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Can signi�cant trends be detected in surface air temperature
and precipitation over South America in recent decades?

Daniel de Barros Soares,a,b Huikyo Lee,c Paul C. Loikith,d* Armineh Barkhordariana and Carlos
R. Mechosoa
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ABSTRACT: Trends in near-surface air temperature and precipitation over South America are examined for the periods

1975–2004 and 1955–2004, respectively, using multiple observational and climate model data sets. The results for observed

near-surface air temperature show an overall warming trend over much of the continent, with the largest magnitudes over

central Brazil. These observed trends are found to be statistically signi�cant using pre-industrial control simulations from

the �fth phase of the Coupled Model Intercomparison Project (CMIP5) as the baseline to estimate natural climate variability.

The observed trends are compared with those obtained in natural-only CMIP5 simulations, in which only natural forcings

(i.e. volcanoes and solar variability) are included, and in historical CMIP5 simulations, in which anthropogenic forcings (i.e.

changes in the atmospheric composition) are further incorporated. The historical CMIP5 simulations are more successful in

capturing the observed temperature trends than the simulations with natural forcings only. It is suggested that anthropogenic

warming is already evident over much of South America. Unlike the warming trends, observed precipitation trends over South

America are less spatially coherent with both negative and positive values across the continent. Signi�cant positive trends are

found over South America in only one of the data sets used, and over a region that roughly encompasses the southern part of

La Plata Basin (southern Brazil, Uruguay, and northeastern Argentina) in all data sets used. The historical CMIP5 simulations

do not capture this feature. No �rm conclusions are reached, therefore, for anthropogenic in�uences on precipitation changes

in the period selected for study.
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1. Introduction

Anthropogenic in�uences on climate change at the

global scales have been detected with high con�dence in

near-surface air temperature (SAT) and less certainty in

precipitation (IPCC, 2013). SAT has increased over most

of the globe over the last several decades, whereas the

magnitude and even sign of precipitation trends can vary

regionally (Zhang et al., 2006). The detection of trends at

regional scales is particularly challenging because of the

general reduction in signal-to-noise ratio with decreasing

area of aggregation (Zwiers and Zhang, 2003).

This study aims to provide a quantitative identi�cation of

trends in temperature and precipitation over South Amer-

ica during the periods 1975–2004 and 1955–2004, respec-

tively. South America is a geographically complex region.

The continent extends meridionally from roughly 15∘N to

60∘S and encompasses a variety of ecosystems and cli-

mate zones. The climate in some regions can be highly

*Correspondence to: P. C. Loikith, Department of Geography, PO Box

751 - GEOG, Portland State University, Portland, OR 97207-0751, USA.

E-mail: ploikith@pdx.edu

in�uenced through teleconnections by sea surface temper-

ature (SST) variability at several time scales in the Paci�c,

Atlantic, and even the Indian Oceans. Examples of relevant

modes of SST variability are the El Niño Southern Oscil-

lation (Ropelewski and Halpert, 1987; Mechoso and Irib-

arren, 1992; Robertson and Mechoso, 1998), the Paci�c

Decadal Oscillation (Mantua and Hare, 2002; Kayano and

Andreoli, 2007), and the Atlantic Multidecadal Oscilla-

tion (Knight et al., 2006). In�uential geographical features

on South America’s climate include the Andes Mountains

(a major coastal range with the highest proportion of the

world’s tropical glaciers), Amazon rainforest (the biggest

tropical forest of the planet), Pantanal wetlands (the largest

wetlands in the world), and the �rst and �fth largest river

basins in the world (Amazon and La Plata, respectively).

According to the Working Group I contribution to

the Fifth Assessment Report (AR5) of the Intergovern-

mental Panel on Climate Change (Magrin et al., 2014),

SAT over South America has been increasing over the

last several decades, coincident with the retreat of trop-

ical glaciers (area loss between 20 and 50%; Bradley

et al., 2009). In contrast, precipitation changes during the

period have considerable geographical variations and are

© 2016 Royal Meteorological Society
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highly in�uenced by SST variability. Espinoza Villar et al.

(2009) found that mean rainfall in the Amazon basin

has decreased in 1964–2003. This decrease had stronger

amplitude after 1982, especially in the Peruvian western

Amazon (Lavado Casimiro et al., 2012), where convection

and cloudiness have also decreased (Arias et al., 2011).

Precipitation increases have been detected in southeast-

ern South America and northwest Peru. Additional pre-

cipitation decreases have been documented in southwest

Argentina and southern Peru since 1960. Northeast Brazil

(NEB) has experienced a slight decrease in rainfall since

the 1970s (Marengo et al., 2013). It has been reported that

the dry-season length over South America has increased

signi�cantly since 1979, and this feature has been asso-

ciated with a poleward shift of the southern subtropical

westerly jet (Fu et al., 2013). The global climate models

contributing to the �fth phase of the Coupled Model Inter-

comparison Project (CMIP5; Taylor et al., 2012) project a

robust increase in SAT across the entire continent by the

end of the 21st century. In contrast, the models project an

overall decrease in precipitation over subtropical dry belts

and an overall increase in precipitation over the Tropics

and mid to high latitudes by the end of the 21st century

(Knutti and Sedlacek, 2013).

In addition to natural climate variability, variations in

the composition of the atmosphere – and associated radia-

tive forcing – due to anthropogenic activities may con-

tribute to temperature and precipitation changes over

South America. Another major driver of climate change

over the continent is land-use changes due to expanding

agricultural activities and aerosols from biomass burn-

ing. In fact, land use and land cover changes are believed

to contribute approximately 20% of the current anthro-

pogenic CO2 emissions (Meyer and Turner, 1994). Doyle

and Barros (2011) indicate that increased stream�ow of

major rivers in southeastern South America has been asso-

ciated with an increase in precipitation and a reduction in

evapotranspiration from land-use changes. Such changes

also have implications for climate change on a global scale.

Exbrayat and Williams (2015), for example, suggest that

biomass loss due to deforestation in the Amazon alone has

contributed approximately 1.5% of the recent increase in

atmospheric CO2.

This study goes beyond previous analyses of trends in

temperature and precipitation over the region. Firstly, we

use multiple observational data sets, taking uncertainties

across different records into consideration. Secondly, we

estimate uncertainty of the observed trends using ‘natu-

ral variability’ obtained from pre-industrial control sim-

ulations in CMIP5. The observed trends obtain statistical

robustness if they are stronger than the estimated level of

natural variability. Lastly, we compare the trends obtained

using observational data with those calculated from two

different experiments in CMIP5: (1) simulations with

natural-only forcings (i.e. volcanoes and solar variability)

and (2) simulations with both natural and anthropogenic

forcings (historical runs). Based on this quantitative com-

parison between observed and simulated trends consid-

ering natural variability, we will suggest that observed

trends, particularly in SAT, can be better reproduced by

models only when both natural and anthropogenic forcings

are included.

The remainder of this article is organized as follows. In

Section 2, we discuss the observational data sets used, the

data from CMIP5 models, and the methodology adopted.

Sections 3 and 4 present the results including the detection

of observed trends in SAT and precipitation, quanti�cation

of uncertainty in the observed trends, and comparison

between observed and simulated trends. In Section 5, the

main conclusions and a discussion are presented.

2. Data sets and methods

The period chosen for study of SAT is 1975–2004.

Barkhordarian et al. (2012) analysed climate change over

the Mediterranean region for the same period. For precipi-

tation, a longer period of 1955–2004 was selected because

its temporal and spatial variability are stronger than for

SAT. The ending year of 2004 was chosen as to allow for

comparison of observed trends with CMIP5 historical runs

that end in 2005.

2.1. Observational data sets

The observational records for SAT and precipitation were

obtained from two data sets, Climate Research Unit (CRU)

TS v.3.22 (Harris et al., 2014) and University of Delaware

(UDEL) v.2.01 (Matsuura and Willmott, 2009). In addi-

tion, for precipitation we use the Global Precipitation Cli-

matology Centre (GPCC) full v.6 (Schneider et al., 2011;

Schneider et al., 2014). All data sets contain monthly

land station records (mean SAT or total precipitation) that

are quality controlled, and provided on a 0.5∘ × 0.5∘ lat-

itude/longitude grid. Emphasis is placed on GPCC for

precipitation as it has the largest number of contributing

gauge-based observations (>67 200 worldwide) (Schnei-

der et al., 2014). Juarez et al. (2009) compared GPCC pre-

cipitation with several other data sets over the tropical

South America and showed reasonable agreement in pre-

cipitation between the data sets.

2.2. Model data sets

To assess the unforced variability of the climate system

and its response to natural or anthropogenic forcing, we

use the output of a 14-member subset of global climate

models participating in the CMIP5 project. For eachmodel

(Table 1), we select one pre-industrial run, in which the

atmospheric concentrations of all well-mixed greenhouse

gases are held at pre-industrial levels. The pre-industrial

simulations include an unperturbed land-use component

and non-evolving emission and concentration of natural

aerosols. Our hypothesis is that the distributions of tem-

perature and precipitation trends during 30 and 50-year

period of these natural-only simulations can provide an

estimate of the variability of the climate system in the

absence of external forcings. We also analyse historical

simulations where external forcings are based on observed

time-evolving data. The forcings in this case include a

© 2016 Royal Meteorological Society Int. J. Climatol. 37: 1483–1493 (2017)
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variable atmospheric composition (including greenhouse

gases) due to both anthropogenic and volcanic in�uences;

solar forcing; land use; emissions or concentrations of

short-lived species, and natural and anthropogenic aerosols

or their precursors. The historical simulations span the

period 1850–2005 (or longer) and allow us to discuss

model performance against observed climate change in

recent decades. Finally, for some models, we use the out-

put from a natural-only run, which only includes natural

forcing (i.e. volcanoes and solar variability). Table 1 gives

further details on models and runs.

As a preliminary step, the output of the CMIP5 mod-

els was interpolated to the same grid as the observational

data sets (0.5∘ × 0.5∘ latitude/longitude grid). Annual and

seasonal means were calculated for each grid point. In the

following, seasons will be named according to the South-

ern Hemisphere [December–February (DJF) – summer,

March–May (MAM) – fall, June–August (JJA) – winter,

and September–November (SON) – spring].

2.3. Methodology

The methodology employed in this study closely fol-

lows that used in detection and attribution analysis for

the Mediterranean region by Barkhordarian et al. (2012,

2013). We start by performing a least squares �t to cal-

culate the linear trends over the selected 30- and 50-year

period for SAT and precipitation, respectively. Trends are

weighted by the areal average of each grid cell, as a func-

tion of latitude, as are trends averaged over sub-regions

(e.g. over Brazil, La Plata Basin, or the entire continent).

The signi�cance of trends is tested against the null

hypothesis that they arise from unforced variability alone,

as estimated on the basis of the CMIP5 pre-industrial con-

trol runs. To estimate the distribution of trends in tem-

perature (precipitation) in an unforced climate, we use

the results from these pre-industrial runs for 166 (81)

non-overlapping 30-year for SAT (50-year for precipita-

tion) windows for a total of 4980 (4050) years (Table 1).

We say that a trend, in either an observational ormodel data

set, is signi�cant when its p value is <0.05, i.e. when the

trend is bigger (or smaller) than 95% of the trends derived

from the pre-industrial control runs.

After testing signi�cance in the observed trends, we

compare them with those obtained from the CMIP5 mod-

els’ historical runs. Eachmodel may containmore than one

ensemble per historical simulation, the difference among

them being the initial conditions and physics imposed. In

this article, we only use one ensemble per model. Trends

are computed for individual models and the multi-model

ensemble mean, together with the standard deviation of the

sampling distribution of this mean,

�mean =
�
√

n
(1)

where � is the intra-model standard deviation and n is the

number of models.

We say that a trend obtained from the observational data

sets for a given variable, region, season, and period agrees

with that in the multi-model ensemble of simulations if

the difference between trends can be explained by the

unforced variability of the climate system and the ensem-

ble mean variance. That is, we consider agreement if,
(

�obs + p5%, �obs + p95%
)

∩
(

�model − �model, �model + �model

)

≠ ∅ (2)

where �obs is the observed trend, and p5% (p95%) is

the 5th (95th) percentile in the distribution of the

trends derived from the pre-industrial control runs.

So (�obs + p5%,�obs + p95%) approximately represents

the 90% con�dence interval of the forced trend (taking

into account the unforced variability as an estimate from

the pre-industrial control run). �model and �model are the

mean and standard deviation of trends from multiple

models. Illustration of Equation (2) is shown later in

Figure 4. In the same way, we assess the agreement in

trends between observation and a multi-model ensemble

of the natural-only runs, where only natural forcings (e.g.

volcanoes and solar variability) are taken into account.

Furthermore, we compare the spatial patterns of

observed and simulated trends in SAT and precipita-

tion. For this comparison, we use two parameters as

evaluation metrics, the pattern correlation coef�cient and

model’s biases normalized by spatially averaged trends in

observation. The pattern correlation coef�cient is given

by
∑

�(i,j) ·
(

proj(i,j) − pŕoj
)

·
(

obs(i,j) − os
)

√

�(i,j)·

(

proj(i,j) − pŕoj
)2

·

√

�(i,j)·

(

obs(i,j) − b′
)2

(3)

where proj(i,j) and obs(i,j) are the simulated and observed

trends at a grid point (i and j) respectively, proj and obs

are their mean and �(i,j) is a weight function that accounts

for the difference in grid-box size as a function of latitude.

With the same notation, the normalized difference is given

by

proj − obs

obs
(4)

In what follows, SAT trends are presented for the entire

South American continent and for Brazil. Precipitation

trends are also presented for the entire continent, and for

the southern part of the Plata Basin, which is de�ned as

the land region north of 37∘S, south of 23.5∘S and east of

60∘W. Our reasons for this choice of regions are given in

the following section.

3. Results

3.1. Surface air temperature

Trends in annual mean SAT for the period 1975–2004

from CRU and UDEL over South America are shown in

Figure 1. Stippling indicates grid points where the trend

is signi�cant according to the criteria de�ned in Section 2.

The results obtained with the two data sets broadly agree in

sign, magnitude, and signi�cance. A signi�cant warming

© 2016 Royal Meteorological Society Int. J. Climatol. 37: 1483–1493 (2017)
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Table 1. The 14 CMIP5 models used in this study along with the number of years of control runs used to estimate the unforced

variability of temperature (precipitation) trends.

Model References Pre-industrial run (years) Historical run Natural-only run

ACCESS1-0 Bi et al. (2013) 480 (400)
√

–

BCC-CSM1-1 Wu et al. (2014) 480 (350)
√ √

BNU-ESM Ji et al. (2014) 540 (550)
√ √

CANESM2 Flato et al. (2000) 630 (450)
√ √

CCSM4 Gent et al. (2011) –
√

–

MRI-CGM3 Yukimoto et al. (2011) –
√

–

CNRM-CM5 Voldoire et al. (2013) 150 (−)
√ √

CSIRO-Mk3-6-0 Rotstayn et al. (2010) –
√

–

GISS-E2-R Miller et al. (2014) –
√

–

INMCM4 Volodin et al. (2010) 480 (450)
√

–

IPSL-CM5A Dufresne et al. (2013) 900 (950)
√ √

MIROC5 Watanabe et al. (2010) 540 (300)
√

–

MPI-ESM Marsland et al. (2003) 780 (600)
√

–

NORESM1 Bentsen et al. (2013) –
√

–

The types of runs, historical or natural-only, performed by each model are also displayed.

CRU

(a) (b)

UDEL

1.0

0.5

0.0

–0.5

–1.0

(K
 p

e
r 

d
e
c
a
d
e
)

Figure 1. Annual mean SAT trends (K per decade) over South America

for the period 1975–2004 as obtained from the CRU (a) and UDEL data

sets (b). The dots indicate regions where the trend is signi�cant.

trend is apparent over most of Brazil as well as over parts

of Venezuela and Peru, with a maximum warming over

north-central Brazil. Signi�cant trends over the Guianas

are present only in the CRU data set, while trends over

Bolivia and Paraguay are present only in UDEL. These

warming trends are in agreement with the IPCC AR5

(Magrin et al., 2014) that indicates warming has been

detected throughout South America since the mid-1970s.

Cooling trends can be observed over western Bolivia and

some regions in northern Patagonia. The patterns in the

seasonal mean trends of SAT are very similar to those in

the annual mean (Figure 2). We note that the maximum

warming over north-central Brazil is more pronounced

in the winter season (from June through August). This

season is also characterized by a signi�cant cooling trend

over western Bolivia and the Paci�c coast of Peru. In

view of these results, we also consider the SAT trends

over Brazil separately. Figure 3 shows the evolution of

30-year trends in the region for the period of 1902–2013.

In the annual mean, temperature has been increasing for

almost the entire period, but the warming trend becomes

signi�cant after 1968 (block 1968–1997), indicating a

possible external forcing exerted. This same pattern is

present in both the summer and winter seasons. As shown

DJF MAM

JJA SON

1.0

0.5

0.0

–0.5

–1.0

(K
 p

e
r 

d
e
c
a
d
e
)

Figure 2. Seasonal mean SAT trends (K per decade) over South America

for the period 1975–2004 from the CRU data set. The dots indicate

regions where the trend is signi�cant at the 95% con�dence level.

in Figure 2, the overall warming trend in Brazil is greatest

in winter (JJA).

We next assess the agreement of the observed trends

in SAT with those in the CMIP5 simulations. Figure 4

shows the seasonal and annual mean trends in observation

(together with the estimation of the unforced variabil-

ity), the CMIP5 historical simulations, and the CMIP5

natural-only simulations. For the entire South American

continent, the multi-model ensemble of historical runs

reproduces the observed trends very well with reasonable

agreement in all seasons taking in account the unforced

variability (red whiskers in Figure 4). In the case of the

natural-only runs, the models exhibit a much weaker

warming trend. For Brazil, the multi-model ensemble

historical runs show warming in all seasons. However,

the models consistently underestimate the observed

warming with differences larger than the uncertainty in

observed trends. There is no clear agreement among the

© 2016 Royal Meteorological Society Int. J. Climatol. 37: 1483–1493 (2017)
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Figure 3. Moving 30-year temperature trends in the CRU dataset over Brazil for annual, DJF, and JJA. The year indicates the end of a 30-year block.

The dashed lines indicate the 5th and 95th percentiles of trends estimated from the pre-industrial control runs.

natural-only runs and observations in any season, indi-

cating that anthropogenic forcing is essential for CMIP5

models to reproduce the observed SAT trends over South

America.

Figure 5 shows the point-wise agreement between obser-

vations and CMIP5 ensemble members over South Amer-

ica. Shading indicates the number of CMIP5 models (out

of 14) whose SAT trends agree with observations to within

the uncertainty range of unforced variability. Most mod-

els capture the trends in most regions, as indicated by the

predominance of green shading. The biggest exception is

for a region over north-central Brazil where the observed

strong warming trend is not captured by the models. Addi-

tionally, some small regions in western Bolivia and over

the Paci�c coast of Peru, Chile, Ecuador, and Colom-

bia show poor agreement. This brings us to an important

point that the future SAT projection of CMIP5 models in

these regions may underestimate trends under a changing

climate.

The individual performance of each model can be sum-

marized by its ability to represent the spatially averaged

warming trends and the warming patterns over the con-

tinent. Figure 6 shows the spatial correlation coef�cients

and the differences in the mean trend between the obser-

vational data, historical simulations, and natural-only sim-

ulations. The differences are normalized by the spatially

averaged trends in the observation. In 10 of the 14 CMIP5

historical runs examined, the magnitude of the differences

from observed trends are within the uncertainty range

of the unforced variability, which we interpret as having

good agreement with observations. On the other hand,

all �ve natural-only runs underestimate observations and

the differences lie outside the range of unforced variabil-

ity. Five models (ACCESS1-0, MRI-CGM3, GISS-E2-R,

MIROC5, andMPI-ESM) stand out in capturing the warm-

ing pattern, with a higher correlation coef�cient, as can

be seen by their correct prediction of a maximum warm-

ing over Brazil (Figure 7). Two models (BNU-ESM and

CNRM-CM5), on the other hand, are negatively correlated

with observations, with a maximum warming in the south-

ern part of the continent.

3.2. Precipitation

Figure 8 compares precipitation trends over the period

1955–2004 for the three observational data sets (CRU,

UDEL, andGPCC). In all cases, a signi�cant positive trend

is apparent over a region that roughly encompasses the

southern part of La Plata Basin (southern Brazil, Uruguay,

and northeastern Argentina).While the trends over Patago-

nia are small, they are signi�cant primarily because the cli-

matological intra-seasonal variability in precipitation over

this region is relatively small. Positive signi�cant trends

are also found in parts of Colombia, Ecuador, a region

between Brazil, Guiana, and Venezuela, and a region

between Brazil, Peru, and Bolivia. Negative signi�cant

trends are observed in all data sets over southern Chile and

French Guiana. Similar to Rao et al. (2015), which studied

precipitation trends over Brazil for the period 1979–2011,

we �nd signi�cant negative trends over regions in cen-

tral and northern Brazil (GPCC and UDEL) and along

the border between Brazil and Venezuela (all three data

sets), as well as signi�cant positive trends in western NEB

(CRU) and in the border between Brazil and Peru (CRU

and UDEL).

Unlike SAT in Figure 2, the magnitude and signs of the

trends vary depending on season (Figure 9). The positive

trends over the southern Plata Basin are stronger in the

austral fall (MAM) and spring (SON), while negative

trends appear in winter (JJA). Even though these winter

trends are weaker than in any other season, they are sig-

ni�cant over almost the entire continent due to the weak

variance in precipitation during this season. In the fall,

we �nd positive signi�cant trends north of the equator

in Colombia, Venezuela, and Guiana, but no signi�cant

trends in the other seasons. Another interesting feature

is that the negative trends over the Amazon Basin are

stronger during spring, in accordance with Espinoza

Villar et al. (2009). Finally, in summer (DJF), there

are signi�cant positive trends in many regions of Peru,

Bolivia, Argentina, Uruguay, and Brazil with large spatial

variability.

Narrowing down on the southern Plata Basin where

the trends are strongest and regionally homogeneous,
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Figure 5. Agreement between the trends in the observation and in the

predictions by different models with historical forcing for the period of

1975–2004. The plot represents the number of models that agrees with

observations, within the uncertainty range of the unforced variability.

Figure 10 reveals that the 50-year trends in annual pre-

cipitation have been signi�cant during the second half of

the last century. There are, however, considerable seasonal

variations. Trends in summer are consistently positive over

the period (Figure 10); however, values are signi�cant only

during 1960–1975 and 1995–2005. Positive trends in pre-

cipitation over La Plata Basin, especially in its southern

part, have been related to the increase in stream�ow of

the main rivers of the region (Genta et al., 1998; Barros

et al., 2005; Doyle and Barros, 2011). Trends in winter are

also positive over almost all of the last century, but they

are signi�cant mostly in the period 1980–2000 after which

they reverse sign (Figure 10). The recent decrease in win-

tertime precipitation of >1mmmonth−1 per decade is sig-

ni�cant compared to those from the pre-industrial control

simulations.

Figure 11 shows the seasonal and annual mean trends

in the observations and CMIP5 simulations over South
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Figure 6. Individual performance of models in the historical and

natural-only runs for the annual mean SAT over the South American

continent. The performance is measured by the pattern correlation coef-

�cients between observed and simulated trends, and the normalized

biases of the models. The two red lines indicate the 5th and 95th per-

centiles of trends as estimated from the pre-industrial control runs. The

CNRM-CM5 natural-only run, not shown in the �gure, has a ratio of

−0.99 and correlation of −0.32.

America and southern Plata Basin together with an esti-

mation of the unforced variability. Over the South Ameri-

can continent, the annual mean precipitation in the CRU

and GPCC data sets exhibits an increasing trend that

is signi�cant only in the CRU (0.93mmmonth−1 per

decade). For this data set, we also �nd a signi�cant

increasing trend in precipitation for summer, fall, and

spring (1.3, 1.3, and 1.1mmmonth−1 per decade, respec-

tively). No signi�cant trends are obtained in winter. The

multi-model ensemble of the historical runs underesti-

mates the magnitude of the observed trends. Over the

southern Plata Basin, all three observational data sets

obtain a signi�cant increase in annual mean precipita-

tion (2.7mmmonth−1 per decade in average) as well as

in the seasonal mean for summer, fall, and spring (4.2,
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Figure 8. Monthly total precipitation trends (mmmonth–1 per decade) over South America for the period 1955–2004 as obtained from the CRU,

UDEL, and GPCC data sets ((a)–(c), respectively). The dots indicate regions where the trend is signi�cant at the 95% con�dence level.

4.7, and 3.4mmmonth−1 per decade, respectively). The

CRU and UDEL data sets exhibit a signi�cant decreas-

ing trend during winter (−1.6 and −2.9mmmonth−1 per

decade, respectively). The multi-model ensemble of sim-

ulated trends from CMIP5 historical runs, however, does

not show signi�cant trends either in the annual mean or in

any season.

Unlike SAT, it is hard to de�ne precipitation trends rep-

resenting the entire South American continent. This is pri-

marily because precipitation trends at and near the Tropics

are weaker than the unforced variability. Figure 12 shows

the annual and season mean precipitation and trends from

the GPCC data set for the period 1955–2004 over three

latitude bands of South America representing the Trop-

ics, subtropics, and extratropics (0∘–15∘S, 15∘–30∘S, and

30∘–45∘S, respectively). These three regions shown in

Figure 12, exclude grid points that lie west of the Andes,

where higher spatial resolutions than CMIP5 models is

required to simulate realistic precipitation and its trends.

The annual mean precipitation generally decreases from

north to south. The tropical and subtropical bands show

minimum precipitation during winter and maximum dur-

ing summer, while the extratropical band does not have

clear wet and dry seasons. The annual mean precipitation

over the period 1955–2004 shows a decreasing trend over

the tropical band and an increasing trend over the subtropi-

cal band, none of which is signi�cant. The only signi�cant

trends in precipitation can be found in the extratropical

band; these trends are positive except during winter. There-

fore, there is considerable uncertainty in the observed pre-

cipitation trends over the Tropics and subtropics in South

America. The trend over the extratropics is signi�cant in

the observations for all seasons.
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Figure 9. Seasonal mean GPCC precipitation trends (mmmonth–1 per

decade) over South America for the period 1955–2004. The dots indicate

regions where the trends are signi�cant.

4. Conclusions

Using two observational data sets, our study �nds that

SAT has been increasing over much of South America dur-

ing the period 1975–2004, which is in line with IPCC

AR5. Unlike previous studies, we quanti�ed uncertainty of

the observed trends by comparison with those obtained in

pre-industrial CMIP5 simulations. From the CMIP5 simu-

lations with natural-only forcing, we �nd that this overall

warming over the continent cannot be explained by natural

climate variability alone. Moreover, the historical CMIP5

simulations with both natural and anthropogenic forcing

reproduce the observed warming trends with reasonable

�delity. These results suggest that anthropogenic warming

is already evident over much of South America.

The warming detected is particularly strong over

most of Brazil where values up to 1K decade−1 are

obtained. However, simulated warming trends show some

discrepancies at the regional level. Trends in CMIP5
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Figure 10. Moving 50-year precipitation trends over the southern part of the Plata Basin for the annual and seasonal means, obtained from the GPCC

data set. The years in the x-axis indicate the end of a 50-year block. The dashed lines indicate the 5th and 95th percentiles of trends estimated from

the pre-industrial control runs.

historical simulations are systematically weaker than in the

observations over central Brazil, and substantially differ-

ent from the observations over the western part of the con-

tinent. Over much of southern and northern South America

trends are relatively weak. In regions where some models

simulate observed warming trends well, con�dence can be

boosted in future projections of temperature by the mod-

els. Similarly, in regions where models show considerable

disagreement with observations regarding warming trends,

caution might be exercised in interpreting future projec-

tions. The entire South American continent is an example

of the former regions and central Brazil is an example of

the latter. However, natural variability contributes substan-

tial uncertainty to projected temperature trends on local,

regional, and continental scale (Deser et al., 2012).

Trends in precipitation over the period 1955–2004 are

found to be much less spatially coherent, with many

sign changes over relatively short distances. None of the

observation data sets show signi�cant trends in precipita-

tion averaged over the entire South American continent.

Over an extratropical region that roughly encompasses the

southern part of La Plata Basin (southern Brazil, Uruguay,

and northeastern Argentina), all observational data sets

show signi�cant trends compared to unforced natural vari-

ability. The historical CMIP5 simulations do not capture

this feature. It is well known that CMIP5 models project

an overall decrease in precipitation over the subtropics and

an overall increase in precipitation over the Tropics and

mid to high latitudes by the end of the 21st century. Our

observational data sets for a recent period reproduce this

feature with signi�cance only over mid to high latitudes.

This emphasizes the importance of taking regional pre-

cipitation characteristics into account for predictions of a

changing future climate.

Thus, while anthropogenic global warming is being

detected in the temperature record, the effects on

precipitation have yet to emerge from the noise in most

locations in South America. The spatial inhomogeneity

of the precipitation trends, which is largely in�uenced by

orography and large-scale circulation, provides a dif�cult
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target for assessing model �delity. The skill in reproducing

the mean precipitation climatology can offer some back-

ground on whether the CMIP5 models have the capability

to simulate future changes in precipitation with success.

Model success varies considerably across the CMIP5

ensemble (see Supporting Information). Although most

models capture a precipitation maximum over Amazonia

and a minimum over the southern portion of the continent

in austral summer, one cannot claim overall success in the

simulation of the American monsoon system.

This study raises several questions. Will the regions

that have experienced the greatest warming continue to

warm more rapidly than other regions? Will the regions

that have not experienced signi�cant warming begin to

warm (or cool) in the coming decades? What is the role of

low-frequency large-scale climate variability (e.g. remote

SST forcing) in the magnitude of observed trends? For

precipitation, further investigation into regional changes,

changes in the seasonal cycle, and connecting observed

changes with mechanisms would shed more light on the

meaning of the results presented here. Such work would

be a logical next step in understanding what effect if

any, anthropogenic climate forcing has had on precip-

itation over South America versus what component of

the observed trends is a result of low-frequency climate

variability.

We end by emphasizing that our analysis relies on a sig-

ni�cant and somewhat controversial assumption, namely

that the magnitude of the natural climate variability as

described by CMIP5 pre-industrial simulations is realis-

tic. The robustness of the detection results, henceforth,

is subject to models correctly simulating natural climate

variability. It is now recognized that models may underes-

timate modes of climate variability such as the El Niño

Southern Oscillation, which has strong climate impacts

over South America (Kumar et al., 2013; Chadwick et al.,
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2015). This underestimation may lead to spurious detec-

tion results, if as a consequence the simulated natural vari-

ability is of smaller amplitude than the real variability. In

addition, we �nd signi�cant results, particularly in precip-

itation, for a relative small region such as La Plata Basin

where global climate models have few grid points. We

assign con�dence to these results due to the several studies

with observational data for the regions that agree with our

�ndings.
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