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following discussion. For the reader’s convenience, a 
list of acronyms for the various APRPs described in this 
review is presented in Table I.

ACUTE-PHASE RESPONSE

When subjected to an infection or other types of 
immunological stress, our bodies’ first reactions are innate, 
systemic, and non-specific. This is referred to as the acute-

INTRODUCTION

The C-reactive protein (CRP) was the first acute-
phase reactant protein (APRP) to be identified. In 1930, 
Tillett and Francis discovered that the sera of patients 
suffering from pneumonia reacted with fraction “C”, 
or the C polysaccharide of Streptococcus pneumoniae 
(1). A decade later, it was shown that the “C-reactive” 
component of human serum is a protein expressed during 
acute infections which we now know as CRP (2). Since 
then, extensive research has focused on the changes in 
CRP and other APRPs in response to various acute and 
chronic inflammatory diseases or clinical conditions 
including burns, tissue infarction, infections, and also 
cancer. 

One of the earliest documented works linking APRP 
to cancer was carried out by Hiramatsu et al in 1976. 
The researchers demonstrated that the concentrations 
of serum protease inhibitor, α1-antitrypsin (AAT), were 
highly elevated in patients with liver cancer (3). Numerous 
reports have since linked APRP changes to various types 
or subtypes of cancer and different stages of the disease. 
To understand how distinct types of cancer trigger 
different acute-phase responses, and hence differential 
APRP expression/secretion (or both) by hepatocytes, 
the functions of the APRPs during inflammation or the 
onset of disease, and what regulates APRP release into 
the blood circulation are also briefly addressed in the 
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TABLE I - �LIST OF ACRONYMS FOR ACUTE-PHASE REACTANT PRO-
TEINS 

Acronym	 Acute-phase reactant protein
 
AAT	 α1-antitrypsin 
ABG	 α1-B glycoprotein
ACT	 α1-antichymotrypsin 
AHS	 α2-HS glycoprotein
ATR	 Antithrombin III
CFB	 Complement factor B
CLU	 Clusterin
CPL	 Ceruloplasmin
CRP	 C-reactive protein
HAP	 Haptoglobin
KNG	 Kininogen
LRG	 Leucine-rich glycoprotein
ZAG	 Zinc α2-glycoprotein
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phase response. An acute-phase response precedes the 
specific immunological response during an infection. It 
refers to the temporary replacement of stable, homeostatic 
processes by a different homeostatic state in the face of 
a changing external environment due to tissue injury or 
infection. These events are usually proinflammatory, with 
the aim of removing tissue debris and foreign organisms, 
and aiding tissue repair (4). Clinically, the acute-phase 
response is associated with a number of measurable 
changes characterized by fever, leukocytosis, endocrine 
changes, muscle proteolysis, and anorexia (5, 6). The 
acute-phase response may be transient, as with recovery 
from an infection, or it can be persistent, such as that 
observed in chronic disease (7). One of the features of the 
acute-phase response is the changes in the concentrations 
of serum or plasma proteins, also known as the acute-
phase reactant proteins.

ACUTE-PHASE REACTANT PROTEINS

An APRP is defined as a protein whose plasma or 
serum concentration increases or decreases by at least 
25% during inflammatory disorders (8). The levels of 
most APRPs increase in response to an inflammatory 
stimulus. These proteins are referred to as the positive 
APRPs. Conversely, the negative APRPs are those whose 
concentrations decrease during inflammation. α2-HS 
glycoprotein (AHS) and kininogen (KNG) are 2 common 
examples of negative APRPs.

Based on the kinetics of their concentration changes, the 
APRPs may be divided into first- and second-line proteins. 
The first-line APRPs include CRP, α1-antichymotrypsin 
(ACT), and serum amyloid A. Their levels rise as early 
as 4 hours upon induction by an inflammatory stimulus, 
reaching a peak within 24-72 hours and declining rapidly 
with elimination half-times between 12 and 18 hours 
(7). In contrast, most of the second-line APRPs such as 
haptoglobin (HAP) and AAT begin to increase 24-48 hours 
after stimulus, reaching a peak in about 7-10 days, and 
need about 2 weeks to return to normal (7). Generally, 

the magnitude of the acute-phase response is related 
quantitatively to the activity or extent of inflammation in 
the acute situation. 

FUNCTIONS OF APRPs 

The true functions of APRPs during an acute-phase 
response are unclear. It is assumed that fluctuations in 
APRPs are beneficial, based on the known functional 
capabilities of the proteins and how they may respond 
during inflammation, healing, or adaptation to a harmful 
stimulus. That being said, there are APRPs which are 
relatively unknown or have no known functions, such as 
leucine-rich glycoprotein (LRG) and α1-B glycoprotein 
(ABG). Clusterin (CLU), also known as apoliprotein J, is 
yet to be assigned any genuine function despite having 
been cloned since 1989 (9, 10). This is because CLU has 
been associated with extremely diverse physiological and 
pathological processes and thus its functions are varied 
and often contradictory (11). 

A number of APRPs play major roles in the host defense 
(Tab. II). CRP, a component of the innate immune system, 
binds to phosphocholine and hence recognizes some 
foreign pathogens as well as damaged cells (12). It can 
activate the complement system when bound to one of its 
ligands and can also bind to phagocytic cells, suggesting 
that it may assist in the elimination of targeted cells via 
interactions with both humoral and cellular effector 
systems of inflammation. Aside from CRP, there are many 
other APRPs that have central proinflammatory roles in 
immunity. These include the classical components of 
the complement pathway and also the mannose-binding 
lectin. Complement activation often leads to chemotaxis 
and the opsonization of infectious agents and damaged 
cells (13).

A considerable number of APRPs function as serine 
protease inhibitors. Proteases, such as those released by 
neutrophils during the innate immune response, are useful 
in degrading cell debris or microorganisms. They also 
have regulatory functions in local inflammatory processes 

TABLE II - FUNCTIONS OF ACUTE-PHASE REACTANT PROTEINS

Function	 Acute-phase reactant protein 

Host defense	 CRP, HAP, secreted phospholipase A2, lipopolysaccharide-binding protein, IL-1 receptor antagonist, 
	 granulocyte CSF, C3, C4, C9, factor B, C1 inhibitor, C4b-binding protein, mannose-binding lectin 
Antiproteases 	 AAT, ACT, ATR, α1-protease inhibitor, pancreatic secretory trypsin inhibitor, inter-α-trypsin inhibitor  
Transportation of metabolites 	 CPL, HAP, albumin, hemopexin, transferrin, transthyretin, thyroxine-binding globulin  
Coagulation & fibrinolysis 	 KNG, fibrinogen, Hageman factor (Factor XII), plasminogen, urokinase, TPA, protein S, vitronectin, 
	 plasminogen-activator inhibitor 1 
Role in growth/angiogenesis 	 AAT, AHS, CPL, HAP, insulin-like growth factor I 
Others	 AAT, CLU, HAP, ZAG, serum amyloid A, α1-acid glycoprotein, fibronectin, ferritin, angiotensinogen, 
	 α-fetoprotein 
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like the proteolytic modulation of cytokine bioactivities. 
However, proteases have deleterious potential due to their 
ability to degrade the extracellular matrix at the foci of 
inflammation (14). Hence protease inhibitors are deployed 
during an acute-phase response to control the activities of 
the proteases. Such protease inhibitors include AAT and 
ACT, which are responsible for inhibiting leukocyte and 
lysosomal proteolytic enzymes (15).

Some APRPs participate in the transportation of 
metabolites in addition to being antioxidants. For example, 
ceruloplasmin (CPL) is involved in copper transport, iron 
metabolism, and antioxidant defense (16). CPL inhibits the 
copper ion-stimulated formation of reactive oxidants and 
scavenges hydrogen peroxide and superoxide, thereby 
protecting host tissues from the toxic oxygen metabolites 
released from phagocytic cells during the acute-phase 
response. Another APRP, hemopexin, binds heme (a 
reactive form of iron participating in oxygen-radical 
reactions) released from damaged heme-containing 
proteins. Hemopexin-heme complexes are cleared from 
the circulation by surface receptors on hepatocytes with the 
subsequent release of free hemopexin to the bloodstream. 
Such a mechanism provides for conservation of body iron 
stores (17).

During an acute-phase response, an APRP may be 
involved in more than one function. Indeed, most APRPs 
possess multiple functions, and many of these additional 
functions do not fall within the categories mentioned 
above. For example, apart from being a serine protease 
inhibitor, AAT stimulates the production of hepatocyte 
growth factor (18) and was found to induce the proliferation 
of fibroblasts and the synthesis of procollagen (a matrix 
component) in culture (19). In tumor cell lines, AAT may 
act as a growth inhibitor (20). Proteolytically modified AAT 
and AAT in complex with elastase have been demonstrated 
to have neutrophil chemoattractant activity (21). Elastase-
AAT complexes can also stimulate AAT production by 
macrophages (22).

SYNTHESIS AND REGULATION OF APRPs 

APRPs are normally synthesized by the liver. It has 
been recognized, however, that extrahepatic tissues can 
also contribute to the synthesis of some of the plasma 
proteins. For example, cells of the monocyte-macrophage 
lineage have been shown to produce several complement 
components and AAT. The significance of this and the 
extent to which it normally occurs in vivo, particularly at 
the site of inflammation, is not known (4).

The biosynthesis of APRPs by hepatocytes in turn is 
regulated by cytokines, in particular interleukin-6 (IL-6). 
Cytokines are released by a number of different cell types, 
including activated macrophages, endothelial cells, and 
stromal cells at the site of inflammation (6). These cytokines 

may induce changes in APRP concentration from about 
50% to as much as 1000-fold in the case of CRP and 
several complement components. The concentrations of 
APRPs commonly increase simultaneously, but they do 
not necessarily increase uniformly in all patients with the 
same inflammatory disease. 

INFLAMMATION, CANCER AND ALTERED APRPs 

Inflammatory diseases range from infections and 
rheumatic disease to cancer and they may either be acute 
or chronic. Acute inflammatory diseases are usually self-
limiting as the production of antiinflammatory cytokines 
closely follows those that are proinflammatory. In contrast, 
chronic inflammatory diseases are characterized by 
persistent inflammation, either in response to unrelenting 
initiating factors or a failure of mechanisms required for 
resolving the usual inflammatory response (23). It may be 
this inability to switch off the inflammatory response that 
makes chronic inflammation a causative factor in a variety 
of cancers despite it having many of the same mediators 
(e.g. cytokines and free radicals) as those generated during 
acute inflammation (24). 

The functional relationship between inflammation and 
cancer is not new. Virchow hypothesized in 1863 that the 
origin of cancer was at sites of chronic inflammation  (25). 
It is now accepted that many cancers arise from sites of 
infection and chronic inflammation and that proliferation 
of cells alone does not cause cancer. 

During an inflammatory response, leukocytes and other 
phagocytic cells produce an array of cytokines and also 
reactive nitrogen and oxygen species to fight infection and 
mediate cell killing (26, 27). As the inflammatory response 
prolongs and develops chronically, repeated exposure of 
proliferating epithelium to the highly reactive nitrogen 
and oxygen species results in permanent DNA damage 
such as point mutations, deletions or rearrangements. 
Indeed, it has been shown that p53 mutations in tumors 
have a similar frequency to those in chronic inflammatory 
diseases such as rheumatoid arthritis and inflammatory 
bowel disease (28). The strongest association of chronic 
inflammation with malignant disease is the development 
of colon cancer in individuals with inflammatory bowel 
diseases such as chronic ulcerative colitis or Crohn’s 
disease (23).

In the early stages of tumor development, cancer 
cells often require the presence of specific cytokines or 
growth factors in order to proliferate. These cells may 
express growth factor receptors abnormally or undergo 
cell division instead of differentiation in response to 
the growth factors and cytokines (24). Some examples 
of the dependence of tumor cells on cytokines are the 
growth dependence of AIDS- and EBV-associated B-cell 
lymphomas, B-cell leukemias, and multiple myeloma on 
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the inflammatory cytokines IL-6 (29) and IL-15 (30) and 
the dependence of malignant mesothelioma on platelet-
derived growth factor (24). In the presence of cytokines 
and growth factors during tumorigenesis, it is therefore 
not surprising that changes in APRP concentrations are 
observed. 

IMMUNOLOGICAL AND BIOCHEMICAL STUDIES OF 
APRP LEVELS IN PATIENTS WITH CANCER 

Changes in the levels of serum or plasma APRPs in 
relation to cancer have been studied as early as the 1970s. 
In those early times, APRP level determination was mainly 
carried out using the classical immunological techniques 
of radial immunodiffusion, rocket immunoelectrophoresis, 
and nephelometric immunoassay (Tab. III). Although many 
investigators perceived the quantitative changes of the APRPs 
as non-specific because they respond to a wide variety of 
stimuli including cancer, these findings generated continued 
interest in establishing the rationale for the alteration of 
APRPs in cancer patients. Very soon, accumulated data 
were compiled on the association of altered levels of various 
APRPs with distinct types of cancer. 

From the compiled data (Tab. III), elevated levels of 
serum or plasma AAT have since been shown in patients 
with 9 different types of cancers. For some of the cancer 
types, consistent results were generated by several 
independent groups of researchers. For example, Bernacka 
(1988), Stamatiadis (1990) and Solakidi (2004) and their 
respective coworkers reported that AAT was higher in 
serum samples of patients with colorectal cancer than in 
those of control individuals (31-33). Similarly, 2 different 
groups of researchers also detected higher levels of AAT 
in serum/plasma samples of patients with cervical cancer 
(34, 35). 

In the case of CPL, increased levels of the APRP 
were consistently reported for 8 different types of cancer 
by 10 independent groups of researchers. Patients with 
gastrointestinal cancer appear to express high levels of 
serum CPL as reported by 3 separate groups of investigators 
using different assay techniques. When bound to copper, 
CPL acts as a molecular switch for activating proangiogenic 
factors (36, 37). The elevated CPL in cancer patients was 
thought to induce angiogenesis, which supports the 
growth of tumors.

Aside from AAT and CPL, consistent results were also 
observed for ACT and HAP between studies. While ACT 

TABLE III - IMMUNOLOGICAL AND BIOCHEMICAL STUDIES OF ACUTE-PHASE REACTANT PROTEIN LEVELS IN CANCER

APRP	 Type of cancer	 Response	 Method	 Reference

AAT	 Liver cancer	 ↑	 Radial immunodiffusion	 3
	 Cervical cancer	 ↑	 Immunochemical assay	 34
			   Trypsin inhibitory capacity; immunodiffusion	 35
	 Colorectal cancer	 ↑	 Immunological methods and nephelometry	 31-33
	 Gastric cancer	 ↑	 Immunological method and nephelometry	 31, 33
	 Lung cancer	 ↑	 Immunological methods	 38, 39
	 Multiple myeloma	 ↑	 Nephelometry	 40
	 Ovarian cancer	 ↑	 Radial immunodiffusion	 41
	 Pancreatic cancer	 ↑	 Radial immunodiffusion	 42, 43
	 Prostate cancer	 ↑	 Radial immunodiffusion	 39, 44
ACT	 Colorectal cancer 	 ↑	 Rocket immunoelectrophoresis	 31
	 Gastric cancer	 ↑	 Rocket immunoelectrophoresis	 31
	 Lung cancer	 ↑	 Immunological methods	 38
	 Pancreatic cancer	 ↑	 Radial immunodiffusion	 42
AHS	 Liver cancer	 ↓	 Radial immunodiffusion	 45
CLU	 Urinary bladder cancer	 ↑	 ELISA	 46
CPL	 Cervical cancer	 ↑	 Radial immunodiffusion	 47
			   Nephelometry	 48
	 Chronic lymphocytic leukemia	 ↑	 Nephelometry	 49
	 Endometrial cancer	 ↑	 Radial immunodiffusion	 47
	 Gastrointestinal cancer	 ↑	 Immunological methods and nephelometry	 50-52
	 Kidney and urinary tract cancer 	 ↑	 Radial immunodiffusion	 53
	 Lung adenocarcinoma	 ↑	 Biochemical assays	 54
	 Melanoma	 ↑	 Nephelometry	 55
	 Solid malignant tumors	 ↑	 Nephelometry	 56
HAP	 Cervical cancer	 ↑	 Nephelometry	 57
	 Ovarian cancer	 ↑	 Immunochemical assay	 34
			   ELISA	 58
KNG	 Gastrointestinal cancer	 ↓	 Immunochemical assay	 59

↑ = increase in expression; ↓ = decrease in expression
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was found to be increased in 4 different types of cancer by 
4 independent groups of researchers, elevated serum HAP 
was detected in 2 types of cancer by 3 separate groups of 
scientists (34, 57, 58). On the other hand, only a single 
group of investigators reported upregulation of serum CLU 
in cancer patients. This was demonstrated using ELISA in 
patients with urinary bladder cancer (46).

In contrast to the positive APRPs, AHS and KNG were 
both found to be decreased in serum/plasma samples of 
patients with liver and gastrointestinal cancers (45, 59). 
This is consistent with their classification as negative 
APRPs. AHS is known for its antigrowth activity (60, 61). 
It is therefore not surprising to find that the serum levels 
of AHS were reduced in patients with hepatocellular 
carcinoma.

While the reported findings on the altered levels of 
APRPs in various types of cancer were highly consistent 
among independent studies, they were rather inconclusive. 
The reasons why different cancers triggered distinct 
acute-phase responses as seen from the different altered 
APRPs detected in the cancers are not known. A further 
confounding factor is that investigators were often content 
to catalogue changes of the proteins in a wide variety 
of cancers with little attention to tumor size or patient 
performance. Many studies have also utilized indirect 
assays such as the measurement of enzyme inhibitor 
activity, binding capacity, or partially purified serum 
fractions instead of directly quantifying the APRPs. 

PROTEOMICS ANALYSES OF APRP EXPRESSION IN PA-
TIENTS WITH CANCER

The direct simultaneous analysis of serum or plasma 
protein levels is now possible through proteomics technology. 
Proteomics generally involves the separation of proteins 
using gel- or liquid-based techniques and their subsequent 
identification by mass spectrometry and database search. 
When coupled with densitometry, fluorescence labeling or 
incorporated with isotopic labels, the expressed proteins 
may be quantified and compared between various biological 
samples (62). In line with its function, proteomics is currently 
a popular tool to profile serum or other clinically relevant 
body fluids in the quest for new biomarkers for cancer. Indeed, 
the diagnosis of all cancers is in dire need of complementary 
biomarkers, particularly those that may be used for early 
detection (63, 64).

Initial attempts at using proteomics in the search for 
novel cancer biomarkers have not been successful. At 
the early stages of cancer, the amount of tumor-specific 
proteins produced by cancer cells may not be detectable 
as they are substantially diluted upon secretion into the 
blood circulation. This is further compounded by the 
limitation that gel-based proteomics can only detect serum 
proteins of high abundance. Attempts have been made to 

deplete albumin and other high-abundance proteins from 
the serum samples in order to reveal serum proteins of 
lower abundance (65-68). However, this only reduced the 
dynamic range of the serum proteome by 2 to 3 orders of 
magnitude and is still far from being able to detect the low-
abundance proteins (69). It is therefore not surprising that 
changes of the same serum proteins are detected in studies 
using depletion techniques and those that use neat whole 
serum samples (Tab. IVA). In addition, the highly abundant 
albumin and immunoglobulins are known to interact non-
specifically with many serum proteins including those that 
have been clinically or experimentally used as biomarkers 
(70). Losing these serum proteins in the depletion process 
certainly affects the interpretation of the data obtained 
from these experiments. 

Despite their not being able to detect tumor-specific 
proteins, the proteomics analyses of serum or plasma 
samples highlight the different aberrant expression of 
selective proteins in patients with various cancers (Tab. 
IVA and IVB). Because of their altered concentration in 
serum, these proteins are categorized by definition as 
APRPs. In many of the proteomics analyses performed 
on patients with various types of cancers, which involved 
neat serum samples or even those that had been subjected 
to albumin depletion, the concentrations of many APRPs 
were affected. Many of these are apparently proteins of 
high abundance. 

The high-abundance APRPs whose altered 
concentrations were commonly and consistently detected 
in numerous cancer patients using the proteomics approach 
include AAT, ACT, AHS, complement factor B (CFB), CLU, 
CPL, HAP, KNG, LRG and zinc α2-glycoprotein (ZAG). 
With the exception of AHS and KNG, whose expression 
was reduced in selective cohorts of cancer patients as 
compared to negative control subjects, most of the other 
serum proteins were positive high-abundance APRPs. 
Interestingly, many of these proteomics findings confirmed 
previously reported observations from studies using the 
immunological and biochemical methods discussed 
earlier. 

The enhanced levels of serum ACT, CFB, CPL, LRG 
and ZAG and the reduced levels of AHS and KNG 
detected in selective cancers via proteomics analyses 
were rather consistent. However, the altered patterns – 
in terms of which APRPs were involved – differed greatly 
between the broad spectra of cancers studied (Tab. IVA 
and IVB). This is similarly observed in the experiments 
performed using non-proteomics approaches (Tab. III). 
Serum CLU, HAP and AAT expressions were upregulated 
in a few of the cancers studied. Notable exceptions were 
the reports on the decrease or loss of pre-surgery serum 
CLU in esophageal squamous cell carcinoma by Zhang 
et al (81), lowered expression of HAP α2 chain in pooled 
serum samples of breast cancer patients by Huang et al 
(83), and differences in results of AAT expression obtained 
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in our laboratory (92, 94) as compared to those of others. 
The results obtained from the analyses of CLU, HAP and 
AAT performed using biochemical and immunological 
methods are all in agreement with the main consensus.

The difference in expression of CLU may be due to 
its diverse and contradictory roles that were mentioned 
earlier, while the α2 chain of HAP is known to vary between 
individuals (96). In the case of AAT, the results from the 
proteomics analyses demonstrated that the levels of this 
serum protease inhibitor were consistently enhanced 
in patients with breast, colorectal, lung and pancreatic 
cancers (Tab. IVA), and these results are compatible with 
the data obtained using biochemical and immunological 
means (Tab. III). However, different results were reported 

on the levels of AAT in sera of patients with breast or 
cervical cancers, and the levels of this serum protease 
inhibitor were also reported to be significantly reduced 
in patients with endometrial carcinoma (Tab. IVB). These 
discrepancies may be due to the differences in how serum 
protein concentrations are expressed; for example, AAT 
is expressed relative to the total detectable proteins by 
our laboratory rather than as its true serum concentration. 
This is a significant consideration because the expression 
of other serum proteins is greatly enhanced in gel-based 
proteomics studies. 

When the proteomics data obtained from patients with 
various types of cancers were compiled and compared, 
uniform differential patterns of APRP expression were 

TABLE IVA - PROTEOMICS STUDIES OF APRP EXPRESSION IN CANCER: DATA FROM OTHER LABORATORIES 

APRP	 Type of cancer	 Response	 Method	 Reference

AAT	 Breast cancer (IDC)	 ↑	 *2-DE; MALDI-MS	 71
	 Colorectal cancer	 ↑	 SELDI-MS; Western blot	 72
	 Lung cancer (NSC)	 ↑	 2D-DIGE;  MALDI-MS; ELISA	 73
	 Pancreatic cancer	 ↑	 *2-DE ; MALDI-MS	 74
	 Pancreatic ductal adenocarcinoma	 ↑	 Solid-phase extraction fractionation; MALDI-MS	 75
ACT	 Pancreatic cancer	 ↑	 *Immunoaffinity HPLC; 2D DIGE; MALDI-MS	 76
	 Pancreatic ductal adenocarcinoma	 ↑	 Solid-phase extraction fractionation; MALDI-MS	 75
AHS	 Acute myeloid leukemia	 ↓	 *2-DE; MALDI-MS; ESI-MS	 77
	 Lung cancer (SCC)	 ↓	 *2D-DIGE; MALDI-MS; LC-MS/MS	 78
CFB	 Pancreatic cancer	 ↑	 *2-DE; MALDI-MS; LC-MS/MS	 79
CLU	 Colorectal cancer	 ↑	 Lectin-affinity purification; 2-DE; MALDI-MS	 80
	 Esophageal cancer (SCC)	 ↓	 2-DE; MALDI-MS	 81
CPL	 Pancreatic cancer	 ↑	 ESI-MS	 82
HAP	 Breast cancer	 ↓	 *2D-DIGE; MALDI-MS	 83
	 Head and neck cancer (SCC)	 ↑	 2-DE; ion-trap LC-MS/MS; PCR	 84
	 Liver cancer (AC)	 ↑	 Lectin affinity purification; 2-DE	 85
	 Lung cancer (AC)	 ↑	 2-DE; MALDI-MS	 86
	 Lung cancer (SCC)	 ↑	 *2D-DIGE; MALDI-MS; LC-MS/MS	 78
	 Ovarian cancer	 ↑	 SELDI-MS; ELISA	 87
			   *2-DE; MALDI-MS; ESI-MS/MS	 68
LRG	 Lung cancer (AC)	 ↑	 Multilectin chromatography; LC-ESI-MS/MS	 88
	 Pancreatic cancer	 ↑	 2-DE	 89
			   *2D-DIGE; LC-MS/MS	 90
ZAG	 Prostate cancer	 ↑	 LC-MS/MS	 91

↑ : increase; ↓ : decrease; *analyses of samples depleted of high-abundance proteins
IDC,  infiltrating ductal carcinoma; SCC, squamous cell carcinoma; AC, adenocarcinoma; NSC, non-small cell (lung cancer)

TABLE IVB - PROTEOMICS STUDIES OF APRP EXPRESSION IN CANCER: DATA FROM OUR LABORATORY

Type of cancer	 Relative expression		  Reference
	 Increased	 Decreased

Breast cancer	 ACT, CFB, CLU	 AAT, KNG	 92
Nasopharyngeal cancer	 CPL	 -	 93
Endometrial cancer	 ABG, ATR, CLU, LRG	 AAT, KNG	 94
Cervical cancer (SCC & AC)	 ABG, ATR, ZAG	 AAT, KNG	 94
Germ-line ovarian cancer	 AAT, CLU, CLP, HAP, LRG	 AHS	 95
Epithelial ovarian cancer	 AAT, ACT, CLU, HAP, LRG	 -	 95

SCC, squamous cell carcinoma; AC, adenocarcinoma
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observed. Figure 1, a simple checkered diagram, 
demonstrates the accumulated proteomics analyses of 
APRP expression in patients with different cancers. The 
proteomics data were compiled from results generated 
in our laboratory as well as others. While many of the 
proteomics analyses involved serum samples that were 
depleted of albumin and other high-abundance proteins 
or fractionation procedures (Tab. IVA), the experiments 
performed in our laboratory involved the use of neat 
serum samples from cancer patients (Tab. IVB). Our data 
were also expressed in percentage of volume contribution 
of a protein relative to the total proteins detected, with 
the levels of some of the common APRPs subsequently 
validated using competitive ELISA (92-95).

PUTATIVE APRP FINGERPRINTS IN CANCER PATIENTS 

From the overall pattern that was derived from the 
compiled data, the altered serum APRP profiles of patients 
appear to be unique for each type of cancer (Fig. 1). For 
example, pancreatic cancer is associated with upregulated 

serum AAT, ACT, CFB and LRG, while breast cancer is 
associated with enhanced levels of ACT, CFB and CLU 
and decreased KNG. Endometrial adenocarcinoma is 
characterized by enhanced levels of ABG, antithrombin 
III (ATR), CLU and LRG, and reduced levels of KNG, while 
cervical cancer is also associated with reduced KNG but 
with increased levels of ABG, ATR and ZAG. In the case 
of ovarian cancer, an altered pattern involving enhanced 
levels of CLU, CPL, HAP and LRG, and lowered levels 
of AHS is suggestive of germ-line cancer, while epithelial 
ovarian carcinoma is indicated by elevated levels of serum 
ACT, CLU, HAP and LRG. 

The distinct patterns of altered serum APRP in patients 
with different cancers suggest that they may be used as 
protein fingerprints to distinguish cancer types, facilitate 
their diagnosis, and/or monitor disease. For example, 
breast cancer may be suspected if the early screening of a 
patient’s serum demonstrates enhanced levels of ACT, CFB 
and CLU and decreased KNG, while a pattern showing 
upregulated serum AAT, ACT, CFB and LRG is indicative 
of pancreatic cancer. However, APRP fingerprinting may 
not be helpful for cancers like nasopharyngeal carcinoma 
because the concentration of only one of the high-

Fig. 1 - Checkered diagram of acute-phase reactant protein expression in cancer.
( + ) indicates overexpression and ( – ) indicates underexpression of APRPs in serum of patients with cancer as compared to negative controls. IDC, 
infiltrating ductal carcinoma; SCC, squamous cell carcinoma; AC, adenocarcinoma; NSC, non-small cell (lung cancer); DAC, (pancreatic) ductal ade-
nocarcinoma. For references, please see Tables III, IVA and IVB. 
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abundance proteins is altered.
In epithelial ovarian carcinoma we observed a positive 

correlation between the expression of ACT, HAP and AAT 
and progression of the 3 initial stages of cancer, while a 
negative correlation was found between the expression 
of LRG and CLU and cancer progression (unpublished 
data). A positive correlation of increasing AAT and HAP 
precursor with stages I, II and III of breast cancer has also 
been observed (71). These results underline the potential 
prognostic significance of selective high-abundance 
serum APRPs for breast and epithelial ovarian cancers. 

FUTURE DIRECTIONS IN THE STUDY OF APRPs IN PA-
TIENTS WITH CANCER 

Any implications of the use of serum APRP patterns 
as fingerprints for cancer diagnostics and monitoring are 
still preliminary considering that the number of patients 
involved in most of the reported proteomics analyses 
was relatively small and the cohorts of patients involved 
in the studies were not quite appropriately standardized. 
However, the importance of carrying out a large-scale 
validation analysis of the serum APRP expressions in 
different types and subtypes of cancer is greatly emphasized 
by the compelling evidence for the diagnostic and/or 
prognostic potential of the method. This can perhaps not 
be done with the classical proteomics techniques, which 
are laborious and time consuming, but is readily possible 
in light of the new developments in high-throughput 

methodologies like protein arrays, multiplexed protein 
assays, and targeted chip-based proteomic assays. The 
levels of the serum APRPs of interest, which have already 
been identified by previous studies, may be assessed 
simultaneously in different cohorts of cancer patients 
using these state-of-the-art approaches, with the patients 
grouped not only on the basis of the different types or 
subtypes of cancer but also according to cancer stage, 
tumor load, treatment, and performance status.
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