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Abstract

Solid tumors are complex organ-like structures. The potential of normal neighboring cells to 

contribute to the initiation, progression and metastasis of epithelial-derived carcinomas has long 

been appreciated. However, the role of host cells has proven complex. Through multiple local and 

systemic mechanisms, nontransformed host cells can promote transition from a tumor-resistant to 

tumor-permissive environment, drive neoplastic transformation of epithelial cells, promote tumor 

growth, progression, and metastasis, but also constrain tumorigenesis. This complexity reflects the 

spatially and temporally dynamic involvement of multiple cell types and processes, including the 

development and recruitment of inflammatory, immune, endothelial, and mesenchymal stromal 

cells, and the remodeling of extracellular matrix. Our mechanistic understanding, as well as our 

ability to translate advances in our understanding of these mechanisms for therapeutic benefit, is 

rapidly advancing. Further insights will depend on delineating pathways that mediate the 

communication networks between inflammatory and immune cells with tumor and mesenchymal 

stromal cells and extracellular matrix. Herein we discuss the diversity of mesenchymal stromal cell 

populations and how context can dictate either their promotion or constraint of tumorigenesis. We 

review evidence for plasticity that allows for reprograming of stromal cells and how tumor 

immunogenicity and desmoplasia influence the balance of immune-independent and immune-

dependent regulation of tumor growth. The pivotal roles of matrix and mesenchymal stromal cells 

in modulating inflammation, anti-tumor immunity, and the efficacy of immune-based therapies are 

discussed. These concepts have emerged from data obtained from tumors of multiple organs, but 

we focus most on studies of pancreatic ductal adenocarcinomas (PDA).

Background and Rationale

The initiation and evolution of epithelial-derived solid tumors (i.e., carcinomas) involves 

extensive communication between epithelial cells and various non-transformed host cells 

such as mesenchymal stromal cells (MSCs), fibroblasts, endothelial cells, and inflammatory 

and immune infiltrates (1–5). As reviewed in a prior Masters in Immunology article that also 

focused on carcinoma-associated fibroblasts (CAFs) (6), tumor-associated stromagenesis 

shares many aspects of wound-healing, in which fibroblasts play critical roles in 
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orchestrating inflammation, angiogenesis and extracellular matrix (ECM) remodeling 

required for tissue repair. Many human carcinomas are characterized by CAFs that deposit 

and organize a matrix rich in collagens, hyaluronic acid (HA), and fibronectin, much like 

that found in wounds. Unlike in wounds, however, this pathophysiologic response fails to 

resolve, resulting in the desmoplastic microenvironment common to many carcinomas (7,8). 

However the degree of desmoplasia in tumors can vary dramatically.

The conventional paradigm regarding the role of cancer-associated stromal cells (CASCs) is 

that, regardless of invoking individual molecular mechanisms that can have opposing effects 

that either promote or constrain tumor growth and metastasis, their net effect is 

protumorigenic. But in fact, their net effect reflects the balance between protumorigenic and 

antitumorigenic activities that can vary depending on tumor type, regionally within tumors 

and depends on the ecology of the host milieu. Another important factor is the stage in 

evolution of a particular tumor. Stroma is an important factor in the tumor nonpermissive 

state of normal tissue that transitions to a tumor permissive state with perturbation and tumor 

progression (Figure 1A and B). Thus, like the immune and vascular systems, tumor 

progression is associated with a stromagenic switch. Transition of all three compartments 

are integrally related with progression from immune editing to a state of immune 

equilibrium, to immune escape (9) and angiogenesis occurring in concert with the 

reprogramming of stromal cells and matrix remodeling in an interdependent manner. Indeed, 

stromal cells have emerged as important drivers of immune modulation through their release 

of cytokines, chemokines, and other soluble factors such as prostaglandin E2, and their 

expression of ligands for inhibitory receptors such as CTLA-4 and PD-1 (Figure 1B). In 

addition, stromal cells deposit the extracellular matrix that can present a physical barrier to 

immune cell infiltration but also provides the substratum essential to the interstitial 

migration of immune cells (10).

CASCs are phenotypically and functionally heterogeneous, raising the possibility that some 

of the opposing effects on tumor and immune cell behavior might be propagated by distinct 

subpopulations, or by cells at different stages as they co-evolve with their neighbors. 

Evidence indeed has emerged to support this latter concept in models of pancreatic cancer, 

as discussed below. CASCs can impact tumorigenesis via mechanisms defined broadly as 

immune-independent and immune-dependent (Figure 1A, D and E). In both cases myriad 

mechanisms, some with potentially opposing effects on tumor cell behavior, appear to be 

involved. In addition, the stroma can play major roles in resistance to therapy. Thus, a 

systematic understanding of the role of the distinct subpopulations involved and the complex 

networks of stromal cell–dependent intracellular, cell-matrix, and soluble factor–mediated 

biochemical signaling pathways and biomechanical forces underlying tumorigenesis and the 

immune response to cancer has important implications for the advancement of cancer 

prevention, diagnostics, prognostics, and development of novel targeted therapies. In 

particular, understanding the stromagenic response in cancer has important implications for 

the development of immune-based cancer therapies that rather than being effective in 

relatively small subpopulations of patients, might be effective in the vast majority of patients 

afflicted with a broad array of solid tumor types.
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Heterogeneity of cancer-associated fibroblasts (CAFs)

CAFs are found in virtually all human carcinomas but their prevalence varies dramatically. 

They are typically prevalent in pancreatic, non-small-cell lung, colorectal, breast and 

prostate cancers but relatively sparse in ovarian, thyroid, renal, brain, and head and neck 

cancers (11,12). CAFs are often identified morphologically by their elongated spindle-like 

fibroblastic appearance. There is as of yet no consensus on the molecular definition of CAFs 

but several markers have been used to identify them, including fibroblast-specific protein 1 

(FSP-1), vimentin, desmin, neuron-glial antigen-2 (NG2), platelet-derived growth factor 

receptor-β (PDGFRβ), podoplanin, fibroblast-associated antigen, prolyl 4-hydroxylase 

(4,13–16) and the two that we focus on herein, alpha-smooth muscle actin (α-SMA) and the 

plasma membrane serine protease fibroblast activation protein (FAP). Alpha-SMA is a well-

established marker for myofibroblasts (MFs) and MF-like cells in the tumor 

microenvironment (17) but is also expressed in visceral smooth muscle cells, perivascular 

smooth muscle cells, and pericytes (18). FAP is a robust CAF marker originally found 

highly expressed in various solid tumors but not most quiescent stromal cells (12,19). 

However, as discussed in detail in Dr. Fearon’s Masters of Immunology article (6) it is also 

expressed in mesodermal cells in multiple tissue types under homeostatic conditions and in 

tissues that undergo active remodeling (20–24).

FAP+ and α-SMA+ cells represent overlapping but distinct populations of cancer-associated 

stromal cells with the degree of overlap ranging from several percent (e.g., in breast or 

pancreatic cancer) to virtually a hundred percent (e.g., lung squamous cell carcinoma) 

depending on the tumor type (25–28). FAP is also expressed on a subset of M2-like 

(CD11b+F4/80highCD206+ “M2-like” tumor-associated macrophages (25,26,29) which must 

be taken into account when interpreting studies aimed at defining the role of FAP+ cells that 

include CAFs and this subset of macrophages versus other populations such as αSMA+ 

cells. Gastric tumors from reporter mice expressing red fluorescent protein driven by the 

SMA promoter contain multiple phenotypically distinct subsets of tumor stromal cells, 

including SMA− MSCs, (30), whereas others showed that MSCs express FAP (24). 

Therefore, MSCs likely account for at least a portion of the FAP+SMA− cells observed in the 

microenvironment of many human and murine carcinomas. Interestingly, these cells were 

shown to have the capacity to both self-renew, as well as differentiate into SMA+ 

myofibroblasts, both in wound healing and the tumor microenvironment (30,31), suggesting 

a lineage relationship exists between some terminally differentiated SMA+ myofibroblasts 

and mesenchymal progenitor cells that at some stage may express both SMA and FAP, but at 

least some of which may later down regulate or lose FAP expression, but retain SMA. 

Similar analyses of other markers provide further evidence for the heterogeneity of CAFs.

One source of heterogeneity of CAFs is the multiple cells from which they can be generated 

(5) including resident fibroblasts, stellate cells and bone marrow–derived and local 

mesenchymal stem cells (MSCs) or by trans-differentiation of epithelial or endothelial cells 

(Figure 1) (30,32–38). CAFs can also originate from adipocytes or adipose tissue-associated 

stromal cells (39–41). Additionally, bone marrow–derived fibrocytes or MSCs can be 

recruited into tumors and differentiate into CAFs (30,39,42,43).
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Regardless of the source, the phenotypic heterogeneity of CAFs raises the interesting 

question as to their potential to exert distinct effects on tumorigenesis which has important 

implications for developing stromal cell targeted therapies. Indeed, taken together, the 

results of three recent independent studies discussed in detail below, indicate that although 

FAP+ cancer-associated stromal cells promote tumorigenesis, αSMA expressing MFs may 

constrain the aggressiveness of tumors in related models of pancreatic cancer (27,28,44).

The stromagenic switch

Normal fibroblasts and MSCs, analogous to the immune system, have the capacity to protect 

against the emergence of neoplastic epithelial cells (Figure 1B) (45,46). The conditional 

inactivation of the TGFβ type II receptor gene in mouse fibroblasts allowed epithelial 

tumors to develop, which indicated that normal fibroblasts can constrain epithelial 

tumorigenesis and that genetically modified fibroblasts can be sufficient to drive 

tumorigenesis (47). This concept is reinforced by the demonstration that PTEN, p53, and 

IKKβ signaling pathways in fibroblasts also play critical roles in restraining the tumorigenic 

potential of multiple solid tumors (48–50). In addition, fibroblast-derived HIF-1α and 

asporin inhibit breast cancer tumorigenesis and progression, respectively (51,52). Taken 

together, in addition to the immune-mediated tumor-suppressive mechanisms, stromal 

surveillance programs may also prevent tumorigenesis or impose a dormant state (53). 

Whether any such stromal-dependent pathways impact tumorigenesis at least in part through 

immune-dependent mechanisms has yet to be fully explored.

Both preneoplastic cells and established tumors evolve in part by overcoming stroma-

mediated barriers and by driving transition of tumor-suppressive fibroblasts into tumor-

promoting CAFs. Indeed, many studies have demonstrated that normal fibroblasts are 

functionally distinct from CAFs (Figure 1C). Prostatic CAFs are more proliferative and less 

prone to contact inhibition than normal prostate fibroblasts (54). Moreover, prostatic CAFs 

are more dependent on anaerobic glycolysis and produce more lactate relative to normal 

prostatic fibroblasts (55). Colonic CAFs enhance the proliferation and migration of tumor 

cells to a greater extent than do normal colonic fibroblasts (56). Metabolic competition can 

contribute to immune-suppression in the tumor microenvironment and thus may be another 

mechanism by which the stroma impacts antitumor immunity (57–59). Normal fibroblasts 

can be reprogrammed into CAFs that drive tumor progression, invasion, and metastasis by 

modulating various aspects of the tumor microenvironment, including ECM remodeling, 

angiogenesis, and inflammatory and immune responses (60–67). For example, CAFs have a 

greater capacity to drive inflammation and angiogenesis relative to their normal counterparts 

(30,68). These functional differences between CAFs and their normal counterparts reflect 

transcriptional regulation, genetic, and epigenetic programs that drive evolution of the gene 

expression profiles in fibroblasts (67,69–73). It should be noted that CAFs may retain some 

tumor inhibitory mechanisms as well. For instance, some primary CAF lines derived from 

breast cancer secrete Slit ligands that bind Robo1 expressed by breast cancer cells. Robo1 

signaling inhibits PI3K/Akt signaling and thereby restrains tumor growth (74).

An important question is whether the transition of fibroblasts to an activated and 

protumorigenic state is preventable or reversible which might present an opportunity to 
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reprogram stromal cells as a therapeutic approach. In wound repair, resolution is associated 

with apoptosis of activated fibroblasts. In contrast, in pathologic fibrosis and tumors, 

activated fibroblasts persist. However, the differentiation of fibroblasts to the fibrotic and 

protumorigenic state may indeed be reversible. Specifically, the vitamin D receptor agonist 

calcipotriol reversed the stellate cell response in hepatic fibrosis (75) and pancreatitis (76). 

Calcipotriol also reduced markers of inflammation and fibrosis and when given in 

combination with gemcitabine, reduced tumor volume and increased survival in a model of 

pancreatic cancer (Figure 1B) (76).

Modulation of inflammation and immunity

Inflammation is increasingly appreciated as an important contributing factor in promoting 

the development of a wide range of malignancies, including colon, gastric, liver, lung, and 

pancreatic cancers (77–81). Studies indicate that crosstalk between inflammatory cells and 

tumor stroma regulates the desmoplastic response in tumors and the desmoplastic response 

may limit infiltration and regulate the function of infiltrating leukocytes. CAFs orchestrate 

the inflammatory response by secreting cytokines such as IL6 and IL1-β (Figure 1). 

Secreted chemokines such as CXCL1 and CXCL2 recruit tumor-associated neutrophils and 

macrophages (68,82). Carcinomas, including breast, lung, and pancreatic cancers, exhibit 

CAF-mediated NF-κB–dependent pro-inflammatory gene signatures (68,83,84). CAFs 

promote survival and polarization of tumor-associated myeloid cells to a M2 macrophage 

phenotype (85). This alternative activation of macrophages is likely due to the 

overexpression of IL6, TGFβ. and CCL2 by CAFs (86–88).

Activated pancreatic stellate cells (PSCs) can secrete SDF-1α/CXCL12 to promote CD8+ T 

cell chemotaxis towards the juxtatumoral stroma, thereby preventing CD8+ T cells from 

accessing tumor nests. Knock-down of SDF-1α/CXCL12, or treatment of activated PSCs 

with all-trans retinoic acid, rendered PSCs quiescent, abrogated CD8+ T cell chemotaxis 

towards PSCs, while enhancing CD8+ T cell proximity to neoplastic cells in pancreatic 

cancer (89). In contrast, SDF-1α/CXCL12 derived from FAP+ CAFs bound to pancreatic 

cancer cells and inhibited T cell access to tumor cells. Inhibition of CXCR4 (a receptor for 

SDF-1α/CXCL12) by AMD3100 reversed immune-suppression and potentiated the efficacy 

of checkpoint-blockade with anti–PD-L1 to restrain the growth of pancreatic tumors (44). 

Additionally, cancer-associated PSCs can promote the differentiation of peripheral blood 

mononuclear cells into myeloid-derived suppressor cells (MDSCs) by secreting pro-

inflammatory cytokines including IL6, M-CSF, VEGF, and SDF-1α/CXCL12. IL6 and 

STAT3 signaling were required for PSC-induced MDSC differention that in turn inhibited T-

cell activation, thereby contributing to tumoral immune-suppression (90). Depleting 

granulocytic MDSCs with anti-Ly-6G antibody treatment increased intratumoral 

accumulation of activated CD8+ T cells, enhanced tumor cell apoptosis, and remodeled the 

tumor stroma in pancreatic tumors (91). Cancer-associated fibroblasts can also impair 

activation, cytokine production and cytotoxicity of NK and T cells through secretion of 

prostaglandin E2 and indoleamine 2,3-dioxygenase (92,93).

Conversely, inflammatory myeloid cells can promote CAF activation and desmoplasia. The 

IL6 or SDF-1α/CXCL12 secreted by M2 macrophages can promote human prostatic 
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fibroblast activation, as measured by α-SMA expression (88). Treatment with the anti-

inflammatory drug dexamethasone reduces the recruitment of Gr-1+CD11b+ cells, decreases 

CAF accumulation, and decreases collagen deposition, thereby attenuating squamous 

carcinoma progression (85). CAFs and M2 macrophages also act in concert to activate 

endothelial cells to enhance angiogenesis (88).

Finally, desmoplastic stroma can represent a physical barrier for naturally occurring 

antitumor immunity and T-cell based cancer immunotherapy. Tumor stroma precludes T cell 

infiltration and migration into tumor cell nests in human lung cancers ex vivo. Collagenase 

treatment augments T cell mobilization and increases the accessibility of T cells to tumor 

cell nests (94). Expression of heparanase, which degrades heparan sulfate proteoglycans in 

the ECM, can potentiate tumor infiltration of CAR-redirected T cells and augments the anti-

tumor activity(95).

Immune-dependent and -independent mechanisms

The role of stromal cell populations in tumorigenesis has primarily been determined by 

depleting them in established tumors. Early studies used FAP vaccines and antibody-based 

targeting. A dendritic cell-based FAP vaccine inhibited the growth of multiple tumor types 

(96). Depletion of CD8+ T cells partially abrogated the antitumor effects of this vaccine. 

However, it was not determined whether this was due to the elimination of the subpopulation 

of CD8+ T cells specific for FAP+ stromal cells (induced by the vaccine) or the loss of 

antitumor CD8+ T cells that had been unleashed by reducing the number of FAP+ stromal 

cells. An oral FAP vaccine suppressed primary tumor growth and metastasis in mouse 

models of colon and breast carcinoma (97). FAP+ stromal cells played an important role in 

matrix remodeling as evidenced by a significant reduction in collagen in tumor tissues of 

FAP-vaccinated mice. Although the mechanisms involved were not determined, this study 

also provided early evidence that targeting tumor stroma could enhance uptake of 

chemotherapeutic drugs. Tumor growth could also be inhibited by other approaches, such as 

immunoconjugates based on antibodies to FAP (98), and using a FAP-activated pro-drug to 

target carcinoma-associated stromal cells (99). No overt toxicity was observed in any of 

these studies other than a modest delay in wound healing in the first vaccine study.

Two other direct approaches can delete stromal cell subpopulations. Genetic approaches 

have been used to conditionally ablate either SMA+ cells in mouse models of pancreatic 

cancer (27) or FAP+ stromal cells in related models of pancreatic cancer as well as a 

syngeneic transplant model of lung cancer (100). The former employed transgenic mice 

expressing a thymidine kinase gene under the control of the α-SMA promoter. Upon 

administration of gangcyclovir, a subset of α-SMA+ CASC were depleted. These 

investigators posited that proliferating myofibroblasts were preferentially deleted, whereas 

α-SMA+ vascular smooth muscle cells, pericytes and myoepithelial cells were spared. This 

approach led to negligible loss of FAP+ stromal cells, consistent with evidence for minimal 

overlap between FAP+ and α-SMA+ stromal cell subsets in PDA. Contrary to expectations 

based on evidence that stromal cells in established tumors are on balance protumorigenic, 

conditional ablation of this subset of α-SMA+ CASC was associated with a more aggressive 

tumor phenotype and reduced animal survival. Tumors were invasive and undifferentiated, 
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with enhanced hypoxia, epithelial-to-mesenchymal transition, and had more cancer stem 

cells. In retrospect this result is perhaps not surprising, given that fewer myofibroblasts in 

tumors correlates with reduced survival in PDA patients. The impact on tumorigenesis was 

associated with suppressed immune surveillance and increased CD4+Foxp3+ Tregs and a 

reduction in collagen, but not HA. Although tumors in α-SMA+ cell depleted mice did not 

respond to gemcitabine, which may require loss of HA (101,102), anti-CTLA-4 

immunotherapy reversed the disease progression and prolonged survival.

In marked contrast, conditional ablation of FAP+ stromal cells inhibited tumor growth in 

both a lung and a pancreatic tumor model. BAC transgenic mice were constructed that 

express the human diphtheria toxin receptor (DTR) under control of a FAP promoter 

(FAP.DTR mice). Upon administration of diphtheria toxin to tumor bearing FAP.DTR mice, 

FAP+ stromal cells were ablated. Depletion of FAP+ cells inhibited tumor growth of 

established tumors derived from Lewis lung cancer cells expressing ovalbumin (OVA) as a 

nominal antigen. Inhibition of tumor growth was achieved in spite of FAP+ stromal cells 

representing a very small minority of total tumor cells in this model. Depletion of FAP+ cells 

using this approach also inhibited the growth of established tumors in a transplant model of 

PDA (100). Although the role of immune-independent mechanisms was not investigated in 

this study, immune-mediated mechanisms were implicated. Specifically, although 

intratumoral T cell populations did not change, the effect of FAP+ stromal cell depletion in 

the lung tumor model was negated by neutralizing antibodies to TNFα and IFNγ. FAP+ 

stromal cell depletion had no effect on PDA tumors transplanted into immune incompetent 

RAG-deficient mice, in apparent contradiction to results from other studies in which 

immune-based FAP+ stromal cell depletion inhibited the growth of transplanted PDA tumors 

to a similar extent in immune competent and immune incompetent NSG mice (28). 

Subsequent studies from the same group implicated FAP+ hemoxygenase expressing 

macrophages in both the lung and PDA transplant models (29). Furthermore, SDF-1α/

CXCL12 derived from FAP+ fibroblasts was implicated as a mediator of immune 

suppression in the KPC autochthonous model of PDA. Consistent with a role of stromal cell 

derived SDF-1α/CXCL12, blockade of SDF-1α/CXCL12 synergized with immune 

checkpoint inhibitors (anti-PD-L1) in controlling tumor growth following conditional 

ablation of FAP+ cells (44).

Finally, several groups have used adoptive transfer of FAP-specific redirected T cells to 

deplete FAP+ stromal cells in a variety of tumor models (25,28,103–106). The majority of 

these studies utilized adoptive transfer of FAP-specific chimeric antigen receptor expressing 

(FAP-CAR) T cells. FAP-CAR have been generated using single chain Fv regions based on 

the sequence of three different monoclonal antibodies (mAbs) to FAP, two of which, 73.3 

(25) and MO36 (105), inhibited tumor growth in multiple tumor models and exhibited little 

if any toxicity unless administered repeatedly or expressed in hyperfunctional T cells 

(25,28,104). The loss of antitumor activity of 73.3 FAP-CAR T cells in FAP-deficient mice 

established the specificity of these CAR–T cells and demonstrated that the antitumor activity 

was dependent on expression of FAP by host stromal cells. The third, based on FAP5, 

showed no significant antitumor activity and at the same time caused significant toxicity 

(107). The toxicity of this particular CAR appears to be attributable to recognition of a 

distinct epitope on FAP that resulted in depletion of any cell expressing FAP, regardless of 
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amount, whereas 73.3FAP-CAR selectively depletes FAPhigh cells (25,28). Consistent with 

this possibility, toxicity was also noted after extended periods of time in naïve or tumor 

bearing FAP.DTR mice that had been treated with diphtheria toxin and therefore lacked all 

FAP+ cells (108). Depletion mediated by 73.3FAP-CAR was not just partial, but transient, 

which again may limit toxicity. Collectively, with the one exception, these studies of FAP-

CAR T cell–mediated depletion implicate FAP+ stromal cells as potential targets across a 

broad spectrum of solid tumors.

The studies described above show that inhibition of tumor growth after depleting FAP+ cells 

can occur through both immune-dependent and immune-independent mechanisms (Figure 

1A, D and E). Deletion of FAP+ cells enhanced both spontaneous and vaccine-induced 

endogenous immunity (25,100) and enhanced the antitumor effect of checkpoint inhibitors 

(44). The degree to which immune-dependent versus immune-independent mechanisms 

contributed relates to the immunogenicity and degree of desmoplasia, with the latter directly 

related to the prevalence of FAP+ stromal cells (28). Thus, the elimination of stromal cell–

mediated immune suppression resulted in enhanced endogenous and vaccine-induced 

antitumor immunity that contributed to inhibition of tumor growth in immunogenic tumors. 

On the other hand, the inhibition of growth of highly desmoplastic nonimmunogenic tumors 

in immune-competent mice and moderately and highly desmoplastic human xenografts in 

immune-incompetent mice, was attributed to immune-independent mechanisms. The 

immune-independent mechanisms involved stromal cell depletion and the disruption of 

matrix that led to reduced angiogenesis, stromagenesis and tumor cell proliferation, and 

increased tumor cell apoptosis.

In the one study where it was analyzed, depletion of FAP+ also led to depletion of α-SMA+ 

cells, even in models of PDA where only a small proportion of the stromal cells co-express 

α-SMA and FAP(28). This indicates that either α-SMA+ CASCs are derived from FAP+ 

progenitors and/or that FAP+ cell are required for the generation or recruitment of α-SMA+ 

cells to the tumor microenvironment. In either case, loss of FAP+ cells overcame the 

protumorigenic effect of depleting α-SMA+ stromal cells. Tumor growth was inhibited with 

no evidence of more aggressive tumor phenotypes. It will of course be of interest to define 

the relationship between various stromal subsets in future studies.

Potential risks and benefits

Tumor cells exhibit intratumoral heterogeneity and genomic instability, in many cases 

rendering tumors resistant to therapeutic intervention and ultimately causing treatment 

failure. In contrast, nontransformed cancer-associated stromal cells are genetically stable, 

making them appealing targets for developing therapeutic strategies. Stromal cells in many 

solid tumor types share properties, and therapies targeting them can potentially synergize 

with other tumor cell and immune-targeted therapies.

In addition to revealing the role of specific subpopulations and the mechanisms by which 

they modulate tumorigenesis, preclinical models of stromal cell depletion can guide the 

development of selective depletion therapies in patients. However, preclinical studies have 

provided reason to proceed with caution, given two associated risks. First, some 
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subpopulations of stromal cells are protective. It will be necessary to identify them, keeping 

in mind that these may differ in the context of various tumor types or in different stages of 

disease. This concern is highlighted by the evidence that whereas targeting FAP+ stromal 

cells in PDA may prove therapeutic, targeting SMA+ cells in this tumor type might in fact be 

detrimental (27,28,44). In any case, because α-SMA is localized to the cytoplasm, it is not 

readily apparent how current technologies could be used to efficiently target SMA+ cells. 

This practical concern however, does not apply in the case of FAP that localizes to the 

surface of stromal cells. Deletion of FAP+ cells has now been analyzed in preclinical models 

of multiple tumor types and resulted in inhibition of tumor growth in every case save one, 

with no evidence that this approach enhances tumor aggressiveness. In the one exception, 

deletion had neither a beneficial nor a detrimental impact on tumor progression. Longer term 

studies however, will be required to evaluate the impact on metastatic disease.

The second major potential concern is of on-target/off-tumor effects. In the case of α-SMA 

this may be a moot point in the face of the evidence that targeting α-SMA+ CASCs may be 

contraindicated, at least in the one tumor type studied thus far. However, this concern does 

apply to targeting FAP+ cells. FAP+ stromal cells reside in many tissues of the adult mouse, 

including skin, bone marrow, skeletal muscle, pancreas, adipose, and lymph node. They can 

serve homeostatic functions as well as important positive roles in reparative responses, such 

as tissue remodeling in wound healing. Indeed, genetic ablation (108), or immune-targeting 

studies using mAb FAP5–based FAP-CAR T cells (107), have shown that depletion of FAP+ 

stromal cells induces bone marrow hypoplasia, cachexia, and anemia. FAP+ stromal cells 

from skeletal muscle are also a major source of follistatin, a protein that can promote muscle 

growth. FAP+ stromal cells in the bone marrow produce SDF-1α and KitL, which are 

essential in regulating B-lymphopoiesis and erythropoiesis(108). Fibroblastic reticular cells 

in lymph nodes also express FAP, and experimental ablation of these cells in mice disrupts 

lymph node homeostasis and can impair the launch of an effective immune response to clear 

influenza virus infection(109).

Thus, FAP+ stromal cells are important in the maintenance of normal muscle mass, lymph 

node homeostasis, and hematopoiesis. Nonetheless, although caution is warranted, the data 

suggest that partial and/or transient depletion of FAP+ stromal cells may provide a 

therapeutic window in which tumor growth can be inhibited with little to no toxicity. 

Although this approach may be limited in efficacy when used as a monotherapy, intriguing 

early evidence indicates that this approach can synergize in combination with 

chemotherapies or other immune-based therapies such as tumor vaccines and immune 

checkpoint inhibitors. Multiple approaches are also under development to spatially and 

temporally control CAR T cell activity as a means to circumvent off-tumor activity(110–

114).

Defining molecular pathways

Although a detailed analysis is beyond the scope of this article, it is important to address an 

alternative approach to targeting stromal cells for depletion. An intense focus is underway to 

define stroma-dependent molecular pathways amenable to targeting, which would inhibit 

protumorigenic mechanisms and to overcome therapeutic resistance. In this regard, FAP 
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itself, which functions as a cell surface protease involved in matrix remodeling, has been 

explored as a potential therapeutic target. Genetic deletion of FAP and pharmacologic 

inhibition of its protease activity inhibits primary growth in syngeneic transplant models of 

lung, and colon cancer, and a KRAS-driven autochthonous model of lung cancer (115). Its 

role in metastasis is actively being investigated. FAP is a type II transmembrane cell surface 

proteinase belonging to the prolyl dipeptidyl aminopeptidase (DPP) family, which cleaves 

amino-terminal dipeptides from polypeptides with proline or alanine in the penultimate 

position (P1Pro or P1Ala) (116). FAP also exhibits endopeptidase activity that preferentially 

cleaves after the Gly-Pro sequence motif (P2GlyP1Pro) (117). Although FAP was initially 

discovered in membrane-bound form, low concentrations of circulating soluble FAP, also 

known as α2-antiplasmin-cleaving enzyme (APCE), have been reported in human and 

mouse serum (118–120). FAP protease activity in vitro has been studied extensively, but its 

substrate repertoire in vivo is not fully defined. In vitro screening identified neuropeptide Y, 

B-type natriuretic peptide, substance P, and peptide YY as potential substrates. Moreover, 

CCL22/MDC, CXCL2/Groβ and CXCL12/SDF-1α can be cleaved by FAP, albeit less 

efficiently (121). FAP’s endopeptidase activity is capable of modifying gelatin, type I and 

type III collagens, FGF21 and α2-antiplasmin (118–120,122–124). Many of these substrates 

have been implicated in tumor progression; for instance, CXCL12/SDF-1α is crucial for 

promoting tumor cell invasion, angiogenesis, and T-cell exclusion (44,89,125,126); collagen 

is important in enhancing tumor cell proliferation, invasion, and metastasis (127–129). 

Nonetheless, the functional consequences of FAP-dependent proteolytic processing in the 

context of the tumor microenvironment, other than its direct role in matrix remodeling, 

remain to be explored.

Another pathway that has drawn attention is Sonic hedgehog (Shh), a soluble ligand critical 

for driving the formation of desmoplastic stroma that is overexpressed by pancreatic tumor 

cells. Deletion and pharmacologic inhibition of Shh reduces stromal contents in 

autochthonous pancreatic tumors. However, Shh-deficient tumors developed earlier and were 

more aggressive, exhibiting undifferentiated histology and heightened levels of angiogenesis 

and proliferation. Administration of VEGFR blocking antibody improved survival of Shh-

deficient tumor-bearing mice, indicating that Hedgehog-driven stromagenesis suppresses 

tumor growth in part by restraining tumor angiogenesis (130). Together, these studies raise 

substantial concerns as to whether targeting Shh is in fact a promising direction for 

pancreatic cancer.

The SDF1α/CXCL12-CXCR axis is yet another pathway of interest as discussed previously 

in this venue (6). Finally, promising data have been obtained using a pegylated 

hyaluronidase (PEGPH20) to disrupt the HA-rich matrix in pancreatic cancer. All told, 

although explorations of targeting stromal-dependent molecular pathways are in their 

infancy, they hold great potential. Studies suggest that the evolution of stromal cells to a 

protumorigenic state may be reversible (Figure 1B). Future efforts will therefore 

undoubtedly include attempts to reprogram CASCs to shut down their protumorigenic 

functions and activate or reactivate antitumorigenic functions at primary tumor sites and 

maintain or restore a tumor nonpermissive environment in target organs of metastases.
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All of these are promising avenues to pursue in the quest to enhance the antitumor activity of 

conventional tumor-targeted therapies, whether they are dependent on antitumor immunity 

or act through immune-independent mechanisms, or both, and to improve the response rate 

to, and efficacy of, rapidly emerging immunotherapies for cancer.

Future Directions

Over the past several decades the identification of malignant cell intrinsic oncogenic and 

tumor suppressive pathways has been extremely successful. This has led to the birth of 

targeted therapies for cancer. Here we have tried to convey a sense of our burgeoning 

understanding of the significance of extrinsic factors in tumorigenesis and the potential 

wealth of new therapeutic targets they present. Future studies will be required to test the 

assumption that targeting stromal pathways will synergize with malignant cell targeted 

chemotherapies, radiation therapy and immunotherapies in solid tumors. In addition, the 

concept that stromal targets may be shared between tumor types and between primary and 

metastatic disease will need to be tested. The appreciation of the role of stroma-dependent 

pathways also begs the question as to how they interface with risk factors such as ageing, 

obesity and smoking. Elucidating the molecular pathways that mediate the impact of stroma 

on tumorigenesis will lay the ground work required to understand and manage cancer risk 

(Box 1).

Box 1

Future directions

1. Do changes in stroma contribute to the increase in cancer risk associated with 

ageing?

2. Do stromal-dependent mechanisms play a role in obesity-associated increased 

cancer risk?

3. Does stroma provide common therapeutic targets across tumor types?

4. Does stroma provide therapeutic targets common to primary tumors and 

metastatic disease?

5. Can targeting stroma overcome resistance to chemotherapy and 

immunotherapy for cancer?
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Learning Objectives

Cross-talk between multiple types of nontransformed host cells and tumor cells 

determines, in a spatially and temporally dynamic fashion, the relative resistance versus 

permissiveness of tissues to tumor initiation. It also determines the propensity toward 

tumor latency and dormancy versus progression and the emergence of metastatic disease. 

Through completion of this activity, the participant will gain a fundamental 

understanding of the communication networks between heterogeneous cancer-associated 

stromal cells and immune cells in the context of solid tumors. The potential for 

extracellular matrix remodeling and stromal cell targeting to modulate antitumor 

immunity and the efficacy of immune-based therapies will also become evident.
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FIGURE 1. Evolution of tumor stroma and its immune-dependent and immune-independent 
control of tumor growth
(A) Overview. (B) Multiple stromal cell types found in normal tissues, including fibroblasts, 

mesenchymal stem cells, adipocytes, endothelial cells, and epithelial cells can 

(trans)differentiate into cancer-associated fibroblasts (CAFs)/stromal cells. This stromagenic 

switch that transitions a tumor suppressive environment to a tumor promoting environment 

is driven by multiple factors, including those indicated, and may be reversible based on 

recent evidence of reprogramming following treatment with the vitamin D receptor agonist 

calcitriol. Two prominent subclasses are myofibroblasts, characterized by the expression of 

proteins of the contractile apparatus such as α-SMA, and FAP+ reactive fibroblasts. These 

two subpopulations are distinct but overlap to varying degrees in different tumor types and 

can have opposing effects on tumorigenesis, at least in pancreatic cancer. (C) The products 

regulated in CAFs relative to normal fibroblasts that promote cell proliferation: a shift from 

oxidative phosphorylation to glycolysis, matrix remodeling, angiogenesis, inflammation, and 

immune suppression in the tumor microenvironment are shown. The indicated pathways 

regulate tumor growth through immune-independent (D) and immune-dependent (E) 

mechanisms.
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