured from two images of the same patient

acquired on the same scanner within 15 min. Of the original

68 features, 23 had a CCC <0.9 and were excluded from

further analysis (Table IV). Of the remaining 45 features, eight

were excluded because the absolute value of their rs with

volume was greater than 0.85 for both the test and retest image

sets, and thus might only be reproducible because they are

volume-dependent (Table IV). Thus, a total of 37 features

remained for the subsequent analyses. These included five

features from the histogram without eight-bit scaling, five

features from the histogram with eight-bit scaling, 16 features

from the COM, eight features from the RLM, one feature from

the NGTDM, and two features filtered with the LoGMedFilt.

F. 3. (A) Setup for taking CBCT images of the CIRS dynamic-motion phantom with the shredded rubber insert in place. (B) An axial slice of the CBCT scan

of the phantom with the insert visible and (C) a zoomed-in coronal slice of the insert with the largest motion of 25 mm.

Medical Physics, Vol. 42, No. 12, December 2015
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T IV. The results of the CCC and rs tests for the patient test-retest data.

Feature CCC VolDepA VolDepB Feature CCC VolDepA VolDepB

HistEnergy 0.992 1.000 0.988 aCOMinvvar 0.984 0.709 0.673
aHistEntropy 0.926 0.624 0.539 COMmaxProb 0.531 −0.091 −0.103
aHistMax 0.908 0.689 0.693 aCOMsumAvg 0.965 0.782 0.903

HistMean 0.980 0.891 0.915 aCOMsumEnt 0.903 0.491 0.503
aHistMedian 0.982 0.782 0.903 aCOMsumVar 0.980 0.745 0.745
aHistStd 0.963 0.370 0.467 aCOMvar 0.981 0.491 0.406

HistUnif 0.784 −0.624 −0.588 aRLMglnuN 0.900 −0.758 −0.697

HistKurt 0.697 −0.176 0.200 aRLMhglre 0.982 0.842 0.915
aHistSkew 0.967 −0.661 −0.721 aRLMlre 0.988 0.891 0.842

ScaledHistEnergy 0.992 1.000 0.988 RLMlrhgle 0.990 0.939 0.939

ScaledHistEntropy 0.885 0.430 0.467 aRLMlrlgle 0.977 0.782 0.600
aScaledHistMax 0.909 0.830 0.834 aRLMlglre 0.981 −0.830 −0.915
aScaledHistMean 0.980 0.842 0.915 aRLMrlnuN 0.986 −0.830 −0.891
aScaledHistMedian 0.965 0.841 0.902 RLMrunPerc 0.991 −0.867 −0.891
aScaledHistStd 0.963 0.358 0.467 aRLMsre 0.984 −0.818 −0.891

ScaledHistUnif 0.866 −0.394 −0.503 aRLMsrhgle 0.968 0.358 0.358

ScaledHistKurt 0.728 −0.115 0.164 RLMsrlgle 0.986 −0.964 −0.964
aScaledHistSkew 0.967 −0.661 −0.721 NGTDMbusyness 0.609 −0.933 −0.933
aCOMautoCorr 0.977 0.867 0.818 aNGTDMcoarseness 0.943 0.750 0.667
aCOMclusProm 0.992 0.479 0.430 NGTDMcomplexity 0.764 0.433 0.317
aCOMclusShade 0.940 −0.370 −0.358 NGTDMcontrast 0.838 −0.867 −0.867
aCOMclusTend 0.981 0.491 0.406 NGTDMtexstrength 0.765 −0.950 −0.950
aCOMcontrast 0.978 −0.673 −0.636 FineFiltEntropy 0.859 0.150 0.300

COMcorr 0.966 0.939 0.903 FineFiltMean 0.774 −0.583 −0.567
aCOMdiffEnt 0.976 −0.673 −0.564 FineFiltStd 0.703 −0.667 −0.583
aCOMdissim 0.977 −0.733 −0.624 FineFiltUnif 0.736 −0.033 −0.217

COMenergy 0.671 0.042 −0.127 FIneFiltKurt 0.788 0.867 0.883

COMentropy 0.874 0.115 0.297 FineFiltSkew 0.602 0.850 0.917
aCOMhomog 0.980 0.733 0.733 MedFiltEntropy 0.815 0.190 0.167
aCOMhomog2 0.983 0.733 0.733 aMedFiltMean 0.969 −0.857 −0.690
aCOMinfoMC 0.944 −0.770 −0.624 MedFiltStd 0.118 −0.548 −0.405
aCOMinfoMC2 0.933 0.842 0.818 MedFiltUnif 0.780 −0.095 −0.238

COMinvDiffMN 0.885 0.939 0.952 aMedFiltKurt 0.932 0.833 0.786

COMinvDiffN 0.936 0.952 0.964 MedFiltSkew 0.895 0.810 0.762

aIndicates features that have passed all three of these initial tests and were used in the rest of the analysis.

3.B. Effect of different scanners

In the second part of this study, we examined whether

changing the scanner or protocol resulted in changes in the

texture features that were larger than the mean intrapatient

difference. Features that changed less than the mean intrap-

atient difference passed a comparison and the overall passing

percentages were recorded for each scanner/protocol combi-

nation. The results of the interscanner analysis for each feature

are shown in Table V for the shredded rubber cartridge and

in the supplementary material for the dense cork cartridge.37

Features were most likely to be reproducible when scans using

the same protocol and the same manufacturer were compared.

This result is highlighted in Fig. 4, where the results for entropy

measured from the histogram are shown as an illustrative

example.

For shredded rubber, when the same protocol and manu-

facturer were used, three features had a passing percentage

of 100%, the average across all features was 31%, and

three features had a 0% passing percentage. When scans

from the same manufacturer but different protocols were

compared, the highest passing percentage was 90%, the

average was only 19%, and 23 features had a 0% passing

percentage. When scans from different manufacturers were

compared, the highest passing percentage was only 36%, the

average was less than 1%, and 36 features had a 0% passing

percentage.

For dense cork, the results were slightly better for each

category and one feature, clustershade from the co-occurrence

matrix, had a 100% passing percentage for every category.

When the same protocol and manufacturer were used, six

features had a passing percentage of 100%, the average across

all features was 43%, and two features had a 0% passing per-

centage. When scans from the same manufacturer but different

protocols were compared, four features had a passing percent-

age of 100%, the average was 26%, and 13 features had a 0%

passing percentage. When scans from different manufacturers

were compared, two features had a passing percentage of

100%, the average was 10%, and 33 features had a 0% passing

percentage.
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T V. Results of the interscanner variability test for the shredded rubber ROI. When categories from different manufacturers (E =Elekta and V =Varian)

were compared, essentially no comparisons passed the mean intrapatient difference threshold. When both the manufacturer and protocol were the same, many

of the features had a passing rate above 50%.

Feature

E-head

vs

E-head

E-head

vs

E-thorax

E-head

vs

V -head

E-head

vs

V -thorax

E-thorax

vs

E-thorax

E-thorax

vs

V -head

E-thorax

vs

V -thorax

V -head

vs

V -head

V -head

vs

V -thorax

V -thorax

vs

V -thorax

HistEntropy (%) 55.6 44.4 0.0 0.0 38.9 0.0 0.0 84.4 0.0 80.0

HistMax (%) 2.8 0.0 0.0 0.0 5.6 3.3 3.3 13.3 0.0 11.1

HistMedian (%) 16.7 0.0 0.0 0.0 11.1 0.0 0.0 8.9 10.0 8.9

HistStd (%) 44.4 33.3 0.0 0.0 22.2 0.0 0.0 20.0 0.0 28.9

HistSkew (%) 83.3 49.4 0.0 21.1 50.0 0.0 6.7 80.0 39.0 51.1

ScaledHistMax (%) 0.0 0.0 0.0 0.0 5.6 1.1 3.3 11.1 0.0 4.4

ScaledHistMean (%) 16.7 0.0 0.0 0.0 13.9 0.0 0.0 8.9 8.0 11.1

ScaledHistMedian (%) 27.8 0.0 0.0 0.0 11.1 0.0 0.0 17.8 10.0 20.0

ScaledHistStd (%) 44.4 33.3 0.0 0.0 22.2 0.0 0.0 17.8 0.0 28.9

ScaledHistSkew (%) 83.3 53.1 0.0 21.1 50.0 0.0 6.7 80.0 43.0 53.3

COMautoCorr (%) 8.3 4.9 0.0 0.0 2.8 0.0 0.0 2.2 0.0 0.0

COMclusProm (%) 44.4 38.3 0.0 0.0 25.0 0.0 0.0 2.2 0.0 4.4

COMclusShade (%) 100.0 90.1 0.0 10.0 72.2 0.0 4.4 4.4 0.0 31.1

COMclusTend (%) 44.4 37.0 0.0 0.0 19.4 0.0 0.0 15.6 0.0 13.3

COMcontrast (%) 47.2 32.1 0.0 0.0 16.7 0.0 0.0 4.4 5.0 11.1

COMdiffEnt (%) 16.7 18.5 0.0 0.0 11.1 0.0 0.0 20.0 17.0 42.2

COMdissim (%) 30.6 23.5 0.0 0.0 13.9 0.0 0.0 4.4 9.0 24.4

COMhomog (%) 16.7 16.1 0.0 0.0 11.1 0.0 0.0 28.9 25.0 42.2

COMhomog2 (%) 13.9 13.6 0.0 0.0 11.1 0.0 0.0 31.1 26.0 51.1

COMinfoMC (%) 58.3 55.6 0.0 0.0 38.9 0.0 0.0 35.6 9.0 84.4

COMinfoMC2 (%) 77.8 69.1 35.6 0.0 61.1 31.1 0.0 35.6 6.0 57.8

COMinvVar (%) 16.7 12.4 0.0 0.0 11.1 0.0 0.0 26.7 24.0 44.4

COMsumAvg (%) 19.4 12.4 0.0 0.0 2.8 0.0 0.0 13.3 0.0 6.7

COMsumEnt (%) 47.2 38.3 0.0 0.0 27.8 0.0 0.0 71.1 0.0 64.4

COMsumVar (%) 8.3 4.9 0.0 0.0 2.8 0.0 0.0 4.4 0.0 0.0

COMvar (%) 44.4 37.0 0.0 0.0 19.4 0.0 0.0 15.6 0.0 13.3

RLMglnuN (%) 61.1 49.4 0.0 0.0 44.4 0.0 0.0 100.0 0.0 91.1

RLMhglre (%) 22.2 0.0 0.0 0.0 11.1 0.0 0.0 11.1 10.0 13.3

RLMlre (%) 13.9 12.4 0.0 0.0 11.1 0.0 0.0 48.9 60.0 84.4

RLMlrlgle (%) 16.7 0.0 0.0 0.0 11.1 23.3 16.7 37.8 25.0 20.0

RLMlglre (%) 5.6 0.0 0.0 0.0 16.7 0.0 0.0 8.9 13.0 6.7

RLMrlnuN (%) 22.2 16.1 0.0 0.0 13.9 0.0 0.0 35.6 40.0 51.1

RLMsre (%) 16.7 14.8 0.0 0.0 11.1 0.0 0.0 44.4 54.0 73.3

RLMsrhgle (%) 13.9 0.0 0.0 0.0 2.8 0.0 0.0 11.1 6.0 8.9

NGTDMcoarseness (%) 36.1 27.2 0.0 0.0 22.2 0.0 0.0 86.7 56.0 100.0

MedFiltMean (%) 47.2 39.5 0.0 0.0 25.0 0.0 0.0 26.7 0.0 37.8

MedFiltKurt (%) 36.1 11.1 15.6 12.2 16.7 1.1 16.7 91.1 0.0 75.6

Features with a passing

rate >50%

7 4 0 0 4 0 0 7 3 13

3.C. Effect of scatter

In the third part of this study, we examined whether adding

scatter material created changes in the texture features that

were larger than the mean intrapatient difference. Features

that changed less than the mean intrapatient difference passed

the comparison. Results from the comparisons of features

calculated with and without scatter material are in Fig. 5. For

the dense cork cartridge imaged with the thoracic protocol, 25

of the 37 features were reproducible with one layer of scatter

material. When a second layer of scatter material was added,

16 features were still reproducible. However, for the shredded

rubber cartridge imaged with the thoracic protocol, only four

features were reproducible (regardless of the amount of scatter

material added).

For the head protocol, only ten features from dense cork and

11 features from shredded rubber were reproducible with one

layer of scatter material. These features were not consistent,

and only four appeared in both groups. With two layers of

scatter material, the number of reproducible features from

dense cork dropped to 4, while the number of reproducible

features from shredded rubber remained at 11, 9 of which

were the same as before. The most reproducible feature was

skewness from the histogram.

The differences between one and two layers of scatter were

smaller than the patient test-retest differences for 23 of the
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F. 4. The absolute differences between pairs of scans were plotted by the types of groups being compared. Scans from machines of different manufacturers

had the largest absolute differences which were above our criteria of the mean intrapatient difference (the horizontal green line).

features measured from the thoracic scan of dense cork and

11 for the head scan of dense cork. For the thoracic scan of

shredded rubber, only five features passed and for the head

scan of shredded rubber only eight features passed.

3.D. Effect of motion

In the fourth part of this study, we examined whether adding

motion produced changes in the texture features that were

larger than the mean intrapatient difference. Features that

changed less than the mean intrapatient difference passed this

comparison. The number of features that were reproducible

decreased with increasing motion amplitude, Fig. 5. Three

features: LoG filtered kurtosis, gray-level nonuniformity from

the RLM, and entropy from the histogram, were reproducible

for motions of 6–8 mm when measured from the entire volume.

At 4 mm of motion, 12 of the 37 features were reproducible

for the entire volume. When only the center image slice was

used for feature calculation, seven features were reproducible

for up to 6–10 mm of motion. The most consistent features

measured from only the center slice were coarseness from

the NGTDM, high gray-level run emphasis and gray-level

nonuniformity from the RLM, sum-average and information

measure correlation from the COM, and scaled mean and

entropy from the histogram. At 4 mm of motion, 14 of the 37

features were reproducible for the center slice measurements.

4. DISCUSSION

4.A. Patient test-retest

The goal of this study was to determine whether any texture

feature can be reproducibly measured from CBCT images so

that features could be tracked periodically through treatment.

In order to investigate this question, we initially considered a

large number of features. Two tests were used to eliminate fea-

tures that were not reproducible in a patient test-retest dataset

or that were only reproducible due to their volume dependence.

Features that were not reproducible even for the same patient

on the same machine are extremely unlikely to be useful in

future models and could lead to erroneous results. Features

that are volume dependent will appear to be reproducible

especially in patient datasets where the volume range is large.

However, because volume is already known to be prognostic

and is easy to extract from patient images without the rigor

of a texture analysis, volume-dependent features would not

add meaningful information to future models and could have

led to misleading results in this investigative study. Approx-

imately half the features initially considered passed both of

these qualifying tests. Interestingly, at least one feature from

every feature category was successful in passing these tests.

The large number and wide variety of features that passed

offer preliminary support for the possibility of texture anal-

ysis in CBCT images. This relatively high pass rate occurred

despite the strict criteria for reproducibility (CCC ≥ 0.9). We

deliberately adopted very strict and conservative cutoffs here

in order to minimize the possibility of false-positives in this

analysis. Many of the excluded features had CCC values in

the 0.75–0.89 range representing medium reproducibility and

thus we may have excluded features that could potentially be

useful in the future.

In order to determine the effects of scanner, scatter, and

motion on this reproducibility, phantom measurements were

compared to the mean intrapatient difference for each feature.

This choice of threshold is one limitation of our study since it

is partly arbitrary, and may not accurately reflect the amount

of variability in a texture that would significantly influence

an eventual prognostic model. However, because the purpose

of this paper was only to introduce the magnitudes of vari-

ability that are created by changes in scanner, motion, and

scatter, we feel that our choice of threshold is justified. Fur-

thermore, by using the mean of the differences measured from

patient test-retest data rather than the maximum, it is more

likely that our choice of threshold is overly conservative than

lenient.

Another limitation of this part of the analysis was the small

number of patients with available repeat images. A larger

patient dataset may have increased the variability we saw in
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F. 5. Results for the scatter [(A) and (B)] and motion tests [(C) and (D)]. Negative values imply smaller differences in the phantom measurements than in

the patient test-retest values and thus a “pass.” Positive values imply that the phantom difference was larger than the mean intrapatient difference and thus a

“fail.” For the scatter graphs, comparisons are described by protocol (head or thorax) and the amount of surrounding scatter material. For the motion graphs,

comparisons are between different peak-to-peak amplitudes of motion (2–25 mm) and no motion.

patient test-retest values which in turn may have increased the

number of features that passed each test.

4.B. Interscanner analysis

The results of our interscanner analysis strongly indi-

cated that texture values obtained from different imaging

protocols or different Linac manufacturers should not be

compared. This is a useful result for anyone considering

extracting texture features from CBCT images in order to

produce a model. The Elekta values may have differed from

the Varian values because of manufacturer differences in

Hounsfield unit scaling. CBCT pixel values tend to be less

accurate than the pixels in regular CT images because CBCT

images are not used for dose calculation. Thus, differences

between manufacturers in HU mapping from CBCT images

could play a role in the observed differences seen between

scans of the same phantom.

The interscanner analysis also revealed that more fea-

tures were likely to pass when measured from the dense

cork cartridge than the shredded rubber cartridge. This is

likely because the dense cork cartridge is physically more

uniform than the shredded rubber cartridge. For the same scan,

the dense cork standard deviation was typically one-half to
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one-third the value of the shredded rubber standard deviation.

Thus, even when magnitude shifts or varying levels of noise

are introduced by using a different scanner or protocol, the

dense cork cartridge individual voxels are less varied than

those of the shredded rubber cartridge. The patients’ standard

deviations fell within the range of both cartridges so the

values from the shredded rubber cartridge can be assumed to

approximate the variability in a patient with heterogeneous

texture while the dense cork cartridge may approximate a

patient with homogenous texture.

Some features were not reproducible even when both the

manufacturer and protocol were kept consistent. These fea-

tures may be overpowered by the noise in the image making

them essentially random. This is probably the reason why

features such as the maximum value from the histogram failed

each comparison. In other cases, such as low gray-level run

emphasis from the RLM, the texture values from the patient

and phantom images are essentially always zero because the

feature searches for specific patterns that do not exist in images

of tumors (such as straight lines).

This analysis also demonstrated that reproducible features

could come from any of the feature categories, e.g., skewness

from the histogram, cluster shade from the co-occurrence

matrix, normalized gray level nonuniformity from the run

length matrix, and the mean after LoG filtration. This

broad spectrum of reproducible features is helpful, because

features from different categories may provide independent

information about an image and when combined, may be

able to provide a more complete picture than one feature

alone.

4.C. Effect of scatter

When the texture phantom was surrounded by scatter mate-

rial, most of the texture values changed more than the mean of

the patient test-retest differences. This result was not surpris-

ing, as we know that more surrounding material will result in

more scatter and thus a larger amount of noise in the image

as well as artifacts from beam hardening and cupping. The

differences between 1 layer and 2 layers of scatter material

were also in general larger than the mean intrapatient differ-

ence. This is a problem because it suggests that two patients

with physiologically alike tumors (i.e., similar levels of hetero-

geneity) could have very different values for their computed

textures if the patients are dissimilar in size. The impact of

this problem may be limited because texture features measured

from CBCT images would only be used to observe how the

features change for a single patient over time. For that analysis,

the relative difference in a texture value could be measured for

each patient. The change in the amount of scatter would likely

be substantially less than shown here if each patient acted as

his or her own control. A recent study investigating c-arm

CBCT demonstrated that relative changes in mean Hounsfield

units were consistent when measured within patients.40 Thus,

it is possible that relative changes in texture may still be used

for future prognostic models despite the effect of changes in

scatter levels on the absolute value measured from any one

patient.

4.D. Effect of motion

Most of the features changed substantially with increasing

motion of the tumor texture insert. The main reason for this

result was hypothesized to be the slices of the ROI at the edge

of the texture insert, where the density changes were greatest.

This hypothesis was supported by our data for many of the

features which did not significantly change with small motion

if only the center slice was used for their calculation.

While a majority of features was no longer reproducible

beyond 2 mm of motion when the entire tumor volume was

used, 12 of the 37 features did still pass at 4 mm of motion

and 4 of these even passed at 6 mm of motion. The number of

reproducible features dropped to zero at 10 mm when the entire

tumor volume was used and to 1 when only the center slice

was used. Therefore, we recommend a threshold of at most

10 mm and potentially as low as 5 mm for future studies. This

threshold is not unduly restrictive since a recent study showed

a majority of patients with NSCLC had tumor motion less than

5 mm and only 10% had motion greater than 10 mm.41 Thus,

we think a future study limited to patients with little motion

and selecting only these most reproducible features for further

investigation would be feasible. Additionally, either 4D CBCT

or breath-hold CBCT could be used to mitigate tumor motion

in future studies and may be more successful than shrinking

the tumor contour.

Several features, when measured from the center slice,

were reproducible at large motions while not being repro-

ducible at smaller motions. For example, sumEntropy from

the co-occurrence matrix was reproducible with 2–4 mm and

20–25 mm but not with 6–15 mm of motion. This inconsis-

tency suggests that at large motions the feature may be return-

ing reproducible values by coincidence or because of artifacts.

Thus, we would not consider this feature reproducible beyond

4 mm.

It should also be noted that while the motion phantom

was larger than the texture phantom (32 vs 10 cm diameter),

it is still smaller than many patients. Thus, in a clinically

realistic scenario the effects of motion and additional scat-

ter would be combined and may further reduce the number

of features or the range of motion that could be considered

reproducible.

4.E. Overall best performing features

From our results, it appears that select features are repro-

ducible under certain circumstances. Several of these repro-

ducible features have been found useful in studies using CT

or contrast-enhanced CT images. One study found skewness,

which we showed to be robust to scatter, may aid in iden-

tifying tumors with genetic mutations10 while another study

demonstrated it was prognostic for overall survival.42 LoG

filtered kurtosis was useful for identifying tumors with ge-

netic mutations10 and we showed it was robust to scatter and

motion. Gray-level nonuniformity from the run-length matrix

was the feature we tested that was most robust to the effects

of motion and it has been shown to be useful for predict-

ing survival in NSCLC (Ref. 17) and differentiating between
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benign and malignant lymph nodes.14 Cluster shade from the

co-occurrence matrix was able to pass all of the scatter tests for

the dense cork material, and recently was shown to be useful

for prognosis when used in a radiomics signature of three

features for NSCLC patients.8 These links are encouraging

but an independent study will still be needed to determine

if models built on CBCT features alone can be prognostic.

However, it should be clear that the features which did change

more dramatically when measured from a phantom than the

calculated mean intrapatient differences in our study are un-

likely to be useful in future analyses using CBCT images

of NSCLC unless the patient cohort was highly restricted to

patients exhibiting low intrascan variability (e.g., negligible

tumor motion and minimal weight change).

5. CONCLUSION

The goal of this study was to determine if texture features

could be reliably extracted from CBCT images under a variety

of conditions. A total of 68 features was originally consid-

ered. However, 31 of these features were excluded from our

analysis because they did not have a high CCC value when

measured from a test-retest dataset or had a strong volume

dependence that might be responsible for their high CCC. The

remaining 37 features included at least one feature from each

feature category that had been studied. These features were

then investigated for susceptibilities to differences in scan-

ners, imaging protocols, scatter, and motion. Features changed

significantly if they were calculated from images acquired with

different protocols or with scanners from different manufac-

turers. Future studies should attempt to keep their imaging

protocols as uniform as possible to avoid this source of error.

Almost every feature changed more than the mean intrapatient

difference with the addition of scatter. Thus, values of features

may not be comparable between patients of different sizes

while remaining insensitive to small changes in size of each

individual patient. Finally, no feature can be reliably measured

if the tumor motion is greater than 1 cm. For motion less than

1 cm, reproducibility is improved if the edges of the tumor are

excluded from the ROI for texture calculation. In summary,

certain texture features can be reliably measured from CBCT

images as long as the imaging protocol is consistent, relative

differences are used, and patients are limited to those with less

than 1 cm of tumor motion.
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