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Abstract

We describe a machine learning approach

for the 2017 shared task on Native Lan-

guage Identification (NLI). The proposed

approach combines several kernels using

multiple kernel learning. While most

of our kernels are based on character

p-grams (also known as n-grams) ex-

tracted from essays or speech transcripts,

we also use a kernel based on i-vectors,

a low-dimensional representation of au-

dio recordings, provided by the shared

task organizers. For the learning stage,

we choose Kernel Discriminant Analy-

sis (KDA) over Kernel Ridge Regression

(KRR), because the former classifier ob-

tains better results than the latter one

on the development set. In our previ-

ous work, we have used a similar ma-

chine learning approach to achieve state-

of-the-art NLI results. The goal of this

paper is to demonstrate that our shallow

and simple approach based on string ker-

nels (with minor improvements) can pass

the test of time and reach state-of-the-

art performance in the 2017 NLI shared

task, despite the recent advances in natu-

ral language processing. We participated

in all three tracks, in which the competi-

tors were allowed to use only the essays

(essay track), only the speech transcripts

(speech track), or both (fusion track). Us-

ing only the data provided by the orga-

nizers for training our models, we have

reached a macro F1 score of 86.95% in

the closed essay track, a macro F1 score

of 87.55% in the closed speech track, and

a macro F1 score of 93.19% in the closed

∗ The authors have equally contributed to this work.

fusion track. With these scores, our team

(UnibucKernel) ranked in the first group

of teams in all three tracks, while attain-

ing the best scores in the speech and the

fusion tracks.

1 Introduction

Native Language Identification (NLI) is the task of

identifying the native language (L1) of a person,

based on a sample of text or speech they have pro-

duced in a language (L2) other than their mother

tongue. This is an interesting sub-task in forensic

linguistic applications such as plagiarism detec-

tion and authorship identification, where the native

language of an author is just one piece of the puz-

zle (Estival et al., 2007). NLI can also play a key

role in second language acquisition (SLA) appli-

cations where NLI techniques are used to identify

language transfer patterns that help teachers and

students focus feedback and learning on particu-

lar areas of interest (Rozovskaya and Roth, 2010;

Jarvis and Crossley, 2012).

In 2013, Tetreault et al. (2013) organized the

first NLI shared task, providing the participants

written essays of non-native English learners. In

2016, the Computational Paralinguistics Chal-

lenge (Schuller et al., 2016) included a shared task

on NLI based on the spoken response of non-

native English speakers. The 2017 NLI shared

task (Malmasi et al., 2017) attempts to combine

these approaches by including a written response

(essay) and a spoken response (speech transcript

and i-vector acoustic features) for each subject.

Our team (UnibucKernel) participated in all three

tracks proposed by the organizers of the 2017 NLI

shared task, in which the competitors were al-

lowed to use only the essays (closed essay track),

only the speech transcripts (closed speech track),

or both modalities (closed fusion track).

Our approach in each track combines two or
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more kernels using multiple kernel learning. The

first kernel that we considered is the p-grams pres-

ence bits kernel1, which takes into account only

the presence of p-grams instead of their frequency.

The second kernel is the (histogram) intersection

string kernel2, which was first used in a text min-

ing task by Ionescu et al. (2014). While these

kernels are based on character p-grams extracted

from essays or speech transcrips, we also use an

RBF kernel (Shawe-Taylor and Cristianini, 2004)

based on i-vectors (Dehak et al., 2011), a low-

dimensional representation of audio recordings,

made available by the 2017 NLI shared task orga-

nizers (Malmasi et al., 2017). We have also con-

sidered squared RBF kernel versions of the string

kernels and the kernel based on i-vectors. We

have taken into consideration two kernel classi-

fiers (Shawe-Taylor and Cristianini, 2004) for the

learning task, namely Kernel Ridge Regression

(KRR) and Kernel Discriminant Analysis (KDA).

In a set of preliminary experiments performed on

the development set, we found that KDA gives bet-

ter results than KRR, which is consistent with our

previous work (Ionescu et al., 2014, 2016). There-

fore, we decided to submit results using just the

KDA classifier. We have also tuned the range of

p-grams for the string kernels. Using only the data

provided by the organizers for training our models,

we have reached a weighted F1 score of 86.95%
in the essay track, a weighted F1 score of 87.55%
in the speech track, and a weighted F1 score of

93.19% in the fusion track.

The first time we used string kernels for NLI, we

placed third in the 2013 NLI shared task (Popescu

and Ionescu, 2013). In 2014, we improved

our method and reached state-of-the-art perfor-

mance (Ionescu et al., 2014). More recently, we

have shown that our method is language indepen-

dent and robust to topic bias (Ionescu et al., 2016).

However, with all the improvements since 2013,

our method remained a simple and shallow ap-

proach. In spite of its simplicity, the aim of this

paper is to demonstrate that our approach can still

achieve state-of-the-art NLI results, 4 years after

its conception.

The paper is organized as follows. Related work

on native language identification and string ker-

nels is presented in Section 2. Section 3 presents

1We computed the p-grams presence bits kernel using the
code available at http://string-kernels.herokuapp.com.

2We computed the intersection string kernel using the
code available at http://string-kernels.herokuapp.com.

the kernels that we used in our approach. The

learning methods used in the experiments are de-

scribed in Section 4. Details about the NLI exper-

iments are provided in Section 5. Finally, we draw

conclusions and discuss future work in Section 6.

2 Related Work

2.1 Native Language Identification

As defined in the introduction, the goal of auto-

matic native language identification (NLI) is to de-

termine the native language of a language learner,

based on a piece of writing or speech in a foreign

language. Most research has focused on identify-

ing the native language of English language learn-

ers, though there have been some efforts recently

to identify the native language of writing in other

languages, such as Chinese (Malmasi and Dras,

2014b) or Arabic (Malmasi and Dras, 2014a).

The first work to study automated NLI was that

of Tomokiyo and Jones (2001). In their study, a

Naı̈ve Bayes model is trained to distinguish speech

transcripts produced by native versus non-native

English speakers. A few years later, a second

study on NLI appeared (Jarvis et al., 2004). In

their work, Jarvis et al. (2004) tried to determine

how well a Discriminant Analysis classifier could

predict the L1 language of nearly five hundred

English learners from different backgrounds. To

make the task more challenging, they included

pairs of closely related L1 languages, such as Por-

tuguese and Spanish. The seminal paper by Kop-

pel et al. (2005) introduced some of the best-

performing features for the NLI task: character,

word and part-of-speech n-grams along with fea-

tures inspired by the work in the area of second

language acquisition such as spelling and gram-

matical errors. In general, most approaches to

NLI have used multi-way classification with SVM

or similar models along with a range of linguistic

features. The book of Jarvis and Crossley (2012)

presents some of the state-of-the-art approaches

used up until 2012. Being the first book of its

kind, it focuses on the automated detection of L2

language-use patterns that are specific to differ-

ent L1 backgrounds, with the help of text classi-

fication methods. Additionally, the book presents

methodological tools to empirically test language

transfer hypotheses, with the aim of explaining

how the languages that a person knows interact in

the mind.

In 2013, Tetreault et al. (2013) organized the
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first shared task in the field. This allowed re-

searchers to compare approaches for the first time

on a specifically designed NLI corpus that was

much larger than previously available data sets. In

the shared task, 29 teams submitted results for the

test set, and one of the most successful aspects

of the competition was that it drew submissions

from teams working in a variety of research fields.

The submitted systems utilized a wide range of

machine learning approaches, combined with sev-

eral innovative feature contributions. The best

performing system in the closed task achieved an

overall accuracy of 83.6% on the 11-way classifi-

cation of the test set, although there was no signif-

icant difference between the top teams. Since the

2013 NLI shared task, several systems (Bykh and

Meurers, 2014, 2016; Ionescu et al., 2014, 2016)

have reported results above the top scoring system

of the 2013 NLI shared task.

Another interesting linguistic interpretation of

native language identification data was only re-

cently addressed, specifically the analysis of sec-

ond language usage patterns caused by native lan-

guage interference. Usually, language transfer

is studied by Second Language Acquisition re-

searchers using manual tools. Language transfer

analysis based on automated native language iden-

tification methods has been the approach of Jarvis

and Crossley (2012). Swanson and Charniak

(2014) also define a computational methodology

that produces a ranked list of syntactic patterns

that are correlated with language transfer. Their

methodology allows the detection of fairly obvi-

ous language transfer effects, without being able

to detect underused patterns. The first work to ad-

dress the automatic extraction of underused and

overused features on a per native language basis

is that of Malmasi and Dras (2014c). The work

of Ionescu et al. (2016) also addressed the auto-

matic extraction of underused and overused fea-

tures captured by character p-grams.

2.2 String Kernels

In recent years, methods of handling text at

the character level have demonstrated impres-

sive performance levels in various text analysis

tasks (Lodhi et al., 2002; Sanderson and Guenter,

2006; Kate and Mooney, 2006; Grozea et al.,

2009; Popescu, 2011; Escalante et al., 2011;

Popescu and Grozea, 2012; Popescu and Ionescu,

2013; Ionescu et al., 2014, 2016; Giménez-Pérez

et al., 2017; Ionescu and Butnaru, 2017). String

kernels are a common form of using information

at the character level. They are a particular case

of the more general convolution kernels (Haus-

sler, 1999). Lodhi et al. (2002) used string kernels

for document categorization with very good re-

sults. String kernels were also successfully used in

authorship identification (Sanderson and Guenter,

2006; Popescu and Grozea, 2012). For exam-

ple, the system described by Popescu and Grozea

(2012) ranked first in most problems and overall in

the PAN 2012 Traditional Authorship Attribution

tasks. More recently, various blended string ker-

nels reached state-of-the-art accuracy rates for na-

tive language identification (Ionescu et al., 2014,

2016) and Arabic dialect identification (Ionescu

and Popescu, 2016; Ionescu and Butnaru, 2017).

String kernels have also been used for sentiment

analysis in various languages (Popescu et al.,

2017) and in cross-domain settings (Giménez-

Pérez et al., 2017).

3 Kernels for Native Language

Identification

3.1 String Kernels

The kernel function captures the intuitive notion

of similarity between objects in a specific domain

and can be any function defined on the respec-

tive domain that is symmetric and positive definite.

For strings, many such kernel functions exist with

various applications in computational biology and

computational linguistics (Shawe-Taylor and Cris-

tianini, 2004). String kernels embed the texts in a

very large feature space, given by all the substrings

of length p, and leave it to the learning algorithm

to select important features for the specific task,

by highly weighting these features.

The first kernel that we use in the NLI experi-

ments is the character p-grams presence bits ker-

nel. The feature map defined by this kernel as-

sociates to each string a vector of dimension |Σ|p

containing the presence bits of all its substrings of

length p (p-grams). Formally, for two strings over

an alphabet Σ, s, t ∈ Σ∗, the character p-grams

presence bits kernel is defined as:

k0/1

p (s, t) =
∑

v∈Σp

inv(s) · inv(t),

where inv(s) is 1 if string v occurs as a substring

in s, and 0 otherwise.
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The second kernel that we employ is the inter-

section string kernel introduced in (Ionescu et al.,

2014). The intersection string kernel is defined as

follows:

k∩

p (s, t) =
∑

v∈Σp

min{numv(s), numv(t)},

where numv(s) is the number of occurrences of

string v as a substring in s. Further details about

the string kernels for NLI are given in (Ionescu

et al., 2016). The efficient algorithm for com-

puting the string kernels is presented in (Popescu

et al., 2017).

Data normalization helps to improve machine

learning performance for various applications.

Since the value range of raw data can have large

variation, classifier objective functions will not

work properly without normalization. After nor-

malization, each feature has an approximately

equal contribution to the similarity between two

samples. To ensure a fair comparison of strings

of different lengths, normalized versions of the

p-grams presence bits kernel and the intersection

kernel are being used:

k̂0/1

p (s, t) =
k

0/1

p (s, t)
√

k
0/1

p (s, s) · k
0/1

p (t, t)

,

k̂∩

p (s, t) =
k∩

p (s, t)
√

k∩
p (s, s) · k∩

p (t, t)
.

Taking into account p-grams of different lengths

and summing up the corresponding kernels, new

kernels, termed blended spectrum kernels, can be

obtained. We have used various blended spectrum

kernels in the experiments in order to find the best

combination. Inspired by the success of Ionescu

and Butnaru (2017) in using a squared RBF kernel

based on i-vectors for Arabic dialect identification,

we have also tried out squared RBF versions of the

above kernels. We first compute the standard RBF

kernels as follows:

k̄0/1

p (s, t) = exp

(

−
1 − k̂0/1

p (s, t)

2σ2

)

,

k̄∩

p (s, t) = exp

(

−
1 − k̂∩

p (s, t)

2σ2

)

.

We then interpret the RBF kernel matrix as a

feature matrix, and apply the dot product to obtain

a linear kernel for this new representation:

K̄ = K · K ′.

The resulted squared RBF kernels are denoted

by (k̄
0/1

p )2 and (k̄∩

p )2, respectively.

3.2 Kernel based on Acoustic Features

For the speech and the fusion tracks, we also build

a kernel from the i-vectors provided by the orga-

nizers (Malmasi et al., 2017). The i-vector ap-

proach (Dehak et al., 2011) is a powerful speech

modeling technique that comprises all the updates

happening during the adaptation of a Gaussian

mixture model (GMM) mean components to a

given utterance. The provided i-vectors have 800

dimensions. In order to build a kernel from the

i-vectors, we first normalize the i-vectors using

the L2-norm, then we compute the euclidean dis-

tance between each pair of i-vectors. We next em-

ploy the RBF kernel (Shawe-Taylor and Cristian-

ini, 2004) to transform the distance into a similar-

ity measure:

k̂i-vec(x, y) = exp

















−

√

√

√

√

m
∑

j=1

(xj − yj)2

2σ2

















,

where x and y are two i-vectors and m represents

the size of the two i-vectors, 800 in our case. For

optimal results, we have tuned the parameter σ in

a set of preliminary experiments. We also interpret

the resulted similarity matrix as a feature matrix,

and we compute the product between the matrix

and its transpose to obtain the squared RBF kernel

based on i-vectors, denoted by (k̄i-vec)2.

4 Learning Methods

Kernel-based learning algorithms work by embed-

ding the data into a Hilbert feature space and by

searching for linear relations in that space. The

embedding is performed implicitly, by specify-

ing the inner product between each pair of points

rather than by giving their coordinates explicitly.

More precisely, a kernel matrix that contains the

pairwise similarities between every pair of train-

ing samples is used in the learning stage to assign

a vector of weights to the training samples.

Various kernel methods differ in the way they

learn to separate the samples. In the case of bi-

nary classification problems, kernel-based learn-

ing algorithms look for a discriminant function,
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a function that assigns +1 to examples belonging

to one class and −1 to examples belonging to the

other class. In the NLI experiments, we employed

the Kernel Ridge Regression (KRR) binary clas-

sifier. Kernel Ridge Regression selects the vector

of weights that simultaneously has small empiri-

cal error and small norm in the Reproducing Ker-

nel Hilbert Space generated by the kernel function.

KRR is a binary classifier, but native language

identification is usually a multi-class classification

problem. There are many approaches for com-

bining binary classifiers to solve multi-class prob-

lems. Typically, the multi-class problem is broken

down into multiple binary classification problems

using common decomposition schemes such as:

one-versus-all and one-versus-one. We considered

the one-versus-all scheme for our NLI task. There

are also kernel methods that take the multi-class

nature of the problem directly into account, for in-

stance Kernel Discriminant Analysis. The KDA

classifier is sometimes able to improve accuracy

by avoiding the masking problem (Hastie and Tib-

shirani, 2003). More details about the kernel clas-

sifiers employed for NLI are discussed in (Ionescu

et al., 2016).

5 Experiments

5.1 Data Set

The corpus provided for the 2017 NLI shared

task contains 13,200 multi-modal samples pro-

duces by speakers of the following 11 languages:

Arabic, Chinese, French, German, Hindi, Italian,

Japanese, Korean, Spanish, Telugu and Turkish.

The samples are split into 11,000 for training,

1100 for development and 1100 for testing. The

distribution of samples per prompt (topic) per na-

tive language is balanced. Each sample is com-

posed of an essay and an audio recording of a non-

native English learner. For privacy reasons, the

shared task organizers were not able to provide the

original audio recordings. Instead, they provided

a speech transcript and an i-vector representation

derived from the audio file.

5.2 Parameter and System Choices

In our approach, we treat essays or speech tran-

scripts as strings. Because the approach works

at the character level, there is no need to split

the texts into words, or to do any NLP-specific

processing before computing the string kernels.

Hence, we apply string kernels on the raw text

Kernel Accuracy

KRR KDA

k̂
0/1

5−9
82.18% 84.55%

k̂∩

5−9
81.91% 84.18%

Table 1: Accuracy rates of KRR versus KDA on

the essay development set.

samples, disregarding the tokenized version of the

samples. The only editing done to the texts was the

replacing of sequences of consecutive space char-

acters (space, tab, and so on) with a single space

character. This normalization was needed in or-

der to prevent the artificial increase or decrease of

the similarity between texts, as a result of different

spacing.

We used the development set for tuning the pa-

rameters of our approach. Although we have some

intuition from our previous work (Ionescu et al.,

2016) about the optimal range of p-grams that

can be used for NLI from essays, we decided to

carry out preliminary experiments in order to con-

firm our intuition. We also carried out prelimi-

nary experiments to determine the optimal range

of p-grams to be used for speech transcripts, a dif-

ferent kind of representation that captures other

features of the non-native English speakers. We

fixed the learning method to KDA based on the

presence bits kernel and we evaluated all the p-

grams in the range 3-9. For essays, we found that

p-grams in the range 5-9 work best, which con-

firms our previous results on raw text documents

reported in (Ionescu et al., 2016). For speech tran-

scripts, we found that longer p-grams are not help-

ful. Thus, the optimal range of p-grams is 5-7. In

order to decide which classifier gives higher accu-

racy rates, we carried out some preliminary exper-

iments using only the essays. The KRR and the

KDA classifiers are compared in Table 1. We ob-

serve that KDA yields better results for both the

blended p-grams presence bits kernel (k̂
0/1

5−9
) and

the blended p-grams intersection kernel (k̂∩

5−9
).

Therefore, we employ KDA for the subsequent

experiments. An interesting remark is that we

also obtained better performance with KDA in-

stead of KRR for the English L2, in our previous

work (Ionescu et al., 2016).

After fixing the classifier and the range of p-

grams for each modality, we conducted further ex-

periments to establish what type of kernel works

better, namely the blended p-grams presence bits
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Kernel Accuracy Track

k̂
0/1

5−9
84.55% Essay

k̂∩

5−9
84.18% Essay

k̂
0/1

5−9
+ k̂∩

5−9
85.18% Essay

(k̄
0/1

5−9
)2 85.45% Essay

(k̄∩

5−9
)2 85.09% Essay

(k̄
0/1

5−9
)2 + (k̄∩

5−9
)2 85.55% Essay

k̂
0/1

5−7
58.73% Speech

k̂∩

5−7
58.55% Speech

k̂i-vec 81.64% Speech

k̂
0/1

5−7
+ k̂∩

5−7
58.73% Speech

k̂
0/1

5−7
+ k̂i-vec

85.27% Speech

k̂∩

5−7
+ k̂i-vec 85.18% Speech

k̂
0/1

5−7
+ k̂∩

5−7
+ k̂i-vec 84.91% Speech

(k̄
0/1

5−7
)2 59.00% Speech

(k̄∩

5−7
)2 59.82% Speech

(k̄i-vec)2 81.55% Speech

(k̄
0/1

5−7
)2 + (k̄∩

5−7
)2 59.91% Speech

(k̄
0/1

5−7
)2 + (k̄i-vec)2 85.36% Speech

(k̄∩

5−7
)2 + (k̄i-vec)2 85.27% Speech

(k̄
0/1

5−7
)2 + (k̄∩

5−7
)2 + (k̄i-vec)2 85.45% Speech

k̂
0/1

5−9
+ k̂∩

5−9
+ k̂

0/1

5−7
+ k̂i-vec 91.64% Fusion

k̂
0/1

5−9
+ k̂

0/1

5−7
+ k̂i-vec

92.09% Fusion

(k̄
0/1

5−9
)2 + (k̄∩

5−9
)2 + (k̄

0/1

5−7
)2 + (k̄∩

5−7
)2 + (k̄i-vec)2 91.72% Fusion

Table 2: Accuracy rates on the NLI development set obtained by KDA based on various kernels for the

essay, the speech and the fusion tracks. The submitted systems are highlighted in bold.

kernel, the blended p-grams intersection kernel,

or the kernel based on i-vectors. We also in-

cluded squared RBF versions of these kernels.

Since these different kernel representations are ob-

tained either from essays, speech transcripts or

from low-level audio features, a good approach

for improving the performance is combining the

kernels. When multiple kernels are combined,

the features are actually embedded in a higher-

dimensional space. As a consequence, the search

space of linear patterns grows, which helps the

classifier in selecting a better discriminant func-

tion. The most natural way of combining two or

more kernels is to sum them up. Summing up

kernels or kernel matrices is equivalent to feature

vector concatenation. The kernels were evaluated

alone and in various combinations, by employing

KDA for the learning task. All the results obtained

on the development set are given in Table 2.

The empirical results presented in Table 2 re-

veal several interesting patterns of the proposed

methods. On the essay development set, the pres-

ence bits kernel gives slightly better results than

the intersection kernel. The combined kernels

yield better performance than each of the indi-

vidual components, which is remarkably consis-

tent with our previous works (Ionescu et al., 2014,

2016). For each kernel, we obtain an improvement

of up to 1% by using the squared RBF version.

The best performance on the essay development

set (85.55%) is obtained by sum of the squared

RBF presence bits kernel and the squared RBF

intersection kernel. On the speech track, the re-

sults are fairly similar among the string kernels,

but the kernel based on i-vectors definitely stands

out. Indeed, the best individual kernel is the ker-

nel based on i-vectors with an accuracy of 81.64%.

By contrast, the best individual string kernel is the

squared RBF intersection kernel, which yields an

accuracy of 59.82%. Thus, it seems that the char-

acter p-grams extracted from speech transcripts

do not provide enough information to accurately
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Kernel Accuracy F1 (macro) Track Rank

k̂
0/1

5−9
+ k̂∩

5−9
86.91% 86.95% Essay 1st

(k̄
0/1

5−9
)2 + (k̄∩

5−9
)2 86.91% 86.95% Essay 1st

k̂
0/1

5−7
+ k̂i-vec 87.55% 87.55% Speech 1st

(k̄
0/1

5−7
)2 + (k̄∩

5−7
)2 + (k̄i-vec)2 87.45% 87.45% Speech 1st

k̂
0/1

5−9
+ k̂

0/1

5−7
+ k̂i-vec 93.18% 93.19% Fusion 1st

(k̄
0/1

5−9
)2 + (k̄∩

5−9
)2 + (k̄

0/1

5−7
)2 + (k̄∩

5−7
)2 + (k̄i-vec)2 93.00% 93.01% Fusion 1st

Table 3: Accuracy rates on the NLI test set obtained by KDA based on various kernels for the essay, the

speech and the fusion tracks. The best marco F1 score in each track is highlighted in bold. The final rank

of each kernel combination in the 2017 NLI shared task is presented on the last column.

distinguish the native languages. On the other

hand, the i-vector representation extracted from

audio recordings is much more suitable for the

NLI task. Interestingly, we obtain consistently

better results when we combine the kernels based

on i-vectors with one or both of the string kernels.

The best performance on the speech development

set (85.45%) is obtained by sum of the squared

RBF presence bits kernel, the squared RBF inter-

section kernel and the squared RBF kernel based

on i-vectors. The top accuracy levels on the es-

say and speech development sets are remarkably

close. Nevertheless, when we fuse the features

captured by the kernels constructed for the two

modalities, we obtain considerably better results.

This suggests that essays and speech provide com-

plementary information, boosting the accuracy of

the KDA classifier by more than 6% on the fusion

development set. It is important to note that we

tried to fuse the kernel combinations that provided

the best performance on the essay and the speech

development sets, while keeping the original and

the squared RBF versions separated. We also tried

out a combination that does not include the inter-

section string kernel, an idea that seems to im-

prove the performance. Actually, the best perfor-

mance on the fusion development set (92.09%) is

obtained by sum of the presence bits kernel (k̂
0/1

5−9
)

computed from essays, the presence bits kernel

(k̂
0/1

5−7
) computed from speech transcripts, and the

kernel based on i-vectors (k̂i-vec). In each track, we

submitted the top two kernel combinations for the

final test evaluation.

5.3 Results

The results on the test set are presented in Ta-

ble 3. Although we tuned our approach to opti-

mize the accuracy rate, the official evaluation met-

ric for the NLI task is the macro F1 score. There-

fore, we have reported both the accuracy rate and

the macro F1 score in Table 3. Both kernel combi-

nations submitted to the essay track obtain equally

good results (86.95%). For the speech and the fu-

sion tracks, the squared RBF kernels reach slightly

lower performance than the original kernels. The

best submission to the speech track is the KDA

classifier based on the sum of the presence bits

kernel (k̂
0/1

5−7
) and the kernel based on i-vectors

(k̂i-vec), a combination that reaches a macro F1

score of 87.55%. These two kernels are also in-

cluded in the sum of kernels that gives our top

performance in the fusion track (93.19%). Along

with the two kernels, the best submission to the

fusion track also includes the presence bits kernel

(k̂
0/1

5−9
) computed from essays. An interesting re-

mark is that the results on the test set (Table 3)

are generally more than 1% better than the results

on the development set (Table 2), perhaps because

we have included the development samples in the

training set for the final test evaluation.

The organizers have grouped the teams based on

statistically significant differences between each

team’s best submission, calculated using McNe-

mar’s test with an alpha value of 0.05. The macro

F1 score of 86.95% places us in the first group of

methods in the essay track, although we reach only

the sixth best performance within the group. Re-

markably, we also rank in the first group of meth-

ods in the speech and the fusion tracks, while also

reaching the best performance in each of these two

tracks. It is important to note that UnibucKernel

is the only team ranked in first group of teams in

each and every track of the 2017 NLI shared task,

indicating that our shallow and simple approach is

still state-of-the-art in the field.

To better visualize our results, we have included
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Figure 1: Confusion matrix of the system based on squared RBF kernels on the essay track.
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Figure 2: Confusion matrix of the best system on the speech track.

the confusion matrices for our best runs in each

track. The confusion matrix presented in Figure 1

shows that our approach for the essay track has a

higher misclassification rate for Telugu, Hindi and

Korean, while the confusion matrix shown in Fig-

ure 2 indicates that our approach for the speech

track has a higher misclassification rate for Hindi,

Telugu and Arabic. Finally, the confusion ma-

trix illustrated in Figure 3, shows that we are able

to obtain the highest correct classification rate for
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Figure 3: Confusion matrix of the best system on the fusion track.

each and every L1 language (with respect to the

other two confusion matrices) by fusing the es-

say and speech information. While there are no

more than two misclassified samples for Chinese,

Japanese, Spanish and German, our fusion-based

approach still has some trouble in distinguishing

Hindi and Telugu. Another interesting remark is

that 5 native Arabic speakers are wrongly clas-

sified as French, perhaps because these Arabic

speakers are from Maghreb, a region in which

French arrived as a colonial language. As many

people in this region speak French as a second

language, it seems that our system gets confused

by the mixed Arabic (L1) and French (L2) lan-

guage transfer patterns that are observable in En-

glish (L3).

6 Conclusion and Future Work

In this paper, we have described our approach

based on learning with multiple kernels for the

2017 NLI shared task (Malmasi et al., 2017).

Our approach attained generally good results,

consistent with those reported in our previous

works (Ionescu et al., 2014, 2016). Indeed, our

team (UnibucKernel) ranked in the first group of

teams in all three tracks, while reaching the best

marco F1 scores in the speech (87.55%) and the

fusion (93.19%) tracks. As we are the only team

that ranked in first group of teams in each and ev-

ery track of the 2017 NLI shared task, we consider

that our approach has passed the test of time in na-

tive language identification.

Although we refrained from including other

types of features in order to keep our approach

shallow and simple, and to prove that we can

achieve state-of-the-art results using character p-

grams alone, we will consider combining string

kernels with other features in future work.
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