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ABSTRACT 
Slab melting has been suggested as a likely source of adakitic arc magmas (i.e., andesitic 

and dacitic magmas strongly depleted in Y and heavy rare earth elements). Existing numerical 
and petrologic models, however, restrict partial melting to very young (15 Ma) oceanic crust 
(typically at  60-SO km depth). Paradoxically, most of the known Pliocene-Quaternary adakite 
occurrences are related to subduction of 10-45 M a  lithosphere, which should not be able to melt 
under normal subduction-zone thermal gradients. We propose an unusual mode of subduction 
known as flat subduction, occurring in -10% of the world’s convergent margins, that can pro- 
duce the temperature and pressure conditions necessary for fusion of moderately old oceanic 
crust. Of the 10 known flat subduction regions worldwide, eight are linked to present or recent 
(e6 Ma) occurrences of adakitic magmas. Observations from Chile, Ecuador, and Costa Rica 
suggest a three-stage evolution: (1) steep subduction produces a narrow calc-alkaline arc, typi- 
cally -300 km from the trench, above the asthenospheric wedge; (2) once flat subduction begins, 
the lower plate travels several hundred kilometers at  nearly the same depth, thus remaining in 
a pressure-temperature window allowing slab melting over this broad distance; and (3) once flat 
subduction continues for several million years, the asthenospheric wedge disappears, and a vol- 
canic gap results, as in modern-day central Chile or Peru. The proposed hypothesis, which 
reconciles thermal models with geochemical observations, has broad implications for the study 
of arc  magmatism and for the thermal evolution of convergent margins, 
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tion of adakitic magmas for these cases, related to 
an unusual subduction geometry known as flat 
subduction (Fig. 3) (Sacks, 1983; Pennington, 
1984; Cahill and Isacks, 1992; Abbott et al., 
1994; Gutscher et al., 1999a, 2000). Of the 10 
known flat slab regions worldwide (Fig. l),  8 are 
linked to present or recent (<6 Ma) occurrences 
of adakitic magmas (Table 1). 

GEODYNAMIC MODEL 
Comparative observations from several well- 

constrained flat slab regions along the Andean 
and Central American margin suggest a three- 
stage evolution illustrating how a reduction of 
slab dip can lead to episodes of slab melting. In 
the normal situation, a narrow calc-alkaline arc 
(volcanic line) develops above a steeply dipping 
slab, commonly between the 100 and 150 !un iso- 
depth contours to the subducted plate (Fig. 3A). 
When the dip of the downgoing plate flattens, 
in response to a change in buoyancy (i.e., sub- 

INTRODUCTION 
Petrologic models suggest that formation of 

trondhjemite-tonalite-dacite (TTD) by partial 
melting of the subducted slab was widespread 
during Archean time, and these rocks represent a 
major component of Precambrian gneiss terranes 
(Martin, 1986; Drummond and Defant, 1990). 
However, given the cooler mantle temperatures 
during the Phanerozoic, these processes should 
be uncommon today (Martin, 1986). Recent 
models of magma genesis emphasize the role of 
fluids released via dehydration reactions from the 
subducting plate, thereby causing melting in the 
overlying mantle wedge (Schmidt and Poli, 
1998). In the past decade, numerous occurrences 
of Cenozoic adakites (andesitic and dacitic mag- 
mas characterized by strong depletion in heavy 
rare earth elements and high SrrY ratios) have 
been documented and discussed as possible 
examples of slab melting (Fig. 1) (Defant and 
Drummond, 1990; Moms, 1995). These include 
Mount St. Helens (Defant and Drummond, 1993) 
and the recent major eruption of Mount Pinatubo 
(Prouteau et al., 1999). 

Numerical and petrological studies of pressure- 
temperature-time (P-T-t) paths in subduction 
zones suggest that this process can only occur for 
subduction of very young (15 Ma) lithosphere 
(Peacock et al., 1994) (Fig. 2A, solid lines). Para- 
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duction of overthickened oceanic crust), the 
arc typically widens, extending much farther 
(2400 km) from the trench (Fig. 3B and 3C). 
During this transitional stage, lasting several 
million years, adakitic melts are generated 
across a wide volcanic arc. This corresponds to 
modem Ecuador (arc 250-400 km from trench) 
(Monzier et al., 1997; Gutscher et al., 1999b; 
Bourdon et al., 1999) and to central Chile at 
10-5 Ma (arc 250-800 km from trench) (Kay 
and Abbruzzi, 1996). Due to the unique set of 

doxically, of the -20 known occurrences of 
adakites worldwide, only 5 occur near Pliocene- 
Quatemary spreading center-trench triple junc- 
tions, where very young oceanic lithosphere is 
being or was recently subducted. The remaining 
occurrences involve subduction of moderately 
old (10-45 Ma) lithosphere, which is not ex- 
pected to melt under normal subduction-zone 
pressure and temperature conditions. We present 
a new geodynamic model to explain the forma- 

Figure 1. Global distribu- 
tion of flat slab regions 
(labels correspond to 
Table 1) and adakitic mag- 
mas (stars). Filled stars 
are modern occurrences, 
unfilled stars are 1-6 Ma 
old occurrences. Principal 30”N 
oceanic plateaus, hotspot 
tracks, and subducting 
arcs are shaded gray: 
Hk-Hikurangi Plateau, 00 

Lo-Louisville Ridge, 
Au-Austral Plateau, Tu- 
Tuamotu Plateau, Mq- 
Marquesas Plateau, Mh- 30”s 
Manihiki Plateau, Li-Line 
Islands, OJ-Ontong Java 
Plateau, ER-Euripik Rise, 
PK-Palau-Kyushu Ridge, 
IB-lzu-Bonin Arc, Sh- 5 5 5  
Shatsky Rise, MP-Mid- 
Pacific Mountains, He-Hess Rise, Ha-Hawaiian Chain, Em-Emperor Chain, YB-Yakutat 
Block, AS-Alaska Seamounts, Co-Cocos Ridge, GC-Galápagos-Carnegie Ridge, Nz-Nazca 
Ridge, JF-Juan-Fernandez Ridge. 
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Table 1) and adakitic mag- 
mas (stars). Filled stars 

arcs are shaded gray 
Hk-Hikurancri Plateau, 

Au-Austral Plateau, TÜ- 
Tuamotu Plateau, Ma- 
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Figure 2. Pressure-temperature ( f - T )  meta- 
mbrphic reaction diagram showing expected 
f-%t (t = time) paths for varying conditions. 
Ec-eclogite, Am-amphibolite, Ga-garnet, 
Hb-hornblende. A P-Ft paths for normal 27" 
subduction dip (solid lines), with varying litho- 
spheric ages, and subduction velocity of 
3 cm/yr, with no shear heating, according to 
finite difference models (Peacock et al., 1994, 
Fig.8B). f-T-tpathsforflat subduction (dashed) 
are calculated using analytical solution for 
slab thermal structure (Davies, 1999) beneath 
70 km depth.These paths are much flatter and 
intersect slab melting field (shaded) at 700 "C 
and 2.5 GPa for 10-50 Ma subducted litho- 
sphere. B: P-T-t paths for steep (circles) and 
flat (diamonds and squares) subduction 
based on isotherms in Figure 3 sampled every 
50 km along slab surface. 

isotherms and P-T-t paths involved in flat sub- 
duction, slab melting can occur (Fig. 2). Pro- 
longed flat subduction will sufficiently cool both 
lithospheres such that the downgoing oceanic 
crust dehydrates before the necessary tempera- 
tures for partial melting are attained and thus the 
final stage, a volcanic gap, is achieved (Fig. 3D). 
This complete evolution has been documented 
for central Chile between 20 Ma and the present 
(Kay and Abbruzzi, 1996). Ecuador is known to 
have had a narrow calc-alkaline arc at 5 Ma 
(Barben et al., 1988) and has evolved to stage 2 
today due to flattening of the slab in response to 
subduction of Camegie Ridge (Pennington, 
1981; Gutscher et al., 1999b). 

The Costa %can margin also exhibits a simi- 
lar magmatic evolution (Defant et al., 1992). 
Before 6 Ma, magmatism was calc-alkaline in 
nature and the subduction angle presumably 
steep. Around 5 Ma uplift began in the Tala- 
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Figure 3.Three-stage evolution showing transition from steep to flat subduction style due to sub- 
duction of buoyant, overthickened oceanic crust (e.g., oceanic plateau), with impact on mag- 
matic arc.Therma1 structure is constructed based on adaptation of published numerical models 
(Peacocket al., 1994; Peacock, 1996) and analytical solution (Davies, 1999) (see text). A: Steep or 
normal subduction (230" dip), with narrow calc-alkaline arc, -300 km from trench produced by 
slab dehydration and partial melting in overlying asthenospheric wedge. B: Early stage mag- 
matic flat subduction; oceanic slab crosses 700 "C geotherm at -80 km depth (300-400 km from 
trench) allowing broad adakitic arc to develop. Partial melting continues in narrow intervening 
tongue of asthenospheric material. C: Late stage magmatic flat subduction; intervening astheno- 
spheric tongue cools and retreats. Partial melting can only occur at great distance (-450- 
600 km) from trench, and final pulse of magmatism occurs, as in Sierras Pampeanas, Pocho 
eruption 4.7 Ma (Kay and Abbruui, 1996). D: Prolonged (amagmatic) flat subduction; oceanic 
slab is cooler than 600 "C, asthenospheric wedge has disappeared, and thus no partial melting 
can occur, and volcanism ceases. 

manca Cordillera, suggesting that the arrival of 
Cocos Ridge began modifying the style of sub- 
duction to the current flat slab configuration 
(Protti et al., 1994). Since 5 Ma, adakitic mag- 
matism developed, interpreted as originating 

from slab melting (Defant et al., 1992). Today, 
the Talamanca segment of Costa Rica appears 
to have advanced to the final stage, a volcanic 
gap, because no Quaternary stratovolcanoes are 
present along this 100 km segment. 
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TABLE I. FLAT SLAB REGIONS WORLDWIDE 

# Region' Length' Associated plateau@) Ages Volcanism 
or blocks 

(Ma) Quaternary Age of adakites 
(km) 

arc (Ma) 
1 Chile (28°S-330S) 550 Juan Femandez Ridge 43 No 4-7 
2 Peru (2°S-150S) 1500 Nazca Ridge, Inca Plateau 3043 No 3-6 
3 Ecuador (lOS-ZON) 350 Carnegie Ridge 16-24 Yes 0-3 
4 Columbia (6"N-g0N) 350 Choco block 20 No (none known) 
5 Costa Rica 250 Cocos Ridge 14-20 No' 1-3 
6 Mexico 400 Tehuantepec Ridge 12-20 Yes (none known) 
7 Cascadia (46ON-49'") 350 (none known) a Yes O 
8 Southern Alaska 500 Yakutat terrane 45 No o" 
9 Southwestern Japan 600 Izu Bonin Arc, Pal.-Ky. Ridge 15-20 Yes O 
10 New Guinea (135°E-1400E) 550 Euripik Ridge -20 No 2-41' ' 

'Sources: (1) Kay and Abbruui, 1996, (2) Petford and Atherton, 1996. (3) Monzier et al., 1997, (4) Penninaton. 1981. 
(5) Defant et al., 1992, (6) Suarez et al., 1990, (7) Defant and Drummond, 1993, (8) Preece, 1991, (9) Morri< 1995, ( I O )  
Pubellier et al., 1998. See also compilations (Pennington, 1984; McGeary et al., 1985; Abbott et al., 1994; Gutscher et al., 
2000). 

'Cumulative length = 5400 km, which represents -10% of all subduction zones. 
"ge of subducted lithosphere at trench. 
"In Costa Rica there is a 100 km gap (Talamanca segment) with an absence of stratovolcanoes. 
"In eastern Alaska there is a 500-km-wide volcanic gap. The adjacent volcanoes Hayes and Wrangel1 show adakitic 

w h i l e  SrN ratios for 4.4-2.6 Ma intrusions plot ìn the adakitic field, new Isotope data suggest strong contamination by 
signatures. 

Australian continental crust (Housh and McMahon, 2000). 

THERMAL EVOLUTION AND 
PETROLOGICAL CONSTRAINTS 

Although prolonged flat subduction generally 
produces a cooler thermal structure (i.e., both 
upper and lower lithospheres are cooler) (Fig. 3D), 
(Sacks, 1983; Vlaar, 1983; Henry and Pollack, 
1988; Dumitru et al., 1991), during the initiation 
of flat subduction the leading edge of the under- 
sliding slab can be anomalously heated. An 
analytic solution for the thermal structure of a 
cold slab subducting through hot asthenosphere 
demonstrates temperature to be a function of the 
downdip length, the slab thickness, and the rate 
of subduction, but independent of the subduction 
dip, thus allowing application to a slab with vari- 
able dip down its length (Davies, 1999). In other 
words, a slab moving a fixed distance through hot 
asthenosphere will gain heat at the same rate 
whether it descends vertically, at 60°, at 30°, or 
even if it moves horizontally (as in Fig. 3B and 
3C). This allows published steep-slab isotherms 
(Peacock et al., 1994; Peacock, 1996) to be re- 
calculated for a flat slab geometry for pressures 
>2 GPa (-70 km depth) (Fig. 2A). Due to the un- 
usual path traveled, first downward to 70 km 
depth, and then subhorizontally for several hun- 
dred kilometers, the P-T-t paths differ greatly 
from steep subduction paths and cross over the 
wet solidus into the slab melting field. 

To date, all published numerical models of sub- 
duction-zone thermal structure feature a constant 
(Davies and Stevenson, 1992; Furukawa, 1993; 
Peacock et al., 1994; Peacock, 1996; Stein and 
Stein, 1996) or constantly increasing (Oleskevich 
et al., 1999; Peacock and Wang, 1999) slab dip, 
and are typically run until thermal equilibrium is 
reached. No numerical study has yet attempted to 
rigorously model a reduction in slab dip (flat sub- 
duction), including its transient thermal structure. 
Past attempts, either static (Vlaar, 1983) or one di- 
mensional [Spencer, 1994), have proven unsatis- 
factory. In order to illustrate a plausible sequence 
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for the thermal evolution resulting from a change 
in subduction style from steep to flat, a thermal 
model was constructed using an adaptation of 
published numerical and analytical solutions. The 
steep slab thermal strqcture is based on both finite 
difference models (Peacock et al., 1994; Peacock, 
1996) and the analytical solution (Davies, 1999) 
and shows good agreement with earlier (Davies 
and Stevenson, 1992; Stein and Stein, 1996) and 
recently published finite-element calculations 
(Oleskevich et al., 1999; Peacock and Wang, 
1999) for slabs with comparable subduction 
parameters (age, velocity, dip angle). The flat slab 
thermal structure below 70 km is calculated using 
the analytical solution as described here (Davies, 
1999). The subduction parameters and geometry 
applied here are based loosely on typical Andean 
values (25 Ma lithosphere with a 60 km thermal 
thickness, velocity = 6 cm/yr, and a 300 km sub- 
horizontal slab at 80 km depth). It assumes no 
shear heating, no heat of fusion, and no advective 
heat transport to the arc. This set of isotherms is 
sampled every 50 km along the downdip direction 
in order to illustrate the P-T-r paths predicted by 
this evolutionary model, shown in Figure 2B, by 
the use of symbols (circles, diamonds, and 
squares), each corresponding to a position in P-T 
space (Fig. 2B). Because the leading edge of the 
undersliding slab spends -5 m.y. at a nearly con- 
stant depth of 70-80 km (pressures of 2-2.5 GPa), 
it has sufficient time to heat to 700-800 OC, 
leading to the fluid-present partial melting of the 
oceanic crust (Drummond and Defant, 1990; 
Peacock et al., 1994; Prouteau et al., 1999). 

DISCUSSION 
Alternate models have been proposed for pro- 

ducing adakitic-like magmas in a convergent 
margin setting; melting of the edges of oceanic 
crust in the context of a slab window (Johnston 
and Thorkelson, 1997). direct melting of the base 
of an overthickened orogenic continental crust 

(Atherton and Petford, 1993; Petford and Ather- 
ton, 1996; Kay and Abbruzzi, 1996), and melting 
of the base of an accreted arc or ophiolite complex, 
as invoked for Ecuador (Arculus et al., 1999). 

The slab window model in general applies to 
trench-spreading center triple junctions, and 
thus could succeed in explaining the Chile triple 
junction and possibly the Panama occurrence 
(assuming that a spreading center segment was 
recently subducted). However, it is insufficient 
to explain the numerous cases where moderately 
old oceanic crust is subducting (e.g., Peru, cen- 
tral Chile, Japan, Alaska) and where no evidence 
of lithospheric tears exists. 

Melting at the base of an overthickened oro- 
genic crust (gamet eclogite) has been suggested 
for Chile (Kay and Abbruzzi, 1996), Peru (Petford 
and Atherton, 1996), and Ecuador (Monzier 
et al., 1997) based on isotopic imprints and trace 
element features indicative of crustal compo- 
nents. However, in Ecuador the crustal imprint is 
known to be weak ( 4 5 % )  (Barragan et al., 
1998; Bourdon et al., 1999). Furthermore, it is 
very difficult to distinguish whether these char- 
acteristics reflect melting of the base of the crust, 
or slab melting followed by crustal contamina- 
tion during ascent through the Andean crust 
(e.g., the MASH model, Hildreth and Moorbath, 
1988). Because these two processes often cannot 
be distinguished geochemically, the reasons 
commonly given for dismissing the slab-melting 
model are thermal considerations, i.e., that crust 
older than 20 Ma cannot melt (Petford and 
Atherton, 1996; Kay and Abbruzzi, 1996). 

The first argument against melting of the base 
of a crust thickened by underplating of mafic 
material is that, while this explanation may work 
for parts bf South America, it does not explain 
Cascadia, southern Alaska, or southwestern 
Japan, where continental crustal thicknesses do 
not exceed 40 km (Oleskevich et al., 1999). 
Moreover, the relatively high Mg, Cr, and Ni 
contents of Andean adakites and related rocks 
are best explained by interaction with mantle 
peridotite (Sen and Dunn, 1995). 

The strongest argument against crustal melt- 
ing (either of continental or accreted oceanic 
materials) is temporal. All well-studied adakitic 
provinces are known from radiometric dating to 
have been active for only a brief time span of 
2-3 m.y. or less (e.g., Panama and Costa Rica, 
Defant et al., 1992). Adakitic magmatism in cen- 
tral Chile ceased at 4.7 Ma (Kay and Abbruzzi, 
1996), yet subduction beneath the thickened 
crust continues today. The same is true for 
Ecuador, where subduction has been occurring 
and arc magmas have been ascending through 
the accreted ophiolitic crust for at least 20 m.y. 
Why is there no older (10-20 Ma) adakitic mag- 
matism and why does its onset correspond to the 
change in subduction dip? 

It is important to note that our flat subduction 
slab melting model includes this temporal evolu- 
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tion. It is only during the early stages of flat sub- 
duction that the upper part and leading edge of the 
slab can melt. Prolonged flat subduction will cool 
both lithospheres and impede partial melting. It 
has been repeatedly suggested that only the sub- 
duction of hot, very young lithosphere will allow 
slab melting to occur (Defant and Drummond, 
1993; Peacocket al., 1994). The emphasis here is 
not on the initial temperature of the slab, but on 
its buoyancy and thus on the time spent at a rela- 
tively shallow (-80 km) depth, allowing the slab 
to heat. Therefore, oceanic crust as old as 50 Ma 
can melt if it is given sufficient time to warm. 
Young crust (5-10 Ma) subducts steeply at lat 
42"s in Chile, yet no adakites are observed be- 
tween lat 42" and 44"s. 
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