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Recently it has been understood that certain soft factorization theorems for scattering amplitudes can be
written as Ward identities of new asymptotic symmetries. This relationship has been established for soft
particles with spins s > 0, most notably for soft gravitons and photons. Here we study the remaining case of
soft scalars. We show that a class of Yukawa-type theories, where a massless scalar couples to massive
particles, have an infinite number of conserved charges. This raises the question as to whether one can
associate asymptotic symmetries to scalars.
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I. INTRODUCTION

Recently there has been a renewed interest in soft
theorems [1–35] for scattering amplitudes and their
relation to asymptotic symmetries [36–45], see [46] for
a review. First studies that sparked this activity where in
the context of gauge and gravity theories [47–50]. It was
argued that factorization of an amplitude when one
of the momenta becomes soft can be thought of as a
consequence of Ward identities for a new set of sym-
metries acting on asymptotic fields. In the case of gauge
theory, this symmetry is generated by large gauge trans-
formations that do not decay at null infinity [47,49]. In the
case of gravity, they are the Bondi–van der Burg–Metzner–
Sachs supertranslations [36,37].
Soon after, the ideas were extended in multiple direc-

tions, including higher dimensions [51,52], subleading soft
theorems [53–59], massive particles [60–62], and other
theories [63–66]. For gauge and gravity theories, the soft
particle in the soft theorems are of spin-1 (photon) and spin-
2 (graviton). In [63] and [64,65] the analysis was gener-
alized to the case where the soft particles have spin-1=2
(photino) and spin-3=2 (gravitino) respectively. An analysis
for higher spins was given in [66]. Here, we would like to
complete this list by studying the case of a spin-0 (scalar)
soft particle.
There are two main motivations for this work. First, there

is a large number of theories for which soft theorems have
been studied [1–35]. It is however not clear to what extent

a relation to new asymptotic conserved charges can be
identified in all these cases. It is then natural to try to map
the space of theories for which this identification can be
made. We believe this will bring us closer to understanding
the nature of asymptotic symmetries in general. Our second
motivation comes from a Minkowski holography approach
[67,68] that has received fresh attention [69,70] after the
soft theorem/asymptotic symmetry developments. The
potential use of this approach for scattering amplitudes
is being explored in the simpler setting of scalar fields
[70,71]. We hope that an asymptotic symmetry description
of scalar soft theorems could be of help in this program.
In this paper we study a number of field theories where a

massless scalar field φ couples to a massive field ψ through
a Yukawa-type interaction,

Lint ∼ φψ2: ð1:1Þ

This provides the simplest example where a soft theorem
can be associated to an asymptotic charge. Cubic φ3

interactions in four dimensions are in conflict with the
asymptotic expansion at null infinity [72] and are therefore
excluded in our analysis. See also [73] for a different—and
phenomenologically more relevant—model where soft
scalars lead to asymptotic charges.
For concreteness the field ψ will be taken to be either a

scalar or a Dirac field, but other fields can be treated
similarly. In the theory (1.1), the tree-level amplitude of
n hard particles of either type, and one soft φ scalar
factorizes as

Anþ1ðp1;…; pn;qÞ ∝
X
i∈ψ

1

pi · q
Anðp1;…; pnÞ þ…;

ð1:2Þ
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with a proportionality factor that depends on the spin
of ψ . Hard particles have momenta pi, and the soft one
has momentum q. The dots denote subleading terms in q.
Following the by now standard procedure [47], one can

recast (1.2) in the form of a Ward identity,

Q−
q̂ S ¼ SQþ

q̂ ; ð1:3Þ

for appropriately defined charges Q�
q̂ parametrized by the

soft momentum direction q̂. The situation is completely
analogous to Ward identities associated to similar soft
theorems arising in other theories. There is however a
qualitative difference in theories where the spin of the
soft particle is greater or equal than one: In those cases
the charges are associated to large local symmetries.
Specifically, the spin-1 soft theorem is associated to gauge
symmetries, the spin-2 theorem to diffeomorphisms, and
the spin-3=2 theorem to local supersymmetry. The spin
zero and one-half cases fall in a different category and
do not appear to be associated to any underlying local
symmetry.
Even in the absence of local symmetry, the soft theorem

(1.2) still predicts the existence of conserved charges. Why
are they conserved? What is the underlying symmetry? In
this paper we take the first steps toward answering these
questions.
Our analysis will be restricted to tree-level amplitudes.

The inclusion of loops would require us to regard (1.1) as a
part of a larger theory where the field φ remains massless at
quantum level. One possibility could be to realize φ as a
“dilaton” (the Nambu-Goldstone boson of spontaneously
broken scale symmetry [74,75]), which is known to satisfy
the soft theorem (1.2) [12].
The organization of the paper is as follows. In Sec. II we

describe the soft scalar theorem of interest and rewrite it as
in Eq. (1.3). In Sec. III we express the charges in terms of
the asymptotic fields and establish their conservation as
a consequence of the field equations (assuming regular
fall-off conditions). In Sec. IV we take first steps towards
unraveling the symmetries underlaying the charges: We
compute their action on asymptotic fields and realize the
charges in terms of a spacetime current. We also point out
several conceptual difficulties which are similar to ones
encountered in “magnetic” charges associated to spin 1 and
2 soft theorems. We conclude in Sec. V with a summary of
results and open questions. Some calculations and side
comments are left to Appendices.
Conventions: We use mostly plus signature spacetime

metric. The normalization of Fock operators is such that
½aðp⃗Þ; a†ðp⃗0Þ� ¼ ð2πÞ3ð2EpÞδ3ðp⃗ − p⃗0Þ. We use the fol-
lowing convention for various tensor indices: a; b;… for
spacetime abstract indices; μ; ν;… for cartesian Minkowski
indices; α; β;… for the (space or time-like) 3-hyperboloid
and A; B;… for the 2-sphere.

II. SPIN ZERO SOFT THEOREM AS
A WARD IDENTITY

Consider first the case where the massive field ψ is a
scalar. The coupling with the massless φ is given by the
interaction Lagrangian

Lint ¼
g
2
φψ2: ð2:1Þ

A “soft theorem” for this theory may be established along
the same lines as the photon or graviton case. One
concludes that the tree-level amplitude of n particles of
either type and one soft φ-particle factorizes as (see
Appendix A for the derivation):

Anþ1ðp1;…; pn;ωqÞ ¼ω→0 g
2ω

X
i∈ψ

1

pi · q

×Anðp1;…; pnÞ þOðω0Þ: ð2:2Þ

Following Strominger et al., it is possible to reexpress (2.2)
in a Ward identity form (1.3). If aðp⃗Þ and bðp⃗Þ are the Fock
operators associated to φ and ψ respectively, the appro-
priate charge is

Qq̂ ≔ lim
ω→0

ω

2
ðaðωq̂Þ þ a†ðωq̂ÞÞ − g

2

Z fdpb†ðp⃗Þbðp⃗Þ
p · q

ð2:3Þ

where fdp≡ d3p⃗
ð2πÞ32Ep

and

qμ ¼ ð1; q̂Þ ð2:4Þ

is the future-pointing null vector associated to the direction
q̂. To simplify notation we are omitting� superscripts. The
charges Q�

q̂ , acting on the “out” (þ) and “in” (−) Fock
spaces, have both the form (2.3) with the corresponding in/
out Fock operators.
In order to establish the equivalence between the Qq̂

Ward identity and the soft theorem one also needs, as in the
gauge and gravity cases, a relation between incoming and
outgoing soft particles. In the present case the relevant
relation is

lim
ω→0

ωhoutjSa†ðωq̂Þjini ¼ −lim
ω→0

ωhoutjaðωq̂ÞSjini: ð2:5Þ

With these ingredients it is straightforward to show the
desired equivalence,

houtj½Qq̂; S�jini ¼ 0 ⇔ lim
ω→0

ωAnþ1ðp1;…; pn;ωqÞ

¼ g
2

X
i∈ψ

1

pi · q
Anðp1;…; pnÞ: ð2:6Þ
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Following standard nomenclature, we write the charge
(2.3) as

Qq̂ ¼ Qsoft
q̂ þQhard

q̂ ð2:7Þ

where Qsoft
q̂ and Qhard

q̂ are respectively the terms linear and
quadratic in the Fock operators.
Whereas the interest in this paper is in four dimensions,

we note that the above expressions are valid in arbitrary
spacetime dimensions.
Similar analysis can be repeated in Yukawa theory in

four dimensions, where the massive field is of Dirac type.
If we take the interaction Lagrangian as

Lint ¼ gφΨ̄Ψ; ð2:8Þ

the analogous soft theorem takes the form (see
Appendix A)

Anþ1ðp1;…; pn;ωqÞ ¼ω→0 gm
ω

X
i∈fΨ;Ψ̄g

1

pi · q

×Anðp1;…; pnÞ þOðω0Þ ð2:9Þ

where the sum now is over particles and antiparticles of the
Ψ field. The charge whose Ward identity reproduces the
soft theorem is of the form (2.7) with Qsoft

q̂ as before and

Qhard
q̂ ¼ −gm

X
s

Z fdp 1

p · q
ðb†sðp⃗Þbsðp⃗Þ þ d†sðp⃗Þdsðp⃗ÞÞ

ð2:10Þ

where bs (ds) are the Fock operators for particles (anti-
particles) with spin s ¼ �1=2.

III. CONSERVED CHARGES

A. Charges in terms of asymptotic fields

In this section we write the charges Q�
q̂ in terms of

asymptotic future/past fields. In the following discussion
and for the reminder of the paper we restrict attention to
four spacetime dimensions.
The first step is to express the Fock operators in terms of

asymptotic fields. For the massless field φ, this is captured
in the null-infinity limit:

r → ∞ with u ¼ t − r ¼ constant; x̂ ¼ constant:

ð3:1Þ

Assuming that in this limit φðxÞ is given by the free-field
expression

φðxÞ ≈
Z fdpaðp⃗Þeip·x þ c:c: ð3:2Þ

a standard saddle point argument (see e.g., [76]) tells

φðxÞ ¼ φIþðu; x̂Þ=rþ… ð3:3Þ

with

φIþðu; x̂Þ ¼ 1

4πi

Z
∞

0

dE
2π

aðp⃗ ¼ Ex̂Þe−iEu þ c:c: ð3:4Þ

The field φIðu; x̂Þ is to be regarded as a field living on
future null infinity Iþ. From (3.4) it follows that the soft
part of the charge Qþ

q̂ can be written as

Qþsoft
q̂ ¼ −4π

Z
∞

−∞
du∂uφIþðu; q̂Þ ð3:5Þ

¼ 4πðφIþðu ¼ −∞; q̂Þ − φIþðu ¼ þ∞; q̂ÞÞ: ð3:6Þ

For massive fields one needs to consider the time-infinity
limit

t → ∞ with r=t ¼ constant; x̂ ¼ constant: ð3:7Þ
It is convenient to write this limit in terms of hyperbolic
coordinates

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − r2

p
; ρ ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − r2
p ð3:8Þ

as

τ → ∞ with yα ≔ ðρ; x̂Þ ¼ constant: ð3:9Þ
Assuming again an asymptotic free field expression

ψðxÞ ≈
Z fdpbðp⃗Þeip·x þ c:c: ð3:10Þ

ΨðxÞ ≈
X
s

Z fdpðbsðp⃗Þusðp⃗Þeip·x þ d†sðp⃗Þvsðp⃗Þe−ip·xÞ

ð3:11Þ

a standard saddle point argument tells (see e.g., [61]):

ψðxÞ ¼
ffiffiffiffi
m

p
2ð2πτÞ3=2 bðp⃗ ¼ mρx̂Þe−iτm þ c:c:þ… ð3:12Þ

ΨðxÞ ¼
ffiffiffiffi
m

p
2ð2πτÞ3=2

X
s

ðbsðp⃗Þusðp⃗Þe−iτm

þ d†sðp⃗Þvsðp⃗ÞeiτmÞjp⃗¼mρx̂ þ…: ð3:13Þ

where we omitted an unimportant overall phase. Similar to
the gauge and gravity cases, the hard part of the charge will
be given by the “source” for the field φ. The field equations
for φ are
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□φ ¼ −
g
2
ψ2 ð3:14Þ

in the scalar ψ theory and

□φ ¼ −gΨ̄Ψ ð3:15Þ

in the Yukawa theory. The t → ∞ behavior of the massive
fields implies that in both cases the leading term of the
source falls as 1=τ3,1

□φ ¼ jðyÞ
τ3

þ…: ð3:16Þ

In the scalar ψ theory the leading source is given by

jðyÞ ¼ −g
m

4ð2πÞ3 b
†ðp⃗Þbðp⃗Þjp⃗¼mρx̂; ð3:17Þ

whereas in the Yukawa theory

jðyÞ ¼ −2mg
m

4ð2πÞ3
X
s

ðb†sðp⃗Þbsðp⃗Þ

þ d†sðp⃗Þdsðp⃗ÞÞjp⃗¼mρx̂: ð3:18Þ

jðyÞ is to be regarded as a field living on the future time
infinity hyperboloidHþ (see Appendix B 1). We now show
that the chargeQhard

q̂ takes a universal form when written in
terms of jðyÞ.
Let

Yμ ≔
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ρ2
q

; ρx̂

�
ð3:19Þ

be the unit timelike vector defined by yα. Under the change
of variables p⃗ → yα∶ p⃗ ¼ mρx̂ we have

pμ ¼ mYμ;
d3p⃗
Ep

¼ m2d3V ð3:20Þ

with d3V ¼ ffiffiffi
h

p
dρd2x̂ the volume element on Hþ. Using

this and (3.17), (3.18) one finds that the hard charge in
either theory is given by

Qþhard
q̂ ¼

Z
d3V

jðyÞ
Y · q

: ð3:21Þ

We emphasize that (3.21) is valid for both the scalar ψ or
the Yukawa theory. In fact, one of the conclusions one
can draw from this paper is that (3.21) is the form of the
hard charge regardless the spin of the massive particles.

As another example in Appendix A we discuss the soft
theorem for spin 1 massive particles. Most of the remainder
of the paper follows from Eq. (3.5), (3.16) and (3.21) and is
thus insensitive to the nature of the massive particles.
Similar analysis applies to the asymptotic past. In terms

of advanced time v ¼ tþ r, the asymptotic form of φðxÞ
near past null infinity is

φðxÞ ¼ φI−ðv; x̂Þ=rþ… ð3:22Þ

with

φI−ðv; x̂Þ ¼ −
1

4πi

Z
∞

0

dE
2π

aðp⃗ ¼ −Ex̂Þe−iEv þ c:c:

ð3:23Þ

The soft part of Q−
q̂ is then:

Q-soft
q̂ ¼ 4πðφI−ðv ¼ þ∞;−q̂Þ − φI−ðv ¼ −∞;−q̂ÞÞ:

ð3:24Þ

One can similarly obtain Q-hard
q̂ in terms of the asymptotic

fields at past time infinity.

B. Charge conservation

In the previous section we found expressions for the
charges in terms of the asymptotic fields. TheWard identities
discussed in Sec. II tell us these charges are conserved.
The aim of this section is to understand this conservation
from the perspective of the classical field theory.
The strategy is as follows. First, by studying the late-time

field equations one can show that

Qþ
q̂ ¼ 4πφIþðu ¼ −∞; q̂Þ; ð3:25Þ

Q−
q̂ ¼ 4πφI−ðv ¼ þ∞;−q̂Þ: ð3:26Þ

Next, one studies the asymptotic field equations at spatial
infinity to show that

φIþðu ¼ −∞; q̂Þ ¼ φI−ðv ¼ ∞;−q̂Þ ð3:27Þ

from which the classical conservation Qþ
q̂ ¼ Q−

q̂ follows.
Equation (3.27) is the spin zero version of Strominger’s
“matching” condition. The outlined strategy was used in
[77] to treat the analogue problem in electrodynamics.
Theway we link future and past null infinity through spatial
infinity is inspired from [78–80].

1. Field equations at time-infinity

Let us establish (3.25). From Eqs. (2.7) and (3.6) we see
that (3.25) is equivalent to the condition:

1In the scalar ψ case, the dots in (3.16) include terms of the
form e2imτ=τ3, e−2imτ=τ3. In the Yukawa case such terms are
absents and the dots start at Oðτ−4Þ.
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Qþhard
q̂ ¼ 4πφIþðu ¼ þ∞; q̂Þ: ð3:28Þ

To show (3.28) we study the field equations in the
asymptotic time-infinity limit. The field equation (3.16)
implies that in this limit

φðxÞ ¼ φHþðyÞ=τ þ… ð3:29Þ

with

ðD2 þ 1ÞφHþ ¼ j: ð3:30Þ

Here D2 is the Laplacian operator on the time-infinity
hyperboloid Hþ (see Appendix B 1). Thus, (3.30) is a
Poisson-type equation on Hþ that determines φHþ for a
given source j. The solution can be given in terms of
appropriate Green’s function,

φHþðyÞ ¼
Z

d3V 0Gðy; y0Þjðy0Þ: ð3:31Þ

As shown in Appendix B 1, the properties of this Green’s
function imply:

lim
ρ→∞

ρφHþðρ; q̂Þ ¼ 1

4π

Z
d3V

jðyÞ
Y · q

ð3:32Þ

¼ 1

4π
Qhard

q̂ : ð3:33Þ

Finally, consistency between the expansions at null (3.3)
and time (3.29) infinities imply the following continuity
condition2:

lim
ρ→∞

ρφHþðρ; x̂Þ ¼ φIþðu ¼ þ∞; x̂Þ; ð3:34Þ

from which (3.28) [and hence (3.25)] follows.
Similar treatment applies to asymptotic past. The ana-

logue of relation (3.28) in this case is:

Q-hard
q̂ ¼ 4πφI−ðv ¼ −∞;−q̂Þ; ð3:35Þ

which together with (3.24) leads to Eq. (3.26).

2. Field equations at spatial infinity

In order to relate the future and past charges we now look
at the field φ near spatial infinity. Hyperbolic coordinates
adapted to this end are

ρ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − t2

p
; τ ≔

tffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − t2

p : ð3:36Þ

The behavior of regular massless scalar at ρ → ∞ is [81],

φðxÞ ¼ φHoðyÞ=ρþ… ð3:37Þ

whereas the massive field ψ falls-off as e−mρ. Thus
asymptotically φ satisfies the free wave equation, which
in turn implies φHoðyÞ satisfies

ðD2 − 1ÞφHo ¼ 0 ð3:38Þ

where D2 is the wave operator in the space-infinity
hyperbolid Ho (see Appendix B 2). Equation (3.38) can
be seen to imply either Oð1=τÞ or Oðln τ=τÞ fall-off at
τ → ∞. The latter however is not consistent with the
assumed behavior at infinity. In fact, a continuity argument
as in Eq. (3.34) tells

lim
τ→∞

τφHoðτ; x̂Þ ¼ φIþðu ¼ −∞; x̂Þ; ð3:39Þ

lim
τ→−∞

− τφHoðτ; x̂Þ ¼ φI−ðv ¼ þ∞; x̂Þ: ð3:40Þ

For future use, let ϕ�ðx̂Þ denote the above asymptotic
values, that is,

φHoðτ; x̂Þ !τ→�∞ ¼ 1

jτjϕ�ðx̂Þ: ð3:41Þ

In Appendix B 1 it is shown these asymptotic values satisfy

ϕ−ðx̂Þ ¼ ϕþð−x̂Þ; ð3:42Þ

as a consequence of the wave equation (3.38). This in turn
implies Eq. (3.27) and hence the charge conservation
Qþ

q̂ ¼ Q−
q̂ .

C. Smeared charges

In analogy to the gauge and gravity cases we now
consider smeared version of the charges,

Qþ½λ� ≔ 1

4π

Z
S2
d2q̂λðq̂ÞQþ

q̂ ; ð3:43Þ

where λðq̂Þ is an arbitrary function on the sphere. Using the
splitting Qþ

q̂ ¼ Qþsoft
q̂ þQþhard

q̂ and Eq. (3.5), (3.21) we
write Qþ½λ� as a sum of soft and hard pieces with

Qþsoft½λ� ¼ −
Z
Iþ

dud2x̂λðx̂Þ∂uφIþðu; x̂Þ; ð3:44Þ

Qþhard½λ� ¼ −
Z
Hþ

d3VΛHþðyÞjðyÞ; ð3:45Þ

where we defined:2See [77] for a discussion in the context of electrodynamics.
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ΛHþðyÞ ≔ −
1

4π

Z
d2q̂

λðq̂Þ
q · Y

: ð3:46Þ

As described in Appendix B 1, definition (3.46) implies
ΛHþ is the function on Hþ that satisfies the Laplace-type
equation

ðD2 þ 1ÞΛHþ ¼ 0 ð3:47Þ

and has the ρ → ∞ behavior ΛHþðρ; x̂Þ ∼ ln ρ
ρ λðx̂Þ.

Equation (3.47) suggests ΛHþ should be interpreted as
the time-infinity asymptotic value of a spacetime field

ΛðxÞ ¼ ΛHþðyÞ=τ þ… ð3:48Þ

that satisfies (asymptotically) the free wave equation
□Λ ¼ 0.3 A simple expression for a spacetime field
satisfying these conditions is obtained by diving Eq. (3.46)
by τ:

ΛðxÞ ≔ −
1

4π

Z
d2q̂

λðq̂Þ
q · x

: ð3:49Þ

Indeed one can verify such expressions satisfies □Λ ¼ 0
and Eq. (3.48) with no subleading terms. We leave for next
section further discussion on this spacetime perspective.
We now go to the spatial infinity description of (3.43).

The spacetime field ΛðxÞ introduced above has a spatial
infinity expansion,

ΛðxÞ ¼ ΛH0ðyÞ=ρþ… ð3:50Þ

with ΛH0 satisfying the wave equation

ðD2 − 1ÞΛH0 ¼ 0: ð3:51Þ

From this perspective, λ arises as the asymptotic value of
ΛH0 on Ho,

ΛH0 ∼τ→∞ ln τ
τ

λðx̂Þ: ð3:52Þ

The structure is analogous to the gauge and gravity cases.
There, the symmetry parameter on Ho (ΛH0ðyÞ in the
present case) satisfies the same differential equation as
the field associated to the unsmeared charge (φHoðyÞ in the
present case). The charge is then written as a Klein-Gordon
symplectic product between the two fields and is thus
conserved. In the present case, this amounts to define the
following conserved charge:

Qτ ¼
Z
τ¼const

dSα
ffiffiffi
h

p
hαβð∂βφHoΛH0 − ∂βΛH0φHoÞ: ð3:53Þ

The integral (3.53) can be evaluated in the τ → ∞ limit by
using the fall-offs (3.41) and (3.52). Doing so one finds:

Qτ¼∞ ¼
Z
S2
d2Vλðx̂Þϕþðx̂Þ; ð3:54Þ

which precisely coincides with the charge (3.43). By taking
the τ → −∞ limit one obtains charge conservation between
the asymptotic past and future smeared charges.

IV. SYMMETRY INTERPRETATION OF
CHARGES?

In the previous sections we expressed the scalar soft
theorem (1.2) as the conservation of certain charges defined
at the asymptotic past and future, Q−½λ� ¼ Qþ½λ�. These
charges are spin zero analogues of the charges associated to
spin 1 and 2 soft theorems, schematically:

Qs¼0 ∼
Z
I
λ∂uϕþ… ð4:1Þ

Qs¼1 ∼
Z
I
DAλ∂uAA þ… ð4:2Þ

Qs¼2 ∼
Z
I
DADBλ∂uCAB þ…; ð4:3Þ

where we are only displaying the soft part of the charges
and ϕ, AA, CAB represent the scalar, photon and graviton
field at null infinity. The analogy between the s ¼ 0 and
s ¼ 1, 2 charges appears to stop when it comes to
symmetries. Expressions (4.2) and (4.3) can be understood
as canonical charges associated to “large” Uð1Þ gauge
symmetries λðx̂Þ and “supertranslation” diffeomorphisms
ξλ ¼ λðx̂Þ∂u respectively, but there is no obvious symmetry
interpretation for (4.1). A related point is the fact that for
s ¼ 1, 2,Qs includes “global” charges: total electric charge
and total linear momentum respectively, whereas there is
no global charge associated to (4.1).
In the spin 1 and 2 cases there are in fact a second class

of charges associated to soft theorems: These are the
“magnetic” versions of (4.2) and (4.3). For instance, in
the s ¼ 1 case it is given by [56,82]

~Qs¼1 ∼
Z
I
ϵABDAλ∂uAB; ð4:4Þ

where ϵAB is the area 2-form on the sphere. These magnetic
charges have a closer analogy with the s ¼ 0 charges in that
they do not include global charges4 and their symmetry3Another possibility leading to (3.47) would be □Λ ¼ 0 with

ΛðxÞ ∼ ln τ=τΛHþðyÞ. However, this option does not seem to
yield any sensible spacetime picture for the smeared charges. 4Unless one allows for magnetic monopoles [82].
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description is subtle. A simple symmetry interpretation of
(4.4) can be given if one works with ‘dual’ variables ~AA

describing the potential of the dual field strength ~Fμν ∼
ϵμνρσFρσ [82,83].5In the scalar case, we do not know of an
alternative description that would make the symmetry
associated to (4.1) transparent. As a first step towards
understanding this symmetry, in subsection IVA we com-
pute the action of the charges on the asymptotic data.
Another aspect of the charges associated to soft theorems

is that they can be written as spatial integrals of total
derivative currents (see e.g., [43]),

ja ¼ ∂bkab ð4:5Þ

where kab is a densitized antisymmetric tensor. For in-
stance, in the electrodynamics case we have kab ¼ ffiffiffi

η
p ΛFab

and kab ¼ ffiffiffi
η

p Λ ~Fab for the electric and magnetic charges
respectively, where ΛðxÞ is the “large gauge” parameter
such that ΛðxÞ → λðx̂Þ at null infinity. In subsection IV B
we describe a current (4.5) that reproduces the charge (4.1).

A. Action of charges on asymptotic fields

From the perspective of the asymptotic future, the
smeared charge Qþ½λ� (3.43) is defined on the space of
asymptotic free fields. One can thus compute its action on
the asymptotic fields by Poisson brackets/commutators. For
the field φ the relevant term is the soft charge (3.44) from
which one finds,

δλφIþðu; x̂Þ ¼ −λðx̂Þ; ð4:6Þ

Thus, asymptotically the field φ transforms by a “shift”

δλφ ¼ −λðx̂Þ=rþ… ð4:7Þ
where the dots denote terms subleading in 1=r.
For the field ψ , it is easier to first study the trans-

formation on the asymptotic Fock operator bðp⃗Þ. The
relevant piece is now the hard charge (3.45) from which
one concludes

δλbðp⃗Þ ¼ −i
g
2m

ΛHþðp⃗=mÞbðp⃗Þ: ð4:8Þ

Given the asymptotic form of ψ in terms of b (3.12), we can
infer the asymptotic action on ψ . We seek an expression
involving only spacetime quantities. Let us interpret ΛHþ in
(4.8) as the τ−1 coefficient of the spacetime field ΛðxÞ
(3.48). The appearance of an i in (4.8) suggests a time-
derivative action on ψ . In order to compensate for the τ−1

term, we are lead to consider the time-derivative vector
field:

Xa ¼ τ∂τ; ð4:9Þ
which is just the dilatation vector field xμ∂μ expressed
in hyperbolic coordinates. With these ingredients one
concludes:

δλψ ¼ g
2m2

ΛXa∂aψ þ… ð4:10Þ
where the dots denote terms subleading in 1=τ.
As stated in the beginning of the section, we do not have

a geometric understanding for the asymptotic transforma-
tion (4.6), (4.10). The transformation for the field φ
suggests a shift transformation analogous to the one
occurring in electromagnetic or gravity cases. The analogy
however fails in describing the “total derivative” nature of
the current (4.5), see Appendix D for details. The appear-
ance of the dilatation vector field in (4.10) suggests a
relation to scale symmetry but we have not been able to
establish any concrete connection.6

Regardless of the interpretation, the above transforma-
tion suffers a basic problem we now describe. If we think of
the future asymptotic data as given by φIþðu; x̂Þ and bðp⃗Þ,
it is in fact not entirely free but must satisfy Eq. (3.28) as
described in Sec. III B 1. This condition is violated by the
transformation (4.6), (4.8), since it changes φIþðu ¼ ∞; x̂Þ
while leaving Qþhard

q̂ unchanged. This problem hints at the
need to include boundary terms in the symplectic product.
We note that similar problem occurs for the magnetic
shifts generated by (4.4), which violates the condition
ϵAB∂AABðu ¼ ∞; x̂Þ ¼ 0 that electromagnetic fields satisfy
in the absence of magnetic monopoles [84].5

B. Spacetime current

Our aim is to find an antisymmetric kab whose current
ja ¼ ∂bkab reproduces the smeared charges of Sec. III C.
Note that this requirement only determines kab asymptoti-
cally but otherwise leaves it arbitrary in the bulk. Below we
provide a kab that has a particularly simple spacetime form.
As in the gauge and gravity case, we seek for a kab that

depends on the massless field φðxÞ and on the “symmetry
parameter” field ΛðxÞ introduced in the previous section.
We will also need a third ingredient, the dilatation vector
field

Xa ¼ xμ∂μ: ð4:11Þ
In terms of φ, Λ and Xa we define kab by7:

kab ¼ ffiffiffi
η

p ðð∇aφΛ −∇aΛφÞXb − ða ↔ bÞÞ: ð4:12Þ
We now show this current reproduces the smeared

charges. Let us start by discussing the charges form the
spatial infinity perspective. Consider the hyperbolic

5We thank Beatrice Bonga, Laurent Freidel and Ali Seraj for
discussions on this point.

6This point could perhaps be clarified in an a setting where φ is
a dilaton field. See the discussion section for further comments.

7An equivalent form is kab ¼ 2
ffiffiffi
η

p ðΛ∇½aφXb� − φ∇½aΛXb�Þ
where we used that ∇½aXb� ¼ 0.
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coordinates ðρ; τ; x̂Þ adapted to spatial infinity. In these
coordinates, the dilation vector field takes the form

Xa ¼ ρ∂ρ: ð4:13Þ

Take a spacetime Cauchy slice Στ that approaches a τ ¼
const slice as ρ → ∞. The integral of ja over Στ is then
given by Z

Στ

dSa∂bkab ¼ lim
ρ→∞

Z
τ¼const

d2x̂kτρ: ð4:14Þ

Using the ρ → ∞ expansion of the fields one finds,

kτρ ¼
ffiffiffi
h

p
hττð∂τφHoΛH0 − ∂τΛH0φHoÞ þOðρ−1Þ: ð4:15Þ

and one recovers the charge Qτ given in Eq. (3.53).
We now discuss the charge from the perspective of

the asymptotic future. Consider a family of Minkowski
time t ¼ constant slices and evaluate the integral of ja in a
t → ∞ limit:

Q∞ ≔ lim
t→∞

Z
t¼const

dSaja: ð4:16Þ

Since ja is built out of both massless and massive fields,
there appears two contributions to (4.16) one associated to
null infinity and the other to time-like infinity [61]. To
study the null infinity contribution we go to retarded ðr; uÞ
coordinates. In these coordinates the dilatation vector field
reads

Xa ¼ r∂r þ u∂u; ð4:17Þ

φ has the expansion (3.3) and ΛðxÞ the expansion (see
Appendix C)

Λðr; u; x̂Þ ¼ ln r
2r

λðx̂Þ − 1

2r
ln j2ujλðx̂Þ þOðr−1−ϵÞ: ð4:18Þ

From these expressions one can evaluate (4.16) in the
t → ∞, u ¼ const limit to obtain the null infinity contri-
bution to the charge:

QIþ ≔ lim
t→∞

Z
dud2x̂∂ukru ð4:19Þ

¼ −
Z

dud2x̂λðx̂Þ∂uφIþðu; x̂Þ; ð4:20Þ

which recovers (3.44). Note that the result is not entirely
obvious since there are potentially logarithmic divergent
terms in (4.19) that either cancel out or integrate to zero.
See Appendix C for details.
The time-like infinity contribution to (4.16) is given by

evaluating the integral in the limit where t → ∞ with

r=t ¼ const. As before, this limit is most conveniently
described in hyperbolic coordinates adapted to time infin-
ity. In this coordinates the dilatation vector field is given by
Eq. (4.9). The timelike infinity contribution is found to be
given by:

QHþ ≔ lim
τ→∞

Z
τ¼const

∂αkτα ð4:21Þ

¼ −
Z
Hþ

∂αð
ffiffiffi
h

p
hαβð∂βφHþΛHþ − ∂βΛHþφHþÞÞ

ð4:22Þ

¼ −
Z
Hþ

d3VΛHþj: ð4:23Þ

The second line follows from the time-infinity fall-offs and
the third line from the field equations at time-infinity.
Expression (4.23) recovers (3.45).8

In this way we see how the current ja ¼ ∂bkab reproduces
the expected charge in the asymptotic future. A similar result
applies to the asymptotic past charge.

V. DISCUSSION

In this work we studied a family of soft factorization
theorems for scalar particles and showed their equivalence
to Ward identities of an infinite number of new asymptotic
charges. We identified the charges in terms of asymptotic
fields and proved their conservation as a consequence of
the field equations. As in other soft theorems, we showed
the charges can be written in terms of a total derivative
current.
The main open question regards the asymptotic sym-

metry interpretation of the charges. As a first step in
answering this question, we computed the action of the
charges on the asymptotic fields. However, we found a
conflict between the resulting transformations and a con-
straint occurring in the asymptotic fields. We hope to
resolve this issue in future work.
An interesting setup where to explore the question of

symmetry interpretation could be to realize the massless
scalar as the dilaton field of spontaneously broken con-
formal symmetry. As shown in [12], the Ward identities of
this broken symmetry imply a soft theorem of the type
studied here.9 It would also be interesting to study the
dilaton subleading soft theorems [12] from the perspective
of asymptotic symmetries.

8One can also get this result by evaluating (4.22) in terms of
the ρ → ∞ asymptotics of φHþ and ΛHþ .

9An analogous derivation of the soft photon theorem is
given in [85,86]. See [33,34] for recent discussions on deriving
soft theorems from Ward identities of spontaneously broken
symmetries.
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APPENDIX A: SOFT SCALAR THEOREMS

In this Appendix we derive the soft theorems discussed
throughout this work. We follow the classic derivation due
to Weinberg [1,87] using a Feynman diagram argument.
For any local theory, an external soft particle can couple to
the remaining ones in two different ways, see. Fig. 1.
Theories considered in this work have a massless field φ

coupled via a three-valent vertex to a massive field.10 In
these cases, the first class of diagrams behaves as Oðq−1Þ,
yielding the leading contribution to the soft factor. Let us
consider in turn theories with different spin of the massive
field.
First, we study the spin-zero case given by the interaction

Lagrangian:

Lint ¼
1

2
gφψ2; ðA1Þ

where ψ is a massive real scalar field. Let us study a tree-
level scattering amplitude with nþ 1 particles, where one
massless scalar with incoming momentum ωq becomes
soft, i.e., w → 0. In this limit, the contribution from
coupling to an external massive particle ψ with incoming
momentum pi is

ig
−i

ðpi þ ωqÞ2 þm2
~Anðp1;…; pi þ ωq;…; pnÞ; ðA2Þ

where the intermediate propagator corresponds to a mas-
sive particle due to the nature of the interaction term (A1).
Here, ~An represents the rest of the amplitude. In the soft
limit, ω → 0, we obtain

g
2ω

1

pi · q
~Anðp1;…; pi;…; pnÞ; ðA3Þ

where now ~An becomes an on-shell amplitude for all
particles except for the soft one. Summing over all
diagrams contributing to this process gives us the soft
factorization:

Anþ1ðp1;…; pn;ωqÞ ¼ω→0 g
2ω

X
i∈ψ

1

pi · q

×Anðp1;…; pnÞ þOð1Þ; ðA4Þ

where the sum proceeds over all external massive particles
ψ , and the subleading terms come from diagrams of
different topology.
Having outlined a general strategy, we can now general-

ize to a spin-half case. We study Dirac fermions in four
dimensions coupled to the massless scalar via Yukawa
interaction,

Lint ¼ gφΨ̄Ψ: ðA5Þ

A contribution from an incoming particle Ψ becomes

~Anðp1;…; pi þ ωq;…; pnÞig
−ið−pi − ω=qþmÞ
ðpi þ ωqÞ2 þm2

usiðp⃗iÞ:

ðA6Þ

In the soft limit ω → 0 we find:

~Anðp1;…; pi;…; pnÞ
g
2ω

−pi þm
pi · q

usiðp⃗iÞ: ðA7Þ

We now use the spinor identities,

X
s0
us0 ðp⃗iÞūs0 ðp⃗iÞ ¼ −pi þm;

ūs0 ðp⃗iÞusiðp⃗iÞ ¼ 2mδs0si ; ðA8Þ

to obtain the soft contribution:

FIG. 1. Two topologies contributing in the soft limit. Wavy line
denotes the soft particle, while straight lines denote the hard ones.
All momenta are incoming. Only the left topology contributes to
the leading soft behavior.

10Note that we do not have to make any assumptions about
self-interactions of the massive field, and we allow self-
interactions of the massless field φ starting at quartic order.
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gm
ω

1

pi · q
~Anðp1;…; pi;…; pnÞusiðp⃗iÞ; ðA9Þ

where the spinor usiðp⃗iÞ is now decorating the particle
which used to give the propagator. Note that it has the
same spin and momentum as the original particle pi.
Similar expression can be obtained for an incoming
antiparticle Ψ̄, and outgoing particles using crossing
symmetry. After summing over all contributions, we find
the soft factorization:

Anþ1ðp1;…; pn;ωqÞ ¼ω→0 gm
ω

X
i∈fΨ;Ψ̄g

1

pi · q

×Anðp1;…; pnÞ þOð1Þ: ðA10Þ

The leading soft factor is proportional to the mass of the
fermion. Since the limit m → 0 is smooth, we conclude
that the leading soft factor in a massless Yukawa theory
vanishes.
Finally, let us consider the spin-one case. We couple the

scalar to massive Z-bosons with the interaction term

Lint ¼
1

2
gφZμZμ: ðA11Þ

Contribution from a single diagram for an incoming
Z-boson with momentum pi and polarization λi is

ig
−iðημν þ ðpi þ ωqÞμðpi þ ωqÞν=m2Þ

ðpi þ ωqÞ2 þm2

× ϵμλiðpiÞ ~Aν
nðp1;…; pi þ ωq;…; pnÞ: ðA12Þ

Using the identities,X
λ0¼�;0

ϵμ�λ0 ðpiÞϵνλ0 ðpiÞ ¼ ημν þ pμ
i p

ν
i =m

2;

ϵ�λ0 ðpiÞ · ϵλiðpiÞ ¼ δλ0λi ; ðA13Þ

and a derivation analogous to the previous cases, we find
that in the soft limit,

Anþ1ðp1;…; pn;ωqÞ ¼ω→0 g
2ω

X
i∈Z

1

pi · q

×Anðp1;…; pnÞ þOð1Þ: ðA14Þ

The discussion in this appendix has been restricted only
to tree-level amplitudes. Unlike in the case of soft theorems
studied so far [47,49,50,63–65], at loop level the massless
scalar considered in this work acquires mass. In this case,
one cannot take a soft limit, meaning that the asymptotic
symmetries identified in this work must be broken on a
quantum level. However, it might be possible to introduce

extra fields into the theories under considerations, such that
an enhanced symmetry would protect masslessness of φ at
loop level.

APPENDIX B: GREEN’S FUNCTIONS
ON H+ , Ho

In this appendix we describe the differential operators
and associated Green’s functions that arise when expanding
the fields at time and spatial infinity. Most of the consid-
erations are particular cases of the general analysis given in
[67]. But there is also some new (to us) material, for
instance Secs. B 2 a and B 2 c.

1. (Future) Time-like infinity H+

Here we work in hyperbolic coordinates adapted to
future time infinity

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − r2

p
; ρ ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − r2
p ; ðB1Þ

in terms of which the Minkowski line element reads:

ds2 ¼ −dτ2 þ τ2dσ2 ðB2Þ

where

dσ2 ¼ dρ2

1þ ρ2
þ ρ2qABdxAdxB ≡ hαβdyαdyβ ðB3Þ

is the metric of the future unit hyperboloid Hþ.
For a field of the form

φðxÞ ¼ τ−n φ
ðnÞðyÞ ðB4Þ

one has

□φðxÞ ¼ τ−n−2ðD2 φ
ðnÞ þ nð2 − nÞφðnÞÞ; ðB5Þ

whereD2 ≡ hαβDαDβ is the Laplacian onHþ. By studying
the differential operator on Hþ defined by (B5) one
concludes:

ðD2 þ nð2 − nÞÞφðnÞ ¼ 0 ⇒ φ
ðnÞ

∼ 1=ρn or φ
ðnÞ

∼ 1=ρ2−n

ðB6Þ

when ρ → ∞. For the present paper we are interested in the
n ¼ 1 case. This happens to be the special case where the
two independent asymptotic solutions (B6) coincide. What
occurs then is that a second independent solution appears
with a ln ρ dependence [67]:

ðD2 þ 1Þφð1Þ ¼ 0 ⇒ φ
ð1Þ

∼ 1=ρ or φ
ð1Þ

∼ ln ρ=ρ: ðB7Þ
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The PDE problems appearing in our discussion are11:

ðD2 þ 1Þφð1Þ ¼ j with φ
ð1Þ

∼ 1=ρ ðB8Þ

ðD2 þ 1ÞΛ
ð1Þ

¼ 0 with Λ
ð1Þ

∼
ln ρ
ρ

λðx̂Þ: ðB9Þ

We now describe the Green’s function associated to each
equation.

a. Green’s function for Eq. (B8)

We want to find the solution to

ðD2 þ 1ÞGðy; y0Þ ¼ δð3Þðy; y0Þ: ðB10Þ

Due to the SOð3; 1Þ symmetry it has to be of the form

Gðy; y0Þ ¼ gðY · Y 0Þ ðB11Þ

for some function g. We find the general solution for y ≠ y0
and then get the overall coefficient by requiring the
appropriate y → y0 behavior. Taking ρ0 ¼ 0 so that Y · Y 0 ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

p
one finds the general solution to ðD2 þ 1Þf ¼ 0

is given by

g ¼ A
ρ
þ B

arcsinhρ
ρ

: ðB12Þ

The fall-off requirement in (B8) implies B ¼ 0. The coef-
ficient A can be obtained by demanding that for ρ → 0 one
recovers the flat space Green’s function. This sets
A ¼ −1=ð4πÞ. The Green’s function is finally obtained by
expressing ρ in terms of −Y · Y 0 resulting in

Gðy; y0Þ ¼ −
1

4π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðY · Y 0Þ2 − 1

p ðB13Þ

b. Green’s function for Eq. (B9)

We now seek for Gðy; q̂Þ such that

ðD2 þ 1ÞG ¼ 0; Gðρ; x̂; q̂Þ ∼ ln ρ
ρ

δð2Þðx̂; q̂0Þ: ðB14Þ

We just state the solution and verify it satisfies the desired
conditions:

Gðy; q̂Þ ¼ −
1

4π

1

Y · q
ðB15Þ

where

Y · q ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

q
þ ρx̂ · q̂ ðB16Þ

is the Minkowski product between Yμ (3.19) and qμ (2.4).
First, one can verify that

D2fðY · qÞ ¼ ðY · qÞ2f00ðY · qÞ þ 3ðY · qÞf0ðY · qÞ ðB17Þ

from which it follows that ðY · qÞ−1 satisfies the desired
equation. Next we note that

Gðy; q̂Þ ∼
�
1=ρ for x̂ ≠ q̂

ρ for x̂ ¼ q̂
ðB18Þ

and Z
d2q̂Gðy; q̂Þ ¼ arcsinhρ

ρ
∼
ln ρ
ρ

ðB19Þ

from which it follows that G satisfies the asymptotic
behavior given in (B14).12

c. Relation between Green’s functions and Eq. (3.28)

From the expressions above one can verify that the large
ρ behavior of G is dictated by G according to13

Gðy; y0Þ ¼ −
1

ρ
Gðy0; x̂Þ þOðρ−3Þ ðB20Þ

We now have all elements to show Eq. (3.28):

ϕðu ¼ þ∞; q̂Þ ¼ lim
ρ→∞

ρφ
ð1Þðρ; q̂Þ ðB21Þ

¼ lim
ρ→∞

ρ

Z
d3V 0Gðρ; q̂; y0Þjðy0Þ ðB22Þ

¼ −
Z

d3V 0Gðy0; q̂Þjðy0Þ ðB23Þ

¼ 1

4π
Qhard

q̂ : ðB24Þ

The first equality arises from consistency of the null and
time-infinity expansions. The second equality uses (3.31)

11The source jðyÞ decays fast enough at ρ → ∞ so that the

asymptotic form of φ
ð1Þ

is still dictated by the sourcefree equa-

tion (B7). The absence of ln ρ=ρ term in φ
ð1Þ

is due to the regular
behavior of φ at null infinity. It is also interesting to note that
fields f such that ðD2 þ 1Þf ¼ 0 with f ¼ Oð1=ρÞ are always
singular at ρ ¼ 0 (this can be established by writing the explicit
solution in terms of spherical harmonics).

12The reasoning here is the same as the one given in [88]. The
present case extends the analysis of [88] from n > 1 to n ¼ 1.

13This is just a particular instance of more general relations
between “bulk-bulk” and “bulk-boundary” Green’s functions that
are well known in the AdS=CFT literature.
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and the third (B20). In the last equality we used the
expressions (3.21) and (B15).

2. Spatial infinity Ho

Hyperbolic coordinates adapted to spatial infinity are

ρ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − t2

p
; τ ≔

tffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − t2

p ðB25Þ

in terms of which the Minkowski line element reads:

ds2 ¼ dρ2 þ ρ2dσ2 ðB26Þ

with

dσ2 ¼ −
dτ2

1þ τ2
þ ð1þ τ2ÞqABdxAdxB ≕ hαβdyαdyβ

ðB27Þ

the line element of the unit hyperboloid Ho.
For a field of the form

φðxÞ ¼ ρ−n φ
ðnÞðyÞ ðB28Þ

one has

□φðxÞ ¼ ρ−n−2ðD2 φ
ðnÞ

− nð2 − nÞφðnÞÞ; ðB29Þ

where D2 ≡ hαβDαDβ is the wave operator on Ho. By
studying the differential operator on Ho defined by (B29)
one concludes:

ðD2 − nð2 − nÞÞφðnÞ ¼ 0 ⇒ φ
ðnÞ

∼ 1=τn or φ
ðnÞ

∼ 1=τ2−n

ðB30Þ

when τ → �∞. Again, for n ¼ 1 these two asymptotic
solutions coincide but a new one appears:

ðD2 − 1Þφð1Þ ¼ 0 ⇒ φ
ð1Þ

∼ 1=τ or φ
ð1Þ

∼ ln τ=τ: ðB31Þ

For the purposes of the present paper, we need the general
solution associated to the each type of fall-offs:

ðD2 − 1Þφð1Þ ¼ 0 with φ
ð1Þ

∼τ→þ∞ 1

τ
ϕþðx̂Þ ðB32Þ

ðD2 − 1ÞΛ
ð1Þ

¼ 0 with Λ
ð1Þ

∼τ→þ∞ ln τ
τ

λþðx̂Þ: ðB33Þ

For definitiveness we consider the “backwards” evolution
problem of solving the wave equation with data on the
asymptotic future. Note that, unlike the elliptic problem in
Hþ, the source free equation (B31) has two independent

solutions. This corresponds to the fact that we now have a
Cauchy problem and two data are needed to solve the
equation (the field and its momentum). Asymptotically the
two data correspond to the different fall-offs.
We now describe the Green’s function associated to each

equation. We will just state them and verify they satisfy the
desired conditions.

a. Solution to Eq. (B32)

The solution to (B32) we claim is given by:

φ
ð1ÞðyÞ ¼ 1

2π

Z
d2q̂δðY · qÞϕþðq̂Þ: ðB34Þ

First, we note that the analogue of Eq. (B6) in Ho is

D2fðY · qÞ ¼ −ðY · qÞ2f00ðY · qÞ − 3ðY · qÞf0ðY · qÞ:
ðB35Þ

Noting the distributional identities σδ0ðσÞ ¼ −δðσÞ and
σ2δ00ðσÞ ¼ 2δðσÞ one concludes that D2δðY ·qÞ¼ δðY ·qÞ
and so (B34) satisfies the desired differential equation.
To check for the boundary condition, note that the support
of the Delta function in (B34) is given by

Y · q ¼ 0 ⇔ x̂ · q̂ ¼ τffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p ¼τ→þ∞
1 −

1

2

1

τ2
þOðτ−4Þ:

ðB36Þ

If we denote by θ the angle between x̂ and q̂ then x̂ · q̂ ≈
1 − 1

2
θ2 for small θ. Thus for large τ the support of the Delta

is a circle of radius τ−1 centered around q̂ ¼ x̂. It then

follows that φ
ð1ÞðyÞ defined by (B34) satisfies φ

ð1ÞðτÞ ∼
τ−1ϕþðx̂Þ for τ → þ∞ as desired. The solution (B34) also

allow us to evaluate φ
ð1Þ

in the τ → −∞ limit. In this case
τffiffiffiffiffiffiffiffi
1þτ2

p ∼ −ð1 − 1
2
1
τ2
Þ and the Delta becomes supported in a

jτj−1 radius circle centered at q̂ ¼ −x̂. This then implies
relation (3.42).

b. Solution to Eq. (B33)

The solution to (B33) we claim is given by:

Λ
ð1Þ
ðyÞ ¼ −

1

4π

Z
d2q̂

λþðq̂Þ
Y · q

; ðB37Þ

which is the Ho version of the analogous expression found
in the Hþ case. The proof then goes parallel to that case.
The differential equation can be seen to be satisfied by
using Eq. (B35). For the boundary condition we note that

1

Y · q
¼τ→�∞

�
Oð1=τÞ for x̂ ≠ �q̂

OðτÞ for x̂ ¼ �q̂
ðB38Þ

CAMPIGLIA, COITO, and MIZERA PHYS. REV. D 97, 046002 (2018)

046002-12



and

−
1

4π

Z
d2q̂
Y · q

¼ arcsinhτffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p ∼τ→�∞ � ln jτj
jτj : ðB39Þ

from which the τ → þ∞ condition in (B33) follows.
The τ → −∞ limit yields the “antipodal matching”
λ−ðx̂Þ ¼ −λþð−x̂Þ.

c. Relation between fields (B32) and (B33)

The solutions φ
ð1ÞðyÞ and Λ

ð1Þ
ðyÞ given in (B34) and (B37)

represent two type of solutions of the differential equation

ðD2 − 1Þf ¼ 0: ðB40Þ

A geometrical characterization of each type of solution can
be given by considering the inversion map on Ho:

yα → −yα ≔ ð−τ;−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p
x̂Þ ðYμ → −YμÞ: ðB41Þ

From the integral representations (B34) and (B37) it
follows that each type of field is of definite parity:

φ
ð1Þð−yÞ ¼ φ

ð1ÞðyÞ and Λ
ð1Þ
ð−yÞ ¼ −Λ

ð1Þ
ðyÞ: ðB42Þ

A general solution to (B40) will in general be a sum of the
two type of solutions. Thus if we denote by Γ the space of
all fields satisfying (B40) we have:

Γ ¼ Γeven ⊕ Γodd: ðB43Þ

We now show that in fact (B43) corresponds to a “q − p”
splitting when Γ is regarded as a phase space. Recall that
fields satisfying a (massive) Klein-Gordon equation such
as (B40) form a symplectic vector space under the usual
Klein-Gordon symplectic product

Ωðf; gÞ ¼
Z
C
dSα

ffiffiffi
h

p
hαβð∂βfg − ∂βgfÞ; ðB44Þ

where C is any Cauchy surface on Ho. We claim that

Ωðφð1Þ; φð1Þ0Þ ¼ ΩðΛ
ð1Þ
; Λ
ð1Þ0

Þ ¼ 0; ðB45Þ

Ωðφð1Þ; Λ
ð1Þ
Þ ¼

Z
S2
d2Vλþðx̂Þϕþðx̂Þ: ðB46Þ

These results can be obtained by evaluating (B44) in the
τ → ∞ slice and using the asymptotic forms of the fields.
It is interesting however to see how Eq. (B45) arises for the
τ ¼ 0 slice (recall Ω is independent of the choice of
Cauchy slice).

From the τ ¼ 0 slice perspective, Γ is the space of initial
conditions ðf; _fÞ on the τ ¼ 0 sphere with symplectic
product

Ωððf; _fÞ; ðg; _gÞÞ ¼
Z
S2
d2Vð_gf − _fgÞ: ðB47Þ

By evaluating the ϕ and λ integral solutions (and their τ
derivatives) at τ ¼ 0 one concludes that

ðf; _fÞ ∈ Γeven ⇔ feven; _fodd ðB48Þ

ðf; _fÞ ∈ Γodd ⇔ fodd; _feven ðB49Þ
where the parity of f; _f refers to S2. Since an odd function
on the sphere integrates to zero, it follows that (B47)
vanishes if evaluated on either Γeven or Γodd.
We finally note that the τ ¼ 0 sphere corresponds to the

limiting spheres of t ¼ constant spacetime slices Σt (t ¼
Minkowski time). From this perspective, Γeven determines
the asymptotic parity of φ-initial data on Σt. These are the
scalar field analogue of the Regge-Teitelboim parity con-
ditions in gravity [89].

APPENDIX C: ASYMPTOTICS OF ΛðxÞ
AT NULL INFINITY

Here we describe the null infinity behavior of Λ as given
in Eq. (3.49). Rather than attempting a direct evaluation
of (3.49) in the r → ∞, u ¼ const limit, we will make use
of the results from the previous Appendix and work in
hyperbolic coordinates as an intermediate step. Consider
first hyperbolic coordinates adapted to future time infinity.
(these only allow us to cover the u > 0 region of Iþ).
In these coordinates we have:

ΛðxÞ ¼ ΛHþðyÞ
τ

¼ 1

ρτ
ðln ρλðx̂Þ þOðρ−1ÞÞ: ðC1Þ

We now write this expression in retarded u, r coordinates.
Noting that ρτ ¼ r and

ρ ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2urþ u2

p ¼
ffiffiffiffiffiffi
r
2u

r
ð1þOðr−1ÞÞ; ðC2Þ

ln ρ ¼ 1

2
ln r −

1

2
lnð2uÞ þOðr−1Þ ðC3Þ

one finds

ΛðxÞ ¼ 1

2r
λðx̂Þðln r − lnð2uÞ þOðr−1=2ÞÞ ðu > 0Þ:

ðC4Þ
We recall the above expression is only valid for u > 0.
To cover the u < 0 region we consider the expression of
ΛðxÞ in hyperbolic coordinates adapted to spatial infinity:
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ΛðxÞ ¼ ΛH0ðyÞ
ρ

¼ 1

ρτ
ðln τλðx̂Þ þOðτ−1ÞÞ: ðC5Þ

In terms of ðr; uÞ coordinates we now have ρτ ¼ rþ u
and

τ ¼ rþ uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ur − u2

p ¼
ffiffiffiffiffiffiffiffiffi
r

−2u

r
ð1þOðr−1ÞÞ; ðC6Þ

leading to

ΛðxÞ ¼ 1

2r
λðx̂Þðln r − lnð−2uÞ þOðr−1=2ÞÞ ðu < 0Þ:

ðC7Þ

Combining (C4) and (C7) we obtain (4.18).

1. Eq. (4.20)

We concluded that near null infinity ΛðxÞ has an
expansion of the form

ΛðxÞ ¼ ln r
r

λ
ð−1;lnÞ

ðu; x̂Þ þ 1

r
λ

ð−1Þ
ðu; x̂Þ þOðr−1−ϵÞ ðC8Þ

with

λ
ð−1;lnÞ

ðu; x̂Þ ¼ 1

2
λðx̂Þ; λ

ð−1Þ
ðu; x̂Þ ¼ −

1

2
ln j2ujλðx̂Þ:

ðC9Þ

From (C8) one finds the following null infinity expansion
for kru (4.12):

kru ¼ −ðln r λ
ð−1;lnÞ

þ λ
ð−1Þ

Þu∂uφIþ

þ ðu∂u λ
ð−1Þ

− λ
ð−1;lnÞ

ÞφIþ þOðr−ϵÞ ðC10Þ

The u → �∞ fall-offs for φIþ are such that ∂uφIþ ¼
Oðu−1−ϵÞ. This implies the first term in (C10) vanishes
when u → �∞ and so it does not contribute to the charge
(4.19) (in particular the potential logarithmic divergence is
absent). From (C9) one finds the second term is

ðu∂u λ
ð−1Þ

− λ
ð−1;lnÞ

ÞφIþ ¼ −φIþðu; x̂Þλðx̂Þ; ðC11Þ

from which (4.20) follows.

APPENDIX D: SHIFT SYMMETRY FOR FREE
MASSLESS FIELDS

In this appendix we discuss “shift symmetries” of the
free massless scalar theory. We will discuss in parallel the
free Maxwell and linearized gravity cases in harmonic
gauge to highlight their similarities.

As described below, the naturally occurring “shift” field
for the massless spin s ¼ 0, 1, 2 theory can be written in the
simple form,

ΛðsÞðxÞ ≔ −
ðx · xÞs
4π

Z
d2q̂

λðq̂Þ
ðq · xÞsþ1

: ðD1Þ

ΛðsÞðxÞ depends on a function on the sphere λðq̂Þ which
determines its asymptotic value.14 It satisfies the scaling
behavior,

tð1−sÞΛðsÞðtxÞ ¼ ΛðsÞðxÞ; ðD2Þ
and obeys the free wave equation

□ΛðsÞ ¼ 0: ðD3Þ
For s ¼ 0 (D1) becomes the expression for the fieldΛðxÞ

introduced in Eq. (3.49). For s ¼ 1 (D1) corresponds to the
large Uð1Þ gauge parameter in harmonic gauge given in
[61] which satisfies

Λð1Þ → λðx̂Þ ðD4Þ
at null infinity. Finally, for s ¼ 2 the vector field defined
by ξa ≔ ∂aΛð2Þ corresponds to the supertranslation vector
field in harmonic gauge given in [62] which satisfies

ξa → λðx̂Þ∂u ðD5Þ
at null infinity. These three parameters yield the following
family of “shifted vacua” for the scalar, Maxwell and
gravity theories:

φ ¼ Λð0Þ ðD6Þ

Aμ ¼ ∂μΛð1Þ ðD7Þ

hμν ¼ 2∂μ∂νΛð2Þ: ðD8Þ

Condition (D2) implies all three solutions are scale invari-
ant (with the standard scaling dimension 1).
So far we have tried to exhibit the similarities between

the different massless theories. We now discuss the
differences between the s ¼ 0 and s ¼ 1, 2 cases. First,
the configurations (D7), (D8) correspond to nontrivial
vacuum configurations associated to the large local
symmetry group.15 In particular, all these solutions have
zero energy. One may be tempted to interpret (D6) as a
nontrivial vacuum solution. However if one tries to
compute the energy associated to this configuration one

14One can also consider Poincare transformed versions of (D1).
These are however redundant from the perspective of infinity,
namely ΛλðLμ

νxν þ bμÞ → ΛλLðxÞ with λLðq̂Þ a Lorentz trans-
formed version of λðq̂Þ.

15To simplify the discussion we are ignoring “superrotated”
vacua in the gravity case.
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gets infinity!16 Related to this is the fact that the trans-
formation generated by the “soft theorem charge” does
not yield a solution of the type (D6) but rather one of the
forfm given in Eq. (4.7) (which does have zero energy).
As discussed earlier, in the gauge and gravity cases the

currents associated to the ‘shift’ transformations leading to
(D7) and (D8) are total derivatives as in (4.5). This is not so
in the scalar case. The shift transformation

δΛφ ¼ Λ ðD9Þ
with □Λ ¼ 0 is a symmetry of the free φ Lagrangian with
Noether current given by:

ja½Λ� ¼ ffiffiffi
η

p ðφ∇aΛ − Λ∇aφÞ ðD10Þ

which is not of the total derivative form. One may ask if
there is any relation between (D10) and the total derivative
current (4.12). If we denote by

δXφ ¼ φþ Xa∂aφ ðD11Þ

the action of dilatations on φ then one finds (in the free
theory case)

δXja½Λ� ¼ −∂bkab; ðD12Þ

with kab given in Eq. (4.12).
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