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ABSTRACT

The nature of commodity price behavior remains in substantial dispute. Pre-

vious empirical tests of the standard storage model have concluded that storage

arbitrage cannot explain the high serial correlation of prices. We introduce a

Maximum Likelihood estimator that, unlike available approaches, makes full use

of the predictions of the model about the most striking feature of commodity

prices, the skewness revealed in their asymmetric dynamics, displaying occa-

sional spikes. Our results for sugar establish the empirical relevance of storage in

determining its price behavior. The dynamics of commodity prices can be quite

different from those of the shocks that drive them.

Subject headings: Commodity Price Dynamics, Storage, Speculation, Sugar, Maximum

Likelihood Estimation, Non-linear Dynamic Models.
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1. Introduction

Recent sharp increases in volatility of commodity prices have been the subject of

international discussions and policy proposals (FAO, 2009; Council of The European

Union, 2010). The controversies surrounding these discussions highlight the fact that

economic interpretation of commodity price behavior remains in dispute among economists.

Authoritative observers have attributed recent price spikes to diverse factors such as

income growth in China, India and other emerging economies (Krugman, 2010) or to

financial influences such as low interest rates (Frankel, 2009), large short run movements of

international financial assets, or bubbles (Calvo, 2008; Caballero, Farhi, and Gourinchas,

2008; Timmer, 2009; Baffes and Haniotis, 2010).

There is substantial agreement on some stylized facts about commodity price behavior.

Many annual series of commodity prices are highly correlated, and characterized by episodes

of sharp price spikes, followed by precipitous falls, interspersed by longer intervals of less

extreme variation. The price fluctuations are asymmetric; there are no steep troughs to

match the spikes. The standard model of annual price behavior of storable commodities in

the tradition of Gustafson (1958) (see Samuelson 1971; Scheinkman and Schechtman 1983;

Stokey and Lucas 1989, chapter 10) is consistent with these stylized facts. In the model,

storage arbitrage induces positive serial correlation in prices and implies that the price

distribution is skewed, due to the higher sensitivity of price to shocks in net supply when

discretionary stocks are zero (i.e., during “stockouts”) and prices are high. Though it was

1Work on this paper was supported by the Energy Biosciences Initiative and by CONI-

CYT/Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT) Project 1090017.

Carlo Cafiero’s research at the University of California at Berkeley was made possible by

an authorized leave from the Università di Napoli Federico II. We acknowledge the excellent

research assistance of Ernesto Guerra V. and Di Zeng.
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useful for analysis of commodity policies (Johnson and Sumner, 1976; Gardner, 1979), the

model presented so many analytical, numerical and econometric challenges that it remained

untested for more than three decades, until the path-breaking work of Deaton and Laroque

(1992, 1995, 1996).2 Their overall conclusion, summarized in Deaton (2010), was strongly

negative. In particular, they found the standard model to be incapable of replicating the

observed high serial correlation of commodity prices. Coleman (2009) and Roberts and

Schlenker (2010), though not full tests of the storage model, present more positive evidence

regarding the role of storage arbitrage in determining key features of commodity price

behavior.

Cafiero et al. (forthcoming), after improving the numerical accuracy of the

implementation of the PML estimator of Deaton and Laroque (1995, 1996), obtain more

reasonable estimates of storage costs and find a lower frequency of stockouts, which in turn

imply levels of autocorrelation much closer to those measured on the price data series.

PML, however, has the limitation that it fails to exploit the most striking aspect of the

price data, captured by the Gustafson model, namely the obvious skewness evident in the

occasional price spikes exhibited by commodity price series.

In this paper we introduce a Maximum Likelihood (ML) estimator for the commodity

storage model with stockouts, based on prices only, that exploits information about higher

moments of prices. While it imposes no additional assumptions on the model, it possesses

small sample properties markedly superior to those of PML.3

2They avoided continuing problems with the reliability of time series of production, con-

sumption and stocks, by using only price data.

3To our knowledge, this is the first time ML estimation has been implemented for a storage

model with stockouts. We address technical issues related to existence of the equilibrium

and continuity of the likelihood function in sections 2 and 3 below. The ML estimations
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Application to a series of international sugar prices yields excellent results.4 The

estimated level of the cutoff price at which discretionary stocks go to zero is higher than

that obtained by PML, the implied frequency of stockouts is lower, and price correlations,

skewness and kurtosis implied by the model closely match those seen in the annual

sugar price data. We find the price of sugar to be highly responsive to small changes in

consumption. Storage offers a substantial buffer against price spikes. But when inventories

are not available to buffer the effects of negative supply shocks on consumption, prices must

increase sharply to induce the consumption changes needed to clear the market.

Our results are important in establishing the empirical relevance of storage as a factor

determining observed price behavior. We show why, under the truth of the estimated

model for sugar, production shocks are not necessarily aligned with price spikes; the same

production shock can give rise to very different price responses, depending on whether or

not there are sufficient stocks to buffer its impact.

2. The model

We adopt the standard model of storage arbitrage. We assume all agents are

competitive and have rational expectations. Storers are risk neutral and have a constant

presented by Miranda and Glauber (1993) and Miranda and Rui (1999) avoid the possibility

of discontinuities in the likelihood surface caused by stockouts by using storage cost functions

that ensure that stocks are always positive.

4The choice of sugar price is not accidental. The deflated price series presented in figure

5 does not show the strong time trend exhibited by price series of other food staples. In the

context of this stochastic dynamic model, the presence of a significant trend raises additional

problems of modeling and estimation that have yet to be addressed in this literature.
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discount rate r > 0. The cost of storing xt ≥ 0 units of discretionary stocks5 from time t

to time t + 1, paid at time t, is kxt, with k ≥ 0, and these stocks deteriorate at rate d,

with 0 ≤ d < 1. Supply shocks ωt are i.i.d.. The state variable zt is total available supply

at time t, zt ≡ ωt + (1 − d)xt−1, and zt ∈ Z, where Z is a subset of ❘. Consumption,

ct, has inverse demand F : Z → (−∞,∞]. F is continuous, strictly decreasing, with

EF (ω) ∈ ❘,
(

1−d
1+r

)

EF (ω)− k > 0, and limc→∞ F (c) ≤ 0, where E denotes the expectation

taken with respect to the random variable ω ≡ ωt.

Previous PML implementations of the model specify the distribution of the shocks

as normal,6 and we maintain that assumption in our empirical implementation. Since we

could not find a proof of the existence of the equilibrium for the model, in this section we

present such a proof, to furnish the basis for our empirical procedure.7 Note also that the

possibility of an additive component in the marginal cost of storage implies that the market

does not necessarily clear at a non-negative price for all admissible specifications of F . To

ensure that equilibrium prices are non-negative, we assume free disposal.

A Stationary Rational Expectations Equilibrium, (SREE), is a price function

f : Z → (−∞,∞], which describes the current price pt as a function of the state zt, and

satisfies for all zt ∈ Z,

pt = f(zt) = max

{(

1− d

1 + r

)

Etf
(

ωt+1 + (1− d)xt
)

− k, F (zt)

}

5We normalize non-discretionary stocks at zero.

6See Deaton and Laroque 1995, pps.S14 and S17 and Deaton 2010, p.8.

7With our proof we address a loose end in Deaton and Laroque (1992, p.11): “[E]ven

though, in theory, these distributions have an unbounded support, in practice we truncate

the distributions at five standard deviations from the mean, so that the theorems of the

previous section can be directly applied.”
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where

xt =















zt − F−1
(

f(zt)
)

, if zt < z∗ ≡ inf{z : f(z) = 0}

z∗ − F−1(0), if zt ≥ z∗,

and Et denotes the expectation taken with respect to the random variable ωt+1. Since the

ωt’s are i.i.d., f is the solution to the functional equation

f(z) = max

{(

1− d

1 + r

)

Ef
(

ω + (1− d)x(z)
)

− k, F (z)

}

, (1)

and

x(z) =















z − F−1
(

f(z)
)

, if z < z∗

z∗ − F−1(0), if z ≥ z∗.

(2)

Existence and uniqueness of the SREE, as well as some properties are given by the

following Theorem:

Theorem. There is a unique stationary rational expectations equilibrium f in the class of

non-negative continuous non-increasing functions. Furthermore, if p∗ ≡
(

1−d
1+r

)

Ef(ω) − k,

then:

f(z) = F (z), for z ≤ F−1(p∗),

f(z) > max{F (z), 0}, for F−1(p∗) < z < z∗,

f(z) = 0, for z ≥ z∗.

f is strictly decreasing whenever it is strictly positive. The equilibrium level of inventories,

x(z), is strictly increasing for z ∈ [F−1(p∗), z∗).

Proof. See Appendix A.

The inverse market demand f is a function of available supply z. It is coincident

with the inverse consumption demand F for price above p∗. Below p∗ the market demand

includes the demand for consumption and the demand for stocks x to be carried over to
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the next period, and F is strictly steeper than f . In this model, the positive probability of

stockouts implies that there may be a kink in the market demand at p∗.

3. Maximum Likelihood Estimation

In this section we present our ML estimator in a setting that includes the normal

distribution for harvest as a special case. Given the SREE function f , the model implicitly

defines a mapping from harvests ωt to prices pt, conditional on the previous price pt−1. For

positive prices:

pt|pt−1 = f (zt)

= f [ωt + (1− d) xt−1]

= f
[

ωt + (1− d)
(

zt−1 − F−1 (f (zt−1))
)]

= f
[

ωt + (1− d)
(

f−1 (pt−1)− F−1 (pt−1)
)]

We assume that the distribution of ωt is absolutely continuous with respect to the

Lebesgue measure. The fact that the inverse price function f−1 has bounded derivative for

prices away from zero implies that pt|pt−1 has a density l.

For a vector of parameters θ and a sample of positive prices pt, t = 0, 1, · · · , T , the

likelihood function is:

L(θ|p0, · · · , pT ) =
T
∏

t=1

l(pt|pt−1) (3)

Given a sample of positive prices, none of which coincides with a kink in the market

demand, we can write the following expression for L:

L(θ|p0, · · · , pT ) =
T
∏

t=1

φ(ωt)|Jt| =
T
∏

t=1

φ[f−1(pt)− (1− d)(f−1(pt−1)− F−1(pt−1))]|Jt| (4)
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where φ is the density of ωt, and Jt =
df−1

dpt
(pt) is the Jacobian of the mapping pt 7→ ωt.

Note that the probability that a price realization equals p∗ is zero.

In implementing the ML procedure, the first step is to find the price function f that

solves the storage model. Other than in very restrictive cases, no closed form solution is

known for the functional equation defined by (1) and (2). The solution, however, can be

approximated through numerical methods.

We approximate the equilibrium price function f with a cubic spline, f sp.8 The search

for f sp follows an iterative procedure based on (1) and (2). This requires approximating the

expectations with respect to the distribution of the harvests. To do so we use a quadrature

formula with nodes {ωs}
S
s=1 and weights {πs}

S
s=1. The n-th iteration is:

f
sp
<n+1>(z) = max

{

(

1− d

1 + r

) S
∑

s=1

f
sp
<n>

(

ωs + (1− d)x<n>

)

· πs − k, F (z)

}

(5)

where

x<n> =















z − F−1(f sp
<n>(z)), if z < z∗<n> ≡ inf{z : f sp

<n>(z) = 0}

z∗<n> − F−1(0), if z ≥ z∗<n>.

The first iteration uses a guess f sp
<1> on the right hand side of (5). This guess implies

a value of z∗<1>. Conditional on f sp
<1>, we evaluate f sp

<2> on an equally spaced grid of 500

points over a suitable range of z. Iterations continue until the maximum difference between

f
sp
<n+1> and f sp

<n> evaluated at each grid point is within a given small tolerance, and we take

f sp to be the last guess, implying z∗ ≡ inf{z : f sp(z) = 0}. Recognizing free disposal and

8For a discussion of function approximation, see Judd (1998, Chapter 6). For an appli-

cation to the storage model, see Miranda (1985).
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the possibility of stockouts, we define the solution as:

f̂ ≡



























F (z), if z ≤ F−1(p∗),

f sp(z), if F−1(p∗) < z ≤ z∗,

0, if z∗ < z,

where p∗ =
(

1−d
1+r

)
∑S

s=1 f
sp
(

ωs

)

πs − k.9

We assume a linear inverse consumption demand F (ct) = a + bct with b < 0, and

a normal harvest distribution with mean µ and standard deviation σ. To identify the

parameters we estimate, we set the mean and standard deviation of the unobserved harvests

at µ = 0 and σ = 1.10

To approximate expectations taken under a normal distribution with zero mean and

unit standard deviation, we use a Gauss-Hermite quadrature. (See Judd, 1998, section

7.2.)11

We approximate the logarithm of (3) as:

ln L̂(θ|p0, . . . , pT ) = −

(

T

2

)

ln(2π) +
T
∑

t=1

ln |Ĵ(pt)|

−
1

2

T
∑

t=1

[

f̂−1(pt|θ)− (1− d)
(

f̂−1(pt−1|θ)− F−1(pt−1|a, b)
)]2

(6)

9We assume in the remainder of this paper that r is fixed at 5%.

10See Proposition 1 in Deaton and Laroque (1996).

11We assume S = 10, with nodes ωs = {±4.8595,±3.5818,±2.4843,±1.4660,±0.4849}

and weights πs = {4.3107× 10−6, 7.5807× 10−4, 1.9112× 10−3, 0.1355, 0.3446}, respectively.
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with θ ≡ {a, b, d, k} and where:

Ĵ(pt) ≡



























dF−1

dpt
(pt), if pt ≥ p∗,

df̂−1

dpt
(pt), if p∗ > pt.

(7)

For a given set of parameters θ, we numerically solve for the approximated price

function f̂ and use it to calculate f̂−1(pt), f̂
−1(pt−1) and Ĵ(pt). These values, together

with the implied consumption levels F−1(pt), are used to evaluate (6) in the maximization

routine.

The approximation in (7) induces discontinuities in (6), as illustrated in figure 1, a

problem that we address by choosing an appropriate numerical optimization method. We

first use a grid-search routine to locate a candidate maximum, and then use a gradient-based

constrained maximization algorithm to search for a maximum in the neighborhood of the

candidate.12 We repeat the maximization of the log-likelihood several times, using different

starting values. In our empirical application, the maximum found in this way corresponds

to a flat spot of the log-likelihood surface.13

12To approximate the solution function f and the derivatives needed to calculate Ĵ we use

the Matlab R© Spline ToolboxTM. To maximize the function (6) we first use the Matlab R©

routine fminsearch, and then the routine fmincon, both included in the Optimization

ToolboxTM.

13We impose the constraints b < 0, k > 0, and d > 0 by programming the likelihood

maximization routine in terms of the set of transformed parameters η ≡ {η1, η2, η3, η4}

where: η1 = a, η2 = ln(−b), η3 = ln(k), and η4 = ln(d). Having identified a maximum, we

form an estimate of the asymptotic variance-covariance matrix of the estimated parameters,

W, as the inverse of the outer product of score vectors, evaluated at the estimated values
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(Figure 1 here)

4. Small Sample Properties

The small sample properties of some estimators of the storage model have been

previously explored. Using Monte Carlo experiments, Michaelides and Ng (2000) find

that PML as implemented by Deaton and Laroque (1995, 1996) is more efficient than

the Simulated Method of Moments estimator of Duffie and Singleton (1993), the Indirect

Inference estimator of Gourieroux, Monfort, and Renault (1993), and the Efficient Method

of Moments estimator of Gallant and Tauchen (1996) in estimating a storage model with

linear demand, fixed interest rate and storage cost consisting only of proportional decay of

the amount stored. In this section we compare the small sample performance of the ML

estimator with that of PML. In evaluating estimates of the cutoff price p∗ we also consider

Generalized Method of Moments (GMM).

(Table 1 here)

η̂. A consistent estimate of the variance covariance matrix V of the original parameters is

obtained using the delta method, as:

V = DWD′

where D is a diagonal matrix of the derivatives of the transformation functions:

D =



































1 0 0 0

0 −eη̂2 0 0

0 0 eη̂3 0

0 0 0 eη̂4



































.
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We conduct two Monte Carlo experiments.14 The first maintains the same

parameterization as Michaelides and Ng (2000) for samples of size 100. Table 1 shows

that our ML estimator yields quite precise estimates of the parameters of the model on

samples of this size. The Root Mean Square Error (RMSE) for each estimated parameter is

substantially lower than the corresponding value obtained using the PML estimator. Note

that both use identical information on the structure of the model that generates the data.

Table 1 also shows the superior precision of the ML estimates of the stockout price p∗, a key

parameter of this model: the RMSE is reduced from 7.53% of the true value with PML to

2.24% with ML. Figure 2 highlights the greater precision of the ML estimates of p∗; indeed

PML, though imposing more structure in the estimation procedure, does not perform much

better than the parsimonious GMM.

14In each experiment, for a given set of parameters we solve for the SREE price function,

set initial stocks at zero and generate a series of prices using a series of independent draws

from the standard normal distribution of the harvest. We then apply ML, PML and GMM

to the simulated series of prices. In applying the ML estimator, one difference from the

econometric procedure described in the previous section must be noted. Free disposal and

the fact that the support of the harvest distribution is unbounded imply that zero prices

have positive probability when k > 0, and therefore the simulated series might include price

realizations equal to zero. Recognizing this possibility, we form the log-likelihood of a given

sample of prices pt, t = 0, 1, . . . , T as:

lnL(θ|p0, . . . , pT ) =
T
∑

t=1

{

✶{pt=0|pt−1} ln Prob(pt = 0|pt−1) +

✶{pt>0|pt−1}

[

lnφ
(

f−1(pt)− (1− d)
(

f−1(pt−1)− F−1(pt−1)
))

+ ln |Jt|
]

}

,

where ✶ is the indicator function.
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(Figure 2 here)

This first Monte Carlo experiment uses a parameterization that implies low average

storage and frequent stockouts. The mean of the serial correlations measured on all possible

consecutive samples of length 108 taken from a series of 300,000 prices generated with this

parameterization is 0.2535, much lower for example than 0.6451, the value observed in the

sugar price data we introduce in section 5.

To explore the small sample performance of our ML estimator in a model in which

storage plays a greater role, the next Monte Carlo experiment uses a specification in

which consumption demand is steeper and storage is more frequent. We set a = 1,

b = −2, k = 0.02 and d = 0. The results are summarized in table 2. With this second

parameterization, the overall precision is lower for all considered estimators.15 The kernel

densities of the estimates of p∗ reported in figure 3 confirm the fundamental result that

ML dominates PML in terms of the RMSE of all estimated parameters.16 The fatter tails

of the density of the estimates of p∗ obtained with PML (the dashed line in figure 3), and

the skewness of the price distribution, together imply that PML tends to overestimate the

number of stockouts, as shown in figure 4. This figure illustrates the histogram of the

number of stockouts occurring in the samples of simulated prices used in the Monte Carlo

experiment, based on the true value of p∗. The figure also shows the histograms of the

number of stockouts in the same samples as implied by the estimates of p∗ obtained using

ML, PML and GMM respectively.

15This appears to be related to the fact that, with this parameterization, in each sam-

ple there are likely to be fewer observations in the stockout region, so estimation of the

consumption demand parameters is more difficult.

16In evaluating the RMSE for k as a percentage of the true value, note that the latter,

0.02, is only about two percent of the mean price implied by this parameterization.



– 15 –

(Table 2 here)

(Figure 3 here)

The means of the distributions reported on the horizontal axis of figure 4 show that,

in these samples, ML predicts the average number of stockouts much more accurately than

PML and GMM.

(Figure 4 here)

5. Data

We use the sugar price time series presented in Pfaffenzeller, Newbold, and Rayner

(2007) and extend it from 2003 to 2009 using sugar price data provided by the World Bank,

Development Prospects Group. We use the monthly figures reported in the World Bank

“Pink Sheets” as: “Sugar (world), International Sugar Agreement (ISA) daily price, raw,

f.o.b. and stowed at greater Caribbean ports”, take their annual calendar average, and then

divide them by the 1977-79 average, consistently with the description given in Pfaffenzeller,

Newbold, and Rayner (2007). We deflate the nominal values by the corresponding annual

average of the United States Consumer Price Index reported by the US Bureau of Labor

Statistics.

Previous studies of real price series for many commodities and for aggregate commodity

price indexes have identified a structural break between 1920 and 1921.17 Accordingly, we

use data for the period 1921-2009. The real sugar price index we use is plotted in figure 5.

(Figure 5 here)

17See Grilli and Yang (1988); Cuddington and Urzúa (1989); Helg (1991); Ardeni and

Wright (1992); Cuddington, Ludema, and Jayasuriya (2002); Zanias (2005), among others.
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This series exhibits occasional sharp spikes interspersed among longer periods of lower

variability. The positive skewness in the series is typical of what one might expect from

intertemporal arbitrage via storage, occasionally interrupted by stockouts.

6. Estimation results

Table 3 reports ML, PML and GMM estimates obtained on the real sugar price series.

The first panel shows the ML estimates of a, b, k and d. As the estimate of d is not

significantly different from zero, we present in the second panel ML estimates with d set at

zero. The latter imply a cutoff price p∗ that is 82.7% above the sample mean, and stockouts

in 1923, 1962, 1974, 1975, and 1980, the same years as implied by the GMM estimate of p∗.

(Table 3 here)

One implication of this model is that, beginning in any period in which the current

price is above p∗, the discounted expected price for the following period, net of storage

cost, equals p∗. An informal check of this implication is to calculate the discounted mean of

prices observed immediately following periods in which price is at or above the estimated

p∗, and compare the result, net of storage cost, to p∗. Using the ML estimate of p∗, 0.8914,

the discounted mean, net of storage cost, of the small sample of prices in periods following

stockouts is 0.8823− 0.0110 = 0.8713.

By contrast, the lower PML estimates of p∗ imply eleven stockouts over the sample

interval. Conducting the above informal check with the PML estimate of p∗, 0.7932, the

discounted mean of prices following each of the eleven stockout years, net of storage cost,

is 0.8738 − 0.0071 = 0.8667, substantially above the estimated p∗. The results in table 3

suggest that PML underestimates p∗, thus overstating the number of stockouts, consistent

with the Monte Carlo evidence presented in section 4. Note that a lower p∗ implies lower
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autocorrelation.

To assess how well the estimated model reproduces the mean, first and second order

autocorrelation, coefficient of variation, skewness and kurtosis of our data, we simulate one

long series of 300,000 prices using the estimated parameters, and extract from it all possible

sequential samples of 89 prices. Table 4 reports values measured on the observed price

sample, and the corresponding percentiles of the simulated distributions depicted in figure

6. It is clear that the estimated model reproduces these features of the sugar price series

very well.

(Table 4 here)

(Figure 6 here)

7. Implications for price dynamics

The estimated equilibrium price function depicted in figure 7 has important implications

for the dynamics of prices in this model and their relation to the realization of shocks.18

(Figure 7 here)

The estimated inverse consumption demand for sugar is much steeper than the market

equilibrium function below p∗. This means that price is much more responsive to harvest

shortfalls when price is high and there are no stocks. Then available supply equals the

harvest and price is given by a point on the consumption demand at or above p∗ = 0.8914.

Next period, if the harvest realization is at its mean, µ (here normalized at zero), availability

again equals the current harvest and the price falls to f(µ) = 0.7767 (point C). If the

harvest is one standard deviation below the mean, since there are no stocks, the full impact

18In figure 7, quantities are measured in units of standard deviation, net of mean harvest.
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of the shock falls on consumption forcing the price to jump to F (µ − σ) = 1.4521 (point

E). The maximum price jump that may be caused from such a harvest realization occurs if

the initial price is at p∗. It is equal to F (µ− σ)− p∗ = 1.4521− 0.8914 = 0.5607, a jump of

62.9%.

The natural tendency to infer the size of supply shocks from the size of price jumps

can be very misleading. Consider an initial situation in which consumption equals mean

harvest, µ. This would occur when available supply is at zA = 1.5235 and price is

f(zA) = F (µ) = 0.4804 (point A). In this situation, should the next harvest realization

equal the mean, carryout stocks, consumption and price would remain the same. On the

other hand, a harvest one standard deviation below the mean results in an available supply

of (zA − σ) = 0.5235, and a price of f(zA − σ) = 0.6577 (point A′). In this case, the rise

in price is f(zA − σ)− f(zA) = 0.6577− 0.4804, an increase of 0.1773, 36.9% of the initial

price, and only about one third of the maximum price jump that could occur after a harvest

of (µ− σ), as discussed above. A second harvest outcome of (µ− σ) would induce a slightly

larger price rise, moving the equilibrium to point A′′. Thus, starting at point A where price

is at the mean, even two successive harvests of one standard deviation below the mean are

not sufficient to induce a stockout. However, a third repetition of a harvest of (µ−σ) would

induce a stockout and a price jump of almost 60% to point H on the consumption demand

curve F . Starting from the same point A, if the initial harvest is two standard deviations

below the mean, the price jumps by 0.4638, from f(zA) = 0.4804 to f(zA − 2σ) = 0.9442,

(point A′′′), above p∗. A repetition of the same very low harvest outcome causes a much

larger jump, 1.4796, to F (µ − 2σ) = 2.4238. (See point M on the consumption demand

curve.)
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8. Conclusions

Our results establish the empirical relevance of storage in determining commodity price

behavior. The dynamics of commodity prices can be quite different from those of the shocks

that drive them.

One crucial implication of the model is that commodity prices follow two regimes,

depending upon whether or not current price is low enough to motivate carrying stocks

into the next period. The ability to locate the cutoff price at which discretionary stocks go

to zero is thus fundamental for the evaluation of the estimator. On price samples of sizes

typically available from commodity markets, our ML estimator identifies the cutoff price far

more precisely than estimators previously proposed.

Application of our ML estimator to a series of annual sugar prices from 1921 to 2009

produces estimates consistent with the observed highly skewed long-run distribution of

prices. The implied estimate of the cutoff price indicates only five stockouts over the entire

period. Stocks are carried most of the time, but when a stockout occurs the steepness

of the consumption demand makes the market price extremely sensitive to shocks in net

supply. The correlation implied by the model is regime-dependent; we find no indication

that, during a stockout, the discounted net price in the next period is correlated with the

current price.

Our results indicate that speculative storage has a highly stabilizing effect on sugar

prices.
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A. Proof of the Theorem

Consider the function γ : [0, supF (Z)) → ❘, defined by:

γ(p) ≡

(

1− d

1 + r

)

E[ϕ(p, ω)],

with

ϕ(p, ω) ≡















F (ω), if ω ≤ F−1(p)

p, if ω > F−1(p),

where E denotes the expectation taken with respect to the random variable ω.

Claim 1. γ has a unique fixed point p̂ ∈ (0, supF (Z)). p < γ(p) ∀ p < p̂, and

p > γ(p) ∀ p > p̂.

Proof of Claim 1. Since E(F (ω)) ∈ ❘, γ(p) ∈ ❘, ∀ p ∈ [0, supF (Z)). Note that

γ(0) ≥

(

1− d

1 + r

)

EF (ω) > k ≥ 0, and limp↑supF (Z)(γ(p)− p) < 0. By continuity of γ, there

exists p̂ such that γ(p̂) = p̂.

For p ∈ [0, p̂), ϕ(p̂, ω) − ϕ(p, ω) ≤ p̂− p, ∀ ω, and therefore:

γ(p̂)− γ(p) =

(

1− d

1 + r

)

E[ϕ(p̂, ω) − ϕ(p, ω)] ≤

(

1− d

1 + r

)

(p̂− p) < p̂− p,

thus, p < γ(p).

A similar argument establishes that p > γ(p) for p ∈ (p̂,∞).

Define the space:

G ≡ {g : Z → [0,∞) : g is continuous, non-increasing, g ≥ F, and g(z) = F (z), ∀ z ≤ F−1(p̂)}.

This manuscript was prepared with the AAS LATEX macros v5.2.
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G is a complete metric space with the metric:

||g1 − g2||∞ ≡ sup
z∈Z

|g1(z)− g2(z)| = sup
z≥F−1(p̂)

|g1(z)− g2(z)| ≤ p̂ < ∞.

Given g ∈ G, define G : Y ≡ {(p, z) : z ∈ Z, max{F (z), 0} ≤ p < supF (Z)} → ❘,

G(p, z) ≡

(

1− d

1 + r

)

Eg{ω + (1− d)x(p, z)} − k,

with

x(p, z) ≡















z − F−1(p), if z < z∗g

z∗g − F−1(p), if z ≥ z∗g ,

and

z∗g ≡ inf

{

z ≥ F−1(0) :

(

1− d

1 + r

)

Eg{ω + (1− d)(z − F−1(0))} − k = 0

}

.

Given g ∈ G, define Tg by:

Tg(z) = max {G(Tg(z), z), F (z)} , z ∈ Z. (A1)

Claim 2. Given g ∈ G, there exists a unique Tg that satisfies (A1), Tg ∈ G, and:

Tg(z) =















F (z), if z ≤ F−1
((

1−d
1+r

)

Eg(ω)− k
)

,

G(Tg(z), z), if z > F−1
((

1−d
1+r

)

Eg(ω)− k
)

.

Proof of Claim 2. The facts that Eg(ω) < ∞, and that x = x(p, z) and g = g(z) are

continuous, imply that G = G(p, z) is continuous. Clearly G = G(p, z) is non-increasing in

p and z. Given z ∈ Z, with F (z) <∞, to establish existence and uniqueness of Tg(z), note

that Tg(z) is the root of ψz(p) ≡ max{G(p, z)− p, F (z)− p}. ψz is strictly decreasing and

continuous, and

ψz

(

[

max{F (z), 0}, supF (Z)
)

)

=

(

Az, ψz

(

max{F (z), 0}
)

]

,

where Az < 0.

To evaluate ψz

(

max{F (z), 0}
)

we consider three cases:
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Case 1. z ≤ F−1(0) :

ψz

(

max{F (z), 0}
)

= max
{(

1−d
1+r

)

Eg(ω)− k − F (z), 0
}

.

If F (z) ≥
(

1−d
1+r

)

Eg(ω)− k, then ψz

(

F (z)
)

= 0, and Tg(z) = F (z).

If F (z) <
(

1−d
1+r

)

Eg(ω) − k, then ψz

(

F (z)
)

> 0, and Tg(z) satisfies Tg(z) =

G
(

Tg(z), z
)

.

Case 2. F−1(0) < z < z∗g :

ψz

(

max{F (z), 0}
)

= ψz(0) = max {G(0, z), F (z)} = G(0, z) > 0, then Tg(z) satisfies

Tg(z) = G
(

Tg(z), z
)

.

Case 3. z ≥ z∗g :

ψz

(

max{F (z), 0}
)

= ψz(0) = max {G(0, z), F (z)} = G(0, z) =

=

(

1− d

1 + r

)

Eg
{

ω + (1− d)(z∗g − F−1(0))
}

− k = 0, then Tg(z) = 0 and satisfies

Tg(z) = G
(

Tg(z), z
)

.

To see that Tg(z) is continuous and non-increasing, note that max{G(p, z)−p, F (z)−p}

is continuous and non-increasing.

Since

(

1− d

1 + r

)

Eg(ω) − k ≤

(

1− d

1 + r

)

Eg(ω) ≤ γ(p̂) = p̂, we conclude that

Tg(z) = F (z), ∀ z ≤ F−1(p̂).

A standard argument shows that if g1, g2 ∈ G and α ≡ ||g1 − g2||∞, then:

||Tg1 − Tg2||∞ ≤

(

1− d

1 + r

)

α,

thus T is a contraction.

The SREE f is the unique fixed point of T. Indeed, take h : Z → (−∞,∞] to be any

continuous, non-increasing function that satisfies (1) and (2), that is:

h(z) = max

{(

1− d

1 + r

)

Eh
(

ω + (1− d)x(z)
)

− k, F (z)

}

,
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and

x(z) =















z − F−1
(

h(z)
)

, if z < z∗ ≡ inf{z : h(z) = 0}

z∗ − F−1(0), if z ≥ z∗.

We now prove that h(z) = F (z), ∀ z ≤ F−1(p̂).

Let p∗h ≡

(

1− d

1 + r

)

Eh(ω) − k. Since h(z) = F (z) ∀ z ≤ F−1(p∗h), it follows that

h(ω) ≤ ϕ(p∗h, ω), for any ω in its support, and p∗h ≤ γ(p∗h). Therefore, p∗h ≤ p̂, concluding

that h ∈ G.

f is strictly decreasing whenever it is strictly positive: If not, since f is non-increasing,

there is an interval where f is a positive constant. We have two cases:

Case 1. Suppose there exists a first interval I ≡ [z′, z′′] where f is constant. Let

B ≡ f(z′), ∀ z ∈ I,

B = f(z) =

(

1− d

1 + r

)

Ef
(

ω + (1− d)
(

z − F−1(B)
))

− k.

Since f is non-increasing, f (ω + (1− d) (z − F−1(B))) is constant (≤ B), for z ∈ I,

for any ω in its support. Therefore, B ≤
(

1−d
1+r

)

B − k, a contradiction.

Case 2. Suppose there is no first interval where f is constant.

Let I ≡ {I : I is an interval where f is constant} and let f̄ ≡ sup{f(z) : z ∈

I and I ∈ I}. Since there is no first interval where f is constant, f̄ is accumulated by

a sequence of values of f in I, I ∈ I.

Take any ǫ > 0 and consider an interval I such that the value of f in I is ≥ f̄ − ǫ. Let

B ≡ value of f in I. ∀z ∈ I,

B = f(z) =

(

1− d

1 + r

)

Ef
(

ω + (1− d)
(

z − F−1(B)
))

− k.
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Since f is non-increasing, f (ω + (1− d) (z − F−1(B))) is constant for z ∈ I, for any

ω in its support, and

f
(

ω + (1− d)
(

z − F−1(B)
))

≤ f̄ .

Therefore,

B ≤

(

1− d

1 + r

)

f̄ − k,

and then,

B ≤

(

1− d

1 + r

)

(B + ǫ)− k.

Since ǫ > 0 is arbitrary, we obtain a contradiction.

The equilibrium level of inventories, x(z), is strictly increasing for z in [F−1(p∗), z∗):

Let z1 < z2 in [F−1(p∗), z∗). Since f is strictly decreasing in this interval, f(z1) > f(z2).

Therefore,

(

1− d

1 + r

)

Ef (ω + (1− d)x(z1))− k >

(

1− d

1 + r

)

Ef (ω + (1− d)x(z2))− k,

which implies that x(z1) < x(z2).
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Table 1. Monte Carlo experiment with the parameterization of Michaelides and Ng (2000)†

Estimator Parameters

a b d p∗

ML

mean 0.6010 -0.2968 0.1015 0.5820

st. dev. 0.0187 0.0236 0.0155 0.0130

bias 0.0010 0.0032 0.0015 -0.0020

(0.17%) (1.08%) (1.54%) (-0.33%)

RMSE 0.0187 0.0238 0.0156 0.0131

(3.11%) (7.92%) (15.58%) (2.24%)

PML

mean 0.5995 -0.2919 0.1037 0.5782

st. dev. 0.0291 0.0478 0.0364 0.0436

bias -0.0005 0.0081 0.0037 -0.0058

(-0.08%) (2.71%) (3.70%) (-1.01%)

RMSE 0.0291 0.0476 0.0371 0.0440

(4.85%) (15.87%) (37.15%) (7.53%)

GMM‡

mean n.a. n.a. 0.1113 0.5710

st. dev. n.a. n.a. 0.0431 0.0471

bias n.a. n.a. 0.0113 -0.0130

(11.28%) (-2.22%)

RMSE n.a. n.a. 0.0446 0.0488
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Table 1—Continued

Estimator Parameters

a b d p∗

(44.56%) (8.35%)

†True values: a = 0.6, b = −0.3, d = 0.1,

with r fixed at 0.05 as in Michaelides and Ng

(2000). These values imply p∗ = 0.5840.

‡For GMM, the estimated value of d is in-

ferred from the estimate of the parameter γ =

(1 + r)/(1− d).

Note. — Monte Carlo experiments selecting

500 valid replications, as in Michaelides and Ng

(2000), and sample size 100. The starting values

are randomly chosen in the range between 90%

and 110% of the true values. When any one of

the estimators did not converge, the sample was

discarded.
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Table 2. Comparison of Monte Carlo experiment results†

Estimator Parameters

a b k p∗

ML

mean 1.0148 -1.9449 0.0244 1.8278

st. dev. 0.1437 0.3264 0.0138 0.1596

bias 0.0148 0.0551 0.0044 -0.0239

(1.48%) (2.75%) (21.89%) (-1.29%)

RMSE 0.1444 0.3310 0.0143 0.1614

(14.44%) (16.55%) (71.35%) (8.71%)

PML

mean 1.0443 -1.9954 0.0273 1.8776

st. dev. 0.2260 0.7852 0.0200 0.4766

bias 0.0443 0.0046 0.0073 0.0259

(4.43%) (0.23%) (36.73%) (1.40%)

RMSE 0.2303 0.7852 0.0213 0.4773

(23.03%) (39.26%) (106.51%) (25.77%)

GMM

mean n.a. n.a. 0.0397 1.7881

st. dev. n.a. n.a. 0.0450 0.4298

bias n.a. n.a. 0.0197 -0.0636

(98.44%) (-3.44%)

RMSE n.a. n.a. 0.0491 0.4344
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Table 2—Continued

Estimator Parameters

a b k p∗

(245.73%) (23.46%)

†True values: a = 1, b = −2, k = 0.02 and

d = 0, which imply p∗ = 1.8517. Monte Carlo

experiments with 1859 replications and sample size

108. The starting values are randomly chosen in

the range between minus and plus twenty percent

of the true values. When the optimization routine

did not converge, the estimation was discarded. In

the end, we had a total of 1809 valid estimations for

ML, 1605 for PML and 1810 for GMM. The table

reports the 1533 estimates obtained on common

samples. Including all valid estimations for each

method does not change the results noticeably.
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Table 3. Estimation results

a b k d log(L) p∗ no. of stockouts

ML

0.4793 -0.9810 0.0108 0.0033 61.1976 0.8913 5

(0.0731) (0.1320) (0.0078) (0.0256)

ML, setting d = 0

0.4804 -0.9717 0.0110 – 61.1835 0.8914 5

(0.0729) (0.1085) (0.0076)

PML

0.4182 -0.9049 0.0076 0.0187 38.0746 0.7888 11

(0.0768) (0.2549) (0.0062) (0.0393)

PML, setting d = 0

0.3867 -0.9183 0.0071 – 37.8381 0.7932 11

(0.1718) (0.3267) (0.0089)

GMM, imposing (1 + r)/(1− d) = 1.05 and k ≥ 0.†

– – 0.00 – – 1.0315 5

– – – (0.4041)

†The OID statistic is 6.4076, above the 5% critical value for the relevant χ2

distribution.

Note. — Asymptotic standard errors in parentheses.
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Table 4. Comparison of data features and model predictions

Mean 1st order a.c. 2nd order a.c. C.V. Skewness Kurtosis

Actual values 0.4879 0.6451 0.3464 0.6795 2.7295 11.2492

Percentiles† 53.404 62.677 29.450 66.300 70.640 75.844

†Percentiles of the distributions of mean, first and second order autocorrelation, coefficient of

variation, skewness and kurtosis, obtained by calculating those values from all possible consecutive

sequences of length 89 taken from a simulated series of 300,000 prices using the parameters’

estimates in table 3, panel 2.
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Fig. 1.— The log-likelihood function in (a, b) space evaluated at k = 0.011, d = 0, using

sugar prices for the period 1921-2009
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Fig. 2.— Kernel densities of p∗ estimates with alternative estimators†

0.4 0.584 0.8
0

5

10

15

20

25

30

35

40

45

 

 

ML

PML

GMM

† Monte Carlo experiment with sample size 100 and parameters a = 0.6, b = −0.3, k = 0 and d = 0.1, as in

Michaelides and Ng (2000).
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Fig. 3.— Kernel densities of p∗ obtained with alternative estimators†
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Fig. 4.— Frequencies of occurrence of stockouts in the simulated price samples†
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† The figure shows the mean number of stockouts and the histograms of the actual number of stockouts

occurring in the simulated price samples using the true value of p∗, and of the predicted numbers of stockouts

using the p∗ obtained with alternative estimators on the same set of simulated price samples in the Monte

Carlo experiment with sample size of 108 and parameters a = 1, b = −2, k = 0.02 and d = 0. Each line in

the figure connects the middle points of the tops of the histogram bars.
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Fig. 5.— Deflated Sugar Price Series
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Fig. 6.— Predicted distributions of small sample price characteristics, using the ML

estimates†
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† The figure is based on the estimates reported in panel 2 of table 3. In each figure, the grid on the horizontal

axis reports the minimum, the 5th percentile, the 95th percentile and the maximum of the values obtained

on all possible subsamples of 89 consecutive prices extracted from a series of 300,000 prices simulated using

a model parameterized with the estimated values. The value observed on the actual series of sugar prices is

reported in boldface.
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Fig. 7.— Equilibrium price function for sugar, estimated with ML, setting d = 0†
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† The horizontal axis measures quantities in units of standard deviation, net of mean harvest.


