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ABSTRACT

We present some simple models to determine whether or not the accretion of cold dark matter by
supermassive black holes is astrophysically important. Contrary to some claims in the literature,
we show that supermassive black holes cannot significantly alter a power-law density cusp via
accretion, whether during mergers or in the steady state.
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1 INTRODUCTION

Over the past few decades, the idea of dark matter has become
deeply rooted within the astrophysical community. In particular, the
ACDM (cold dark matter with a cosmological constant) theory has
done very well in reproducing experimental results on large scales
(see e.g. Bahcall et al. 1999 or Sellwood & Kosowsky 2000).

However, on small scales (galaxies and smaller), the success of
cold dark matter has been less striking (Moore 2002). On galactic
scales, current experiments which measure the velocity dispersion
of a galaxy as a function of radius have found enormous mass-to-
light ratios in all galaxies, from dwarfs to giants (Salucci & Borriello
2000). While this is strong evidence for the existence of dark matter,
the derived mass profiles do not compare well with those predicted
from simulations involving cold dark matter (Moore 2002). In par-
ticular, cold dark matter (CDM) simulations predict the presence of
a central cusp in the density profile, whereas the observed profiles
seem to have a well defined core (Salucci & Borriello 2000). This
apparent misalignment of theory and experiment has lead to three
main types of solution, as follows.

(i) Dark matter is real but not cold (Moore 2002).

(i) Dark matter is not the solution and we should look to alter-
native theories (Milgrom 1983).

(iii) CDM is correct but current theories are missing some im-
portant physics.

In other words: does the absence of a central dark matter cusp
tell us something about the nature of dark matter, or does it tell
us something about galaxy formation? Understanding this is essen-
tial for facilitating direct search experiments for dark matter, such as
DAMA (Bernabei 2001). With any number of particle candidates for
dark matter and the difficulty of removing noise from direct detec-
tion experiments, particle physicists almost need to know what they
are looking for before they can find it. As such, any complimentary
method which can rule out some candidates is extremely important.
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Unfortunately, before any robust conclusions about the nature of
dark matter can be made from the rotation curve measurements of
nearby galaxies, we need to be sure that what we are measuring is
the dark matter profile as it would have been before the formation
of a galaxy. It is this profile which contains information about the
detailed nature of dark matter. If the profile has been changed as
a result of astrophysical effects such as matter outflow (Gnedin &
Zhao 2002) or bars (Athanassoula 2001) then some or maybe all of
the information about the nature of dark matter could have been lost.
It is important to work out which astrophysical effects we should
consider and which are not important.

In this paper, we explore the fate of a CDM cusp in the presence
of a central black hole. Recently, Zhao, Haehnelt & Rees (2002)
(hereafter ZHR) have suggested that tidal stirring from infalling
satellites could lead to significant dark matter accretion, accounting
for some 20-40 per cent of the mass of a central supermassive
black hole if loss cone refilling can be efficient enough. As such,
we consider whether or not supermassive black holes can alter the
dark matter distribution in a galaxy in any significant way.

In Section 2, we recall that the steady-state accretion rate of CDM
onto a supermassive black hole is negligible. In Section 3, we present
atoy model for calculating the mass of CDM accreted during merger
events. In Section 4, we discuss the validity of our model and the
subsequent effect on the underlying dark matter distribution. Finally,
we conclude in Section 5.

2 THE STEADY-STATE ACCRETION RATE

The steady-state accretion rate of matter on to a black hole has been
treated by several authors (e.g. Lightman & Shapiro 1977). Any par-
ticles which lie on orbits that bring them within the Schwarzschild
radius of the hole (see equation 11) will be swallowed. As both
low-energy, high angular momentum and high-energy, low angular
momentum particles can be swallowed, the problem is necessarily
two-dimensional. The fraction of particles in phase space which will
be swallowed is described by the ‘loss cone’ (Lightman & Shapiro
1977) and any particles lying within the loss cone will be swept
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Figure 1. Schematic diagram of a black hole and its loss cone. The solid
circle at the origin represents a dark matter particle a distance r away from a
black hole (depicted by the large circle). The dark matter particle has velocity
v and transverse velocity v = Lmax /7.

away in a dynamic time ~ the time taken for a particle to complete
one orbit.

As can be seen in Fig. 1, the loss cone can be thought of as the
locus of points swept out from trying to point a particle at the black
hole from some distance r away.

Now, by considering particle orbits in a Schwarzschild metric
(Wald 1984), any particle with an angular momentum per unit mass
less than Ly, = +/12G Mgy /c will fall within the Schwarzschild
radius and be swallowed (where Mgy is the mass of the black hole,
c is the speed of light in vacuo and G is the gravitational constant).

The solid angle subtended by the loss cone, €2, can be written as:

27T 0
Q= / / sin@’ do’ d¢
o Jo

~ 19? ~ (v /v)? = T(Lax/7V)*. (D
Therefore, given some phase space density of dark matter parti-
cles, f(r, v), the total mass inside the loss cone M|, is given by:

o8} 200
My = / / Qamr?4mv® f(r, v) drdv
0 rs

o8} 200
= / / 1670 Lo f(r, v) dr do.
0 rs

Notice that the lower limit for the integral over r is the Schwar-
zschild radius. This is because the black hole itself must provide a
cut-off for the dark matter distribution. The upper limit is given by
ro00, the virial radius (Navarro, Frenk & White 1996, NFW).

Assuming a Maxwell Boltzmann distribution for the velocity den-
sity of the dark matter particles and an NFW profile (Navarro et al.
1996) for the spatial density gives us:

(@3]

Table 1. Initial conditions. See text for details.

Parameter Value Description

Free Parameters

Mpn M@) 100 Black hole mass
ri (kpe) 1 Black hole start radius
M0 Mg) 1.9 x 1012 Halo mass within virial radius
h 1 Hubble parameter
Derived Parameters
cn 13.34 NFW halo concentration
ra00 (kpe) 201.4 Virial radius
o Mg kpe™3) 2.49 x 107 NFW scale density
0o (kpe) 15.14 NFW scalelength
f(r,v) = pnrw(r)gup(v)
3
- Po 3 " (o302 20%) 3
T (r r\2\2 ( v? )7t ¢ ’ )
() (1+5)

where p¢ and r( are the scalefactors for a particular galaxy, and
(v})172 is the velocity dispersion of the dark matter halo. The ve-
locity dispersion is taken to be a constant, which is a reasonable
approximation given the observed rotation curves in many galaxies.

For a 10%-M¢ black hole at the centre of a Milky Way type
galaxy (we take scaling values as in Table 1), the dark mass within
the loss cone is ~0.6 M), while the total mass of dark matter is
some 1.9 x 10" M. Thus a tiny fraction of the dark matter is
accreted in a crossing time, but then not much else can happen
until the loss cone is refilled. For stars, refilling can be achieved by
two-body interactions, continuing satellite mergers and dynamical
friction, allowing a continual diffusion of matter into the loss cone
(Lightman & Shapiro 1977). However, for CDM, the interaction
cross-section is presumed to be so small that the time taken to re-fill
the loss cone by diffusion is very much longer than the age of the
Universe.

The problem can be avoided by postulating that dark matter can
self-interact, thus raising the interaction cross-section and allowing
significant steady-state accretion rates (Ostriker 2000). ZHR have
also suggested that tidal stirring from infalling satellites could refill
the loss cone. We look at this idea in more detail in the following
section.

3 ACCRETION DURING MERGER EVENTS

As shown above, the steady-state accretion rate of dark matter is
negligible. However, during a galaxy merger event, while a central
supermassive black hole is stationary with respect to the dark matter
in its host galaxy, it is not stationary with respect to the dark matter in
the merger galaxy. In the rest frame of one of the galaxies, the central
black hole, belonging to the other galaxy will spiral in, sweeping up
dark matter on its way. As the two galaxies merge, their CDM haloes
will be tidally stripped out to the Roche limit (Roche 1859) where the
density of a halo approximately matches that of its surroundings.
We can expect, then, that the CDM cusps from the two galaxies
should make it right into the centre of the forming merger remnant.

This idea is borne out by various numerical studies (see e.g. Van
Albada & Van Gorkom 1977 and more recently Milosavljevic &
Merritt 2002) which show that the initial conditions are statistically
preserved in major merger events. As such, it is not clear that a dark
matter cusp will survive during galaxy mergers. Two black holes
could, in principle, mutually accrete dark matter from each other’s
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host cusp. The magnitude of the effect will depend on the loss cone
refilling rate during such a merger process and it is this that we will
discuss in Sections 3.1 and 3.2.

The presence of a significant bulge component in galaxies, ap-
parently correlated with the central black hole mass, can set a limit
on the efficiency of this process. If the cusp depletion is found to be
very efficient then it must occur in the early stages of bulge growth,
or in low surface brightness (LSB) galaxies where the dark matter
dominates over the baryonic matter even in the central regions.

Faber et al. (1997) examined the central density profile of 61
elliptical galaxies and spiral bulges. They found that, while all of
the galaxies in their sample were well fit by a power law profile,
the brightest galaxies contained a central core in the light profile at
a break radius of ~10-100 pc. They suggest, as have others (e.g.
Quinlan 1996; Milosavljevic & Merritt 2001, hereafter MM), that
the central cusp depletion could be due to scattering during ma-
jor merger events as two massive black holes form a hard binary.
We consider a complimentary mechanism, operating earlier in the
merger process, based on the accretion of scattered material during
galaxy mergers. We show that this mechanism is not important for
growing black holes or rearranging dark matter cusps.

Although in our analysis we will talk mainly about the effect on
the central dark matter, our analysis could be applied equally to the
central baryonic matter cusps which are observed in bright galaxies.

We treat the infalling black hole as a scattering body which spi-
rals into the centre of a galaxy via dynamical friction. Some of the
dark matter that it scatters will be scattered back onto itself — self-
scattering —and some will be scattered into the loss cone of the other
hole — mutual scattering. The sum of these two effects will give us
an estimate of the total accretion rate of dark matter. We now look
at these effects quantitatively.

3.1 Self-scattering

Consider two in-spiralling black holes, A and B, from the refer-
ence frame stationary relative to hole B. In the self-scattering case,
we consider the in-spiralling black hole, A, as an effective cross-
sectional area sweeping through phase space.

We need only consider the growth of hole A though, by symmetry,
hole B will also grow via this mechanism. We can then parametrize
hole B solely by the nature of its host galaxy. This is because of
the empirically observed correlation between black hole mass and
bulge velocity dispersion (Ferrarese et al. 2001). Small black holes
reside in shallow potential wells, larger black holes reside in larger
potential wells.

We assume that hole A is brought in via dynamical friction from
the dark matter and baryonic matter in the centre of the stationary
galaxy (hole B’s host galaxy). Following the Chandrasekhar pre-
scription (cf. Binney & Tremaine 1987), we have that the inward
velocity of the hole, dr/dt, is given by:

dr _ —KMA

a0

c

rp(r), “

where p(r) is the density distribution of the central matter (baryons
and dark matter), M, is the mass of hole A, v.(r) is the local cir-
cular velocity and K is approximately a constant. For a Maxwell
Boltzmann distribution of particle velocities, K is given by (Binney
& Tremaine 1987):

K = 0.428G*2mtIn(1 + A?) )
bmax 2

A = D) ©)
GM,
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where G is the gravitational constant, by, is the maximum impact
parameter for the in-spiralling hole and (v?)!/? is the mean velocity
dispersion of the surrounding baryonic and dark matter.

From equation (4), we can derive the dynamical friction infall
time g4y, for the hole starting at radius r;. This gives us:

i 3
lagn = / L ov) %)
0 K MA rp (r )

Equation (7) is the Chandrasekhar equation for dynamical friction
and is approximately valid provided that the infalling mass does not
exceed the mass interior to its orbit (Binney & Tremaine 1987).
Notice that the minus sign in equation (4) has been substituted for
swapped integration limits.

We can also use equation (4) to derive the amount of mass swept
up by the black hole as it moves from a radius a to a radius b. The
distance travelled by the hole in a time d¢ is given by:

ve(r)*dr
Krp(r)
If the black hole cross-section is given by o 4(r) then the mass of

dark matter swept up by the hole by moving through a distance ds
is then:

am, = L oapdr. ©)
Krp(r)

and so the total mass swept up as the hole moves from a radius a to
bis:

a a 1 . 4
AMA:/ dMA:/ w0 (10)
b b KMA r

ds =dtv.(r) = (8

3.1.1 The black hole cross-section

If the black hole cross section were just 7tr2, where ry is the
Schwarzschild radius, then the volume swept up in phase space
would be truly tiny. The Schwarzschild radius is given by:

2G My
== (11

Ts
C

where c is the speed of light in vacuo. Thus, for a 10°-M, black
hole, r, ~ 1077 pc.

However, a massive body such as a black hole interacts with the
medium through which it moves, preferentially scattering particles
on to orbits which will bring them within the Schwarzschild radius,
allowing them to be swallowed. Taking this gravitational focusing
into account gives us a total cross-section of (Binney & Tremaine
1987):

ZT[GMAVS
v (r)?

) C2
= 1+ <
[ T

_ 4nG* M}
Tour)?
Because v (r) must always be less than the speed of light, the
cross-section due to gravitational focusing will always be much
more important than the physical cross-section of the black hole.
Putting this all together we get, for the mass swallowed as the
hole moves from radius a to b:

‘ ve(r)?
AMA == AMA
b

oa(r) = ﬂrf +

(12)

dr. (13)
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2
T 0.4281n(1 + A2’

Using equation (13) we can now calculate the mass swept up
as the black hole spirals in. We cannot, however, naively integrate
from some start radius to zero to obtain the mass swallowed. This
is because if the black hole manages to complete a whole orbit
before moving inwards a distance greater than ~ /o’ then we have
the problem of shell crossing; that is, we would be counting the
mass more than once. In order to avoid this problem, we can make
the distance a to b some small interval and then numerically sum
each mass shell Am, comparing each Am with the actual mass of
CDM present, and taking the smaller value. In this way, we avoid
divergent mass consumption at small radii where the same part of
configuration space is swept out many times but the mass within
that space can be swept up only once. Quantitatively, this means
that we require:

(14)

AMy <4n/ r2p(r)dr Va,b. (15)
b

3.1.2 The density profile

The density profile for the dark and luminous matter in most galaxies
can be well approximated, within a few kpc of the centre, by a
power law (Blais-Ouellette & Carignan 2002). As such, we adopt
the following form for p(r):

p(r) = po<i> . (16)
ro

For the dark matter, « is observed to be typically & < 1, whereas
CDM simulations predict dark matter slopes of o > 1 (Blais-
Ouellette & Carignan 2002).

The local circular velocity is then given by (Binney & Tremaine
1987):

anG [’
v(r)* = e r?p(r"dr’
rJo
_ 47TG,00}’0 rzia‘ (17)
33—«
For a power-law profile, it can be shown (see Appendix A) that
(V) ~ 07, (18)

and if the maximum impact parameter, by, is taken to be the start-
ing radius of the hole, r;, this gives us

_ Amtporsri
T MAG )

Fig. 2 plots In(1 + A?) against r for initial conditions set up as
in Table 1 and for varying «. For r > 0.01 kpc, or & > 0.5, In(1 +
A?) ~ constant. However, in general it is not constant over the full
range of r and hence neither is A (see equation 14). We assume that
A is constant over the small change in r, Ar = a — b, but does vary
as a function of a.

Thus, putting this all together gives us, for the mass swept up by
hole A,

. (19)

4G A(@) M pore
AM, = M(az—“ -0 a<3,a#2
G- —-a)
AMy = 4nG A(@)Mapor? In (%) a=2. (20)

1072

In(1+A%

1074

1076 | | | L
0.1 1.0 10.0 100.0 1000.0
r(pe)

Figure 2. Radial dependence of the Coulomb factor, In (1 4+ A?), in power-
law density profiles with exponent «.. The solid line is for « = 0.5, the dotted
line is for & = 1, the dashed line is for &« = 1.5 and the dot-dashed line is for
o=2.

3.1.3 Initial conditions

From equation (20), we can see that the important factors for deter-
mining the amount of mass accreted are M 5, the mass of the hole,
and py, ro and «, the density parameters for the central cusp.

The initial infall radius of the hole can be taken from numerical
simulations performed by MM. We use 1 kpc as our starting position
for the hole.

The density parameters are scaled such that the galaxy has the
same mass as an NFW-type profile within 1 kpc. The NFW profile
is given by (Navarro et al. 1996):

S

=——— 21
PN = L+ ) @b
. P00
llm, Pxpw = L, (22)
"o
where p; and r{ are given by
P(; = Sopcrils (23)
200 c
8= - : 24)
3 In(l 4 cy) = (en/1 4 ca)
V(/) = rao/Cn (25)
13
M
rao = | T — ’ (26)
4/371200 perie

where r,q is the virial radius, M5, is the mass within the virial
radius and is taken to be the mass of the galaxy, ¢, is the NFW
concentration parameter, and pei = 277.3 h* M kpe™ is the
critical density.

The only free parameter in the NFW profile is Mg, as the con-
centration parameter is found, numerically, to be a function of the
mass of a galaxy (Navarro et al. 1996).

The power-law scale-density and radius (pg, r9) we use are then
scaled to contain the same mass as the NFW profile within 1 kpc.
Thus

ro =1y 27
-«
, o B -
= . 28
Po = Py <1kpc> 5 (28)
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Figure 3. Mass accreted by a 106-M@ black hole spiralling in to a Milky
Way type galaxy from 1 kpc away from the centre due to self-scattering.
The infall time, 7', is marked in yr. The solid curve is for « = 2.9, the dotted
curve is for @ = 1 and the dashed curve is for @ = 0.5.

Recall that this density profile describes the galaxy which is in
the stationary frame. The infalling galaxy is parameterised only by
the mass of its black hole. Thus, by setting up the profiles for a
Milky Way type galaxy, we can model the full range of mergers,
from equal mass to minor mergers, by scaling the infalling black
hole mass.

A summary of all of the initial conditions used is given in Table 1.
The parameters are broken up into those which are put into the model
and those which are subsequently derived. The scaling parameters
for the NFW profile, for example, are set up consistently for a halo
which contains a mass of 1.9 x 10'> M within the virial radius.
A halo of this mass has a concentration parameter of about 13.3
(Navarro et al. 1996).

3.1.4 Results

The numerical integration was performed using IDL, with the initial
conditions set up as in Table 1 and with a numerical resolution of
Ar =a — b = 0.1 pc. The results are displayed in Fig. 3.

As can be seen, most of the accretion occurs in the outer regions
and increases with «. However, even for o = 2.9, the effect is small,
with less than 100 M) accreted in total. This is a tiny fraction of
the mass of the black hole, which is some 10 M. For an NFW
profile, with « = 1 (dotted line, Fig. 3), the total mass accreted is
less than in the steady state case. Finally, from equation (20), we
can see that the total mass accreted scales linearly with M 4, so the
fractional increase in black hole mass is unaffected by any increase
in M A-

3.2 Mutual scattering

Now we consider the case where the black holes scatter dark mat-
ter into each others’ loss cones. Consider, as in the self-scattering
scenario, a black hole, A, spiralling into a hole B, from a reference
frame that is stationary with respect to the hole B. As before, each
black hole has its own bound CDM cusp. The dark matter that hole
A scatters, for example, is that which resides in hole B’s CDM cusp.

Hole A will scatter some fraction, 14, of particles within its sphere
of influence into the loss cone of hole B, and these particles will then
be quickly swallowed in a dynamical time. Similarly, hole B will
scatter particles into hole A’s loss cone and hence both holes will
grow via accretion as they merge.

© 2003 RAS, MNRAS 339, 949-956

The problem, then, is similar to the self-scattering case, except
that now, the effective black hole cross-section is due to the sphere
of influence of hole A, and hole A causes the growth of hole B.

Because each hole induces the growth of the other, we should
consider both M , and Mp as functions of r and consider the growth
of both holes. However, we will make the assumption that AM o /M s
~ A Mg/Mp ~ small, so that M , and M are ~ constant.

The sphere of influence of hole A is given by:

GMy

F'sph,a = Wv (29)
where M, is the mass of hole A and (v?)!/? is the local spherical
velocity dispersion in hole B’s host galaxy. For a 10°-M@ black
hole in a Milky Way type galaxy, ron . ~ 0.3 pc. Thus the effec-
tive black hole cross-sectional area, 7y, , is ~0.1 pc®, whereas
the effective cross sectional area for the self scattering case was
just ~107% pc2. As such, if the scattering efficiency, 1,, is large
enough, this could be an important mechanism for growing black
holes.

From equations (10) and (29), for the mass accreted by hole B as
black hole A moves from a radius a to b we get

“ NamG*M 4
AMy = / DA VA ”“irz) dr. (30)
b K (v2)?r
For a power-law density profile (see equation 16), and using equa-
tion (18), this gives us

a

AMpyg = A'(@)Mxna In <b>, 31

1
A= —————— 32
0.8561n(1 + A?) 32

3.2.1 The scattering efficiency

Comparing equations (20) and (31), we can see straight away that,
if the scattering efficiency ns was nearly 1, nearly all of the central
dark matter would be swept up as the holes spiral together. This is
because the constant, A’ is larger than A by a factor ~c2. As such,
the value of 7, is key to determining the magnitude of the accretion
effect.

‘We can obtain a crude estimate for 1, if we assume that all dark
matter particles are scattered randomly. If this is the case then the
probability, P A, that a particle will be scattered into hole B’s loss
cone will be simply the fraction of phase space subtended by its loss
cone.

Thus we get, from equations (1), (3), (17) and (18),

Py Qamv?g(v)dv (33)

~ E A
_ 9GMEG —a)

= — 34
2mc? porg ré=o 34

If N4 is the number of times hole A crosses the same section of
configuration space, then the fraction of particles scattered into B’s
loss cone will be

na=1—(1—Py)". (35)
N 4 is essentially the number of attempts hole A can make at scat-
tering the same particles into hole B’s loss cone.

Thus, if the time taken for hole A to complete one orbit at a radius,
ris given by T'(r) = 27tr /v.(r), then N 4 is given by
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dr
AN, >~ ——
AT T
ve(r)*
= ——————dr
27K MAr2p(r)
=
8A/ o
Ny = SO (oo ooy, (36)

MA(3 — a)?
so that N, is now the number of times hole A crosses the same
section of phase space as it moves from a radius a to a radius b.
Thus, if a — b = Ar < a, such that P, (a) >~ PA(b) andif ny < 1,
then

—NaPa

b (—36GA’(a)M§(a - b))

T2 MA(3 — a)a?

na(a) ~1—e

[

1 — (37)
Notice that the scattering efficiency is maximized for M, <« Mp.
This is because the size of hole B’s loss cone is proportional to
M% (see equation 2) and so as Mp increases, the chance of hole
A scattering matter into B’s loss cone increases as M%. As M,
increases, the infall time for hole A decreases and so hole A will
cross the same section of configuration space fewer times, reducing
the scattering efficiency.

The dependence of the scattering efficiency on « is seemingly
very weak. However, A’ is a strong function of «, particularly for
small r (see Fig. 2 and equation 32). As A’ increases as « is reduced,
we can expect that n, will be similarly correlated.

Notice also that 1, is independent of p, and r¢. This is because
increasing the central density normalization por{, while keeping
the black hole mass constant reduces the fraction of phase space
subtended by the loss cone, and so P 4 falls. However, the number
of times hole A sweeps through the same section of phase space,
N 4, is subsequently increased. The two effects cancel out, so that
the scattering efficiency depends only on the slope of the density
profile and not its normalization.

Finally, notice that the scattering efficiency is a strong function
of radius and will be maximized for small a. For most radii, the
scattering efficiency is absolutely tiny. Fig. 4 plots na(a) against a
for My = Mp = IOSM@, o = 1. As can be seen for almost all
radii, as might be expected physically, the scattering efficiency is
practically zero. Only when the holes are close does the efficiency
become large enough to produce any significant amount of accretion.

100 e ——

-8 | | P |

0.1 1.0 10.0 100.0 1000.0
r(pe)

10

Figure 4. The scattering efficiency na, as a function of radius for My =
Mg =108Mg,a = 1.
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Figure 5. Mass accreted by hole B due to the scattering of dark matter
particles by hole A. Graph (a) is for Mx = Mp = 108 M@ . Graph (b) is for
M = Mg = 10° M. Graph (c) is for Ma = 10> Mg, Mg = 108 M.
Graph (d) is for M = 10> M, M = 10° M. The solid lines are for @ =
0.5, the dotted lines are for @ = 1 and the dashed lines are for « = 1.5. The
infall times, 7, are marked in yr for each case.

3.2.2 Results

The numerical integration was performed using IDL, with the initial
conditions set up as in Table 1 and with a numerical resolution of
Ar =a — b = 0.1 pc. The results are displayed in Fig. 5.

As can be seen from equations (37) and (31) and from Fig. 4,
accretion becomes significant only for small r. Reducing «, the
slope of the cusp, pushes the radius at which accretion becomes
significant to larger radii but does not significantly affect the total
mass accreted.

Fig. 5(a) shows an extreme case — M, = My = 108 Mg . Here,
some 10° M is accreted. While this amounts to only ~0.1 per cent
of the mass of hole B, it is sufficient to completely remove all of the
dark matter within r. ~ 20 pc (see Fig. 6). Fig. 5(b) shows a more
likely scenario — M, = My = 10° M. For an NFW-type inner
slope of a = 1 or shallower, ~100 M, is accreted. However, for
steeper slopes this rapidly falls to a mere 0.1 M), which is accreted
only within the inner few pc. Fig. 5(c) shows the case for M5 =
100 M@, Mp = 108 Mg . While only a few tens of solar masses
are accreted, in the early stages of black hole growth, many low
mass holes could have coalesced to form a supermassive central
black hole. Miralda-Escude & Gould (2000) estimate that some
25000 low mass black holes would have fallen into the central few
parsecs of the Milky Way by the present day. If each of these scatters
~10 M of dark matter onto the central black hole then all of the
dark matter within . ~ 10 pc (~2.4 x 10° M) would be swept up.
As with the case (a), this amounts to only ~0.1 per cent of the mass
of hole B. Finally, Fig. 5(d) shows the case for M, = 100 M),
Mg = 10° M@ . As with the case (c), many infalling black holes
could lead to all of the dark matter within r. ~ 1 parsec or so being
swept up. However, this amounts to only ~2000 M, again only
~(.1 per cent of the mass of hole B.

4 DISCUSSION

We have looked at some simple models which treat black holes in
spherical systems as scattering bodies. A fraction of the scattered
material is removed by accretion onto the scattering bodies, either
through self-scattering or mutual scattering as discussed above.

© 2003 RAS, MNRAS 339, 949-956
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Figure 6. The change in the central dark matter density due to accretion
onto two merging 108 Mg black holes. Graphs (a) and (c) show the central
density before (solid line) and after (dotted line) the merger, for an initial
density cusp of slope, @ = 1 and o = 1.5, respectively. Graphs (b) and (d)
show the central mass interior to r before (solid line) and after (dotted line)
the merger, also for an initial density cusp of slope, « = 1 and o = 1.5,
respectively.

Self-scattering is most effective when the black holes are at their
maximum separation, and for steep central density slopes. However,
even in the most extreme situations, the overall mass accreted is
negligible, and usually less than that accreted in the steady-state
scenario.

Mutual scattering is more effective, but only at very small radii.
The main problem with this is that at radii of a few to a few tens of pc,
the black holes are likely to form a stable hard binary (Milosavljevic
& Merritt 2001). Dynamical friction then no longer applies because,
as the binary hardens, much of the central matter is scattered away
leaving little to disrupt the binary system. This mechanism, proposed
by Quinlan (1996) and others, is effective on a scale of hundreds of
parsecs. However, dense central clusters are found around massive
black holes, so this process cannot be universal. Lauer et al. (2002)
have recently identified several galaxies where central luminosity
profiles are seen with cores of ~20 pc. It seems likely, then, that
well before any significant accretion could take place, much of the
central matter would have already been removed by the formation
of a hard supermassive black hole binary. This binary system would
then decay, in the usual way, via gravitational radiation.

The mutual scattering mechanism can, however, also be applied
to infalling massive satellites. A small bound system would survive
right into the centre but be disrupted well before the formation of a
binary. It seems unlikely, however, that the satellite would remain
bound as close as 10 pc to a supermassive black hole. The main
point though is that, even if this were the case, the total mass accreted
would still be a tiny fraction of the central black hole’s starting mass
and would affect a CDM cusp only on the scale of a few parsecs.
It seems that supermassive black holes cannot alter a central dark
matter distribution on the kpc scale required to align CDM theory
predictions with data from rotation curves.

Finally, removing the constraint of spherical symmetry is unlikely
to drastically alter our results. Although the model we present is
rather crude, the magnitude of the accretion affect is found to be so
small, that it is hard to imagine how a change in initial assumptions
could lead to significant accretion. While it is true that particles
lying on highly eccentric orbits are more likely to be accreted, the
effect of strong dynamical friction as required in our model is likely
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to circularize the orbits of the stars and dark matter, reinforcing our
initial assumptions (Polnarev & Rees 1994).

This seems to contradict the value cited by ZHR of up to 20—
40 per cent of the central black hole’s mass being comprised of dark
matter, however the reason for this discrepancy is clear. ZHR look
at the effect of the diffusion of dark matter and stars into the loss
cone via relaxation, whereas we look at refilling the loss cone by
scattering from massive infalling bodies. As mentioned above, if
the loss cone refilling rate is significant, then all of the dark matter
within 1 kpc could be swept up leading to a significant fraction of a
black hole’s mass comprising of dark matter. In previous literature
(see e.g. Lightman & Shapiro 1977) the diffusion rate of matter into
the loss cone was calculated by making three main assumptions as
follows.

(1) The supermassive black holes are fed from shallow cores.

(i1) The stellar distribution is spherical or axisymmetric and an-
gular momentum is conserved.

(iii) Star—star relaxation is the dominant process for repopulating
the loss cone.

ZHR question these three assumptions in their paper and show that,
the loss cone refilling rate could be significantly higher than previ-
ously thought. They then go on to add that if there were no depletion
of orbits for the dark matter, that is, if the loss cone were kept contin-
ually filled then some 20—40 per cent of the mass of a supermassive
black hole could be composed of dark matter. While this is true, it
is somewhat misleading.

The relaxation time for N particles in a collisionless system, as-
suming that each particle moves in the mean potential of all the
others, is given by (Binney & Tremaine 1987):

12
N r’
Trelax = 5 38
TR {GM(r)} ©G8
where M(r) is the mass interior to radius r, and N is the number of
particles.

Now, given that the number of dark matter particles must be very,
very large, and because f.,x o N, the dark matter—dark matter
relaxation time will be very much longer than the age of the Uni-
verse. However, a dark matter particle moving in the granular field
of many stars will behave in the same way a particle of any mass
moving through the same field. As such, the dark matter, even if cold
and with very low self-interaction cross-section, can be relaxed in
the same way as the stars by the stars.

The question is, at what radius does the relaxation time for stars
and dark matter fall below a Hubble time? If we simply model a
galaxy as an exponential disc of stars, a central massive black hole
and a power-law dark matter profile, then the relaxation time is given
by

N 3 12
lrelax (1) = . ’ (39
8In N, | G[My, + My(r) + Myn(r)]

where My, is the black hole mass, M1, (r) is the mass distribution of
the baryons and M 4, is the mass distribution of the dark matter. We
can approximate N, ~ My(r)/M and so, for given mass profiles
and a given central black hole mass, the relaxation time can be found
as a function of radius. For a Milky Way type galaxy, the relaxation
time is only less than a Hubble time within 2 pc of the central
black hole. The total matter out to this radius is not a significant
fraction of the start mass of the central black hole. ZHR argue that
the relaxation time will be less than given in equation (39) as a result
of the relaxation of assumptions (i)—(iii) above. They present some
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plausible arguments that could reduce the relaxation time and then
state that, should it be sufficiently low that the loss cone can be
kept refilled out to the sphere of influence of the black hole, then
20-40 per cent of the mass of a central supermassive black hole
could comprise dark matter. It is not clear, however, whether the
relaxation time really could be low enough to produce significant
loss cone refilling. Even if it were, the radius to which the effect can
be considered important must be less than the sphere of influence of
the black hole, and so cannot be important for producing dark matter
cores on the scale of a kpc or so — the kind of core which would
be required to reconcile measurements from rotation curves with
CDM theory. Finally, they do not consider the effect of mergers on
the central matter profile. As stated above, a merging binary black
hole can eject much of the central matter from a galaxy on the scale
of 10-100 pc or so. Even if the relaxation time at 100 pc were quite
low, it is likely that the matter in this region would be removed by
merging black holes before it would have the chance to be accreted
— either by diffusion due to the coarse grained stellar potential, as
suggested by ZHR, or by scattering from merging supermassive
black holes as suggested here.

5 CONCLUSIONS

We have shown that supermassive black holes cannot alter a power-
law density cusp via accretion, whether during mergers or in the
steady state. This represents another vital piece in the debate sur-
rounding the nature of dark matter. If winds and bars also prove to
be ineffective at altering a primordial dark matter cusp, we will be
drawn inexorably towards the conclusion that dark matter is more
complex than the simple cold particle envisaged so far.
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APPENDIX A: THE VELOCITY DISPERSION
IN A POWER-LAW DENSITY PROFILE

For spherically symmetric, isotropic, systems, we have (Binney &
Tremaine 1987)
Ld(p(v?) = v}

o dr P (AD

If the density, p(r), is given by equation (16), then v? is given by
equation (17), and (A1) becomes

d(v? —4nGpor
—ar ) + ) — Tl ri-e (A2)
dr 33—«
=
2nGpord
W) = &r%“ l<a<3
B—-—a)a—1)
= —ZTEG,oorgx Inx a=1
x =L, (A3)
ro

As the power-law density is describing the inner parts of the halo,
we require r < r( always, and so x < 1. Thus Inx will always be
negative such that (v?) is still positive for & = 1. Thus, substituting
everywhere for v2 (see equation 17), we get

2

07 =
2(x — 1)
:vf l <a<3. (A4)
W) = —vf Inx
~® a=1. (AS)

This paper has been typeset from a TEX/ISTEX file prepared by the author.
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