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Can the COVID-19 Epidemic Be Controlled on
the Basis of Daily Test Reports?

Francesco Casella , Member, IEEE

Abstract—This letter studies if and to which extent
COVID-19 epidemics can be controlled by authorities tak-
ing decisions on public health measures on the basis of
daily reports of swab test results, active cases and total
cases. A suitably simplified process model is derived to
support the controllability analysis, highlighting the pres-
ence of very significant time delay; the model is validated
with data from several outbreaks. The analysis shows that
suppression strategies can be effective if strong enough
and enacted early on. It also shows how mitigation strate-
gies can fail because of the combination of delay, unstable
dynamics, and uncertainty in the feedback loop; approxi-
mate conditions based on the theory of limitation of linear
control are given for feedback control to be feasible.

Index Terms—Control applications, delay systems,
emerging control applications, healthcare and medical
systems, modeling.

I. INTRODUCTION

T
HE FIRST outbreak of the COVID-19 [1] virus epidemic
took place in China, starting at the end of 2019, and has

since then caused a global pandemic with disruptive effects
on public health, social life, and the economy. The pandemic
will likely spark a large number of studies to understand its
behaviour and to determine effective control strategies.

A wide range of mathematical models have been proposed
to describe the dynamic evolution of epidemics, starting from
the seminal paper [2], and including a wide range of possibly
quite sophisticated models, see, e.g., [3] for a comprehensive
review. The analysis of these models allows to predict the
evolution of the disease over time, its asymptotic behaviour
(e.g., endemic disease equilibria vs. eradication), and most
importantly how it depends on the model parameters.

Epidemiological models are widely used to design vacci-
nation and treatment strategies based on optimal control, see,
e.g., [4] and references therein. They can also be used to design
feedback vaccination strategies [5], or even feedback strategies
combining different actions such as vaccination, treatment, and
culling [6]. Some studies take into the account the feedback
effects of behavioural changes in the evolution of an epidemic,
see [7] and reference therein.
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Most models employed to study control strategies are for-
mulated in terms of ordinary differential equations, e.g., the
classical SIR and SEIR models and their variants. In some
cases, time delays are also included in the model, to account
for the incubation time, see, e.g., [8], [9].

Detailed models of the COVID-19 outbreak have started
to appear in the literature. With reference to the outbreak in
Italy, [10] proposes an extension of the classic SIR model with
eight state variables, while [11] presents a spatially resolved
model with nine state variables for each of the 107 provinces
of the country. Both models confirmed the appropriateness of
the public measures taken by the Italian authorities to contain
the virus outbreak. A highly detailed epidemiological model
of the U.K. was used in [12] to predict possible outcomes of
the virus outbreak and to suggest the adoption of a suppression
policy.

The report [13] attempts to estimate the effects of non-
pharmaceutical interventions (NPIs, i.e., public health mea-
sures) onto the relative reduction of the reproduction number
Rt of COVID-19, by applying Bayesian methods to data from
11 European countries. Given the estimates of the initial repro-
duction number R0, a reduction by at least 60-70% or more
is necessary to suppress exponential growth. The main result
of [13] is that lockdown leads to an average reduction of
Rt by 50%, school closure by 20%, other measures around
10%. However, 95% confidence intervals on the reduction fac-
tors are huge, e.g., 10% to 80% reduction for lockdown, 0%
to 45% reduction for school closure, severely undermining
their predictive power. This problem is inherent to the require-
ment of a large enough data set to be statistically significant,
which requires to put countries with very different social habits
and very different interpretations of the same measure (e.g.,
lockdown) in the same data set.

The use of feedback control theory has been advocated
early on as a powerful tool to support the management of the
COVID-19 outbreak [14]. Unfortunately, most of the exist-
ing literature on the control of epidemics involves vaccines
or treatments, which are currently not available for COVID-
19. Some innovative feedback control strategies have been
proposed in preprints at the time of this writing, e.g., [15],
which proposes a feedback mitigation strategy based on fast
lockdown cycles controlled by a supervisory loop, or [16],
advocating a strategy based on massive random testing.

The aim of this letter is to assess the controllability of the
COVID-19 outbreak, assuming that the population is suffi-
ciently well mixed and that the decisions of public health
measures by the authorities are based on daily reports of
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positive swab tests, active cases, and total cases. To this aim,
a suitably simplified model is presented, which is specifically
aimed at capturing the fundamental dynamics of the process
that is relevant for feedback control, which turns out to be
heavily affected by time delay.

The main result of the analysis is twofold. On one hand,
suppression strategies can be effective if enacted early on and
with strong enough measures. On the other hand, mitigation

strategies turn out to be infeasible if the reproduction number
is significantly higher than one, and are in any case limited
by the time delays in the feedback loop.

This letter is structured as follows. In Section II, a control-
oriented model of the epidemic is introduced and validated
against data from the outbreaks in different countries. In
Section III, the two above-mentioned strategies are analysed in
terms of feedback control. Section IV draws conclusions from
the control-theoretical analysis with some recommendations
for decision makers and future research.

II. MODELLING

A. Derivation of the Model

Models of the COVID-19 epidemic such as those mentioned
in Section I are based on first principles, in the sense that their
equations describe the time evolution of different categories
of subjects, based on the known mechanisms of infection,
recovery, and care of patients. However, their behaviour is
ultimately decided by the values of coefficients that must be
identified from experimental data, which is preciously scarce
in the case of a new disease such as COVID-19. The quality
and homogeneity of data used to tune those models are also
often questionable: different countries adopt different stan-
dards for swab testing, possibly changing them over time;
some data get lost because of clerical errors; some countries
or regions may report lower numbers than real because of
political pressures. Even bona-fide reports may fail to provide
reliable data, as revealed by the mismatch between official
COVID-19 deaths and additional numbers of deaths on munic-
ipal records in previous years. The actual effects of NPIs are
still quite uncertain, see [13].

Public policies based on such models cannot thus be applied
blindly, but must be adapted and corrected based on the
observed outcome. Indicators used by public decision makers
include daily reports of a) new positive swab tests, b) current
number of infected subjects, and c) total number of reported
cases. The crucial question is then: is feedback control feasible

at all in such a system?
In order to answer this question, a suitably simplified model

of the epidemic is derived here to capture the fundamental
dynamics that is relevant for the design of the feedback policy,
in particular the dynamic relationship between NPIs and the
response of the three above-mentioned indicators. The starting
point is the basic SEIR model [3] with the addition of a further
compartment L:

dS

dt
= −

βIS

N
(1)

dE

dt
=

βIS

N
− ǫE (2)

dI

dt
= ǫE − γ I (3)

dL

dt
= γ I − δL (4)

dR

dt
= δL (5)

were N is the total population, S is the number of Susceptible
individuals, E is the number of Exposed individuals, that have
caught the infection but are not yet infectious, I is the number
of Infectious individuals, L is the number of subjects which
are still iLl, but are no longer infectious due to hospitaliza-
tion, quarantine, or just because infected subjects are mostly
infectious during the first few days after the end of the latency
period [17], and R the number of recovered resistant subjects.

The parameter β accounts for the likelihood of infection per
unit time; ǫ is the inverse of the average latency time before
one becomes infectious, γ is the inverse of the average time
infectious subjects spend by actually infecting other people,
and δ is the inverse of the average time subjects remain ill but
without infecting others. Given the short time spans involved
and the relatively low mortality rate, deaths and births can
be neglected, as well as immigration and emigration, that are
restricted during the outbreak.

The features of the COVID-19 virus, coupled with the
unavailability of effective treatments at the time of this writ-
ing, are such that allowing more than a few percent of the
population to be infected at any point in time is unaccept-
able, as doing so would lead to a collapse of the public health
system, particularly with reference to the significant fraction
of infected subjects needing intensive care to survive the acute
respiratory syndrome that the virus can cause. This fact, cou-
pled with the fairly long recovery time (about one month),
means that even the worst outbreaks in Western Europe are
currently estimated to have infected less than 10% of the pop-
ulation after a few months in the course of the epidemic. This
allows to consider S(t)/N ≈ 1 and get rid of Eq. (1). In fact, a
significant portion of the population may be not susceptible a

priori, e.g., due to genetic reasons. However, absent any con-
crete evidence of this fact, the precautionary principle suggest
to consider the worst case S(t)/N = 1.

Assuming then a constant value of β, the three eigenvalues
of system (2)-(4) are −δ and the two roots p and r of

s2 + (ǫ + γ )s − ǫ(β − γ ) = (s − p)(s − r). (6)

If β > γ , there is one negative eigenvalue p and one positive
eigenvalue r. Assuming that the negative exponential mode
has already died out, the solution of (2)-(3) is then:

I(t) ≈ I(0)ert, (7)

E(t) ≈
βI(0)

r + ǫ
ert (8)

The doubling time of I(t) is Td = log(2)/r. Under the assump-
tion that S ≈ N, we can approximate the current reproduction
number Rt = β/γ . This formula is not exact during transients,
when the number of infectious subjects changes over time, but
allows to later obtain some interesting synthetic results, though
with some approximation.

In contexts where massive testing was carried out, it
was found that about 40% of positive tested subjects are
entirely asymptomatic, despite being infectious [18], [19],
which makes COVID-19 particularly insidious. This suggests
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that a similar fraction of the infectious subjects goes unno-
ticed and escapes the testing process in the general population.
Furthermore, swab tests are affected by more than 20% false
negatives [20], and some mildly symptomatic subjects may
also end up not being tested. The ratio α between the number
the infectious subjects I(t) at a certain time t and the num-
ber of infectious subjects It(t) at the same time t that will
eventually get tested positive is then likely between two and
three. On the other hand, α is only relevant to determine when
the ratio S(t)/N starts decreasing significantly below one, pro-
viding some degree of herd immunity, as all other important
indicators, namely the mortality ratio, the ratio of hospitalized
subjects and the ratio of subjects requiring intensive care, are
all referred to It(t).

Assuming that α is constant, one can use Eqs. (2)-(5) to
also describe the dynamics of the fraction of subjects that are
eventually tested positive through the various stages of the
disease, Et(t), It(t), and Lt(t).

In most cases, subjects are only tested after they show seri-
ous symptoms, which happens on average τt days after they
have become infectious. The lab processing also introduces a
delay τr before reports are available. Although in principle it
is possible to provide the results of the test in a few hours,
the average reporting time is usually much longer because of
limited equipment availability, up to one week or more.

The NPIs mentioned earlier (lockdown, school closures,
etc.) reduce the rate of infection β, hence the current repro-
duction number Rt ≈ β/γ . These measures are varied and can
be applied progressively. We can then assume that the time-
varying parameter β is in fact a function of a representative
manipulated variable u(t), with u indicating the intensity of
adopted public health measures on a scale from 0 (no interven-
tion) to 1 (full lockdown and isolation of all individuals). The
β(·) function is thus monotonously decreasing from the value
β0, when no social restrictions are enforced, to zero, corre-
sponding to the total isolation of each person in the country. Of
course β is also a function of other unknown factors d(t) that
act as disturbances on the system, e.g., mutations of the virus
or changes in social behaviour which are not directly mandated
by the authorities. Considerable uncertainty is involved in the
estimation of the effects of different interventions in terms of
reduction of β or, equivalently, of Rt, see [13], hence β(·) is
also uncertain.

The control-oriented model can thus be formulated as a
state-space system with output delays:

dEt(t)

dt
= β(u(t), d(t))It(t) − ǫEt(t) (9)

dIt(t)

dt
= ǫEt(t) − γ It(t) (10)

dLt(t)

dt
= γ It(t) − δLt(t) (11)

dTt(t)

dt
= ǫEt(t) (12)

Nr(t) = ǫEt(t − τm) (13)

Ar(t) = It(t − τm) + Lt(t − τm) (14)

Tr(t) = Tt(t − τm), (15)

where β(u, d) is an uncertain function, ǫ, γ , δ are uncer-
tain constant parameters, τt, τr are uncertain parameters,

τm = τt + τr is the overall measurement delay, and Tt(t)

computes the cumulative number of positive tested subjects.
The first measured variable of the process is the number

of new daily reported cases Nr(t), which is affected by the
overall delay τm. The second measured variable is the number
of reported active cases Ar(t), i.e., the number of subjects for
which a positive test report has been received and a double
negative test has not yet been issued to certify their recovery.
As τt and τr are similar (several days), 2τr ≈ τt + τr = τm,
leading to Ar(t) = It(t − τm) + Lt(t − τm). The third measured
variable is the total cumulated number of reported positive
swab test reports Tr(t) = Tt(t − τm).

Note that the model (10)-(15) has a time delay on the output
equations. Since input/output dynamics only will be consid-
ered in the next Section, an equivalent representation could be
used where the delay is applied to the input instead.

B. Validation and Tuning

The goal of the model is to describe the dynamic response of
the Nr(t), Ar(t), and Tr(t) indicators to the application of NPIs
by central authorities, described by changes in u(t). Four out-
breaks cases were selected, all characterized by step changes of
u(t) at the central government level, in order to make the val-
idation easier: China, with data taken from [1], Italy, France,
and the U.K., with data taken from [21], which reports data
from national authorities.

In the case of Italy and U.K., some partial restrictions were
introduced first, causing a noticeable delayed reduction of the
exponential increase rate of new cases, then a full lockdown
was prescribed, whose effect was to change the positive expo-
nential growth of new cases into a negative exponential decay
after some delay. We then assume that β = β0 at t = 0, then
β undergoes a step reduction to β = ρ1β0 at t = t1 and a
further step reduction to β = ρ2β0 at time t = t2. In the
case of China and France no NPIs were enforced before full
lockdown, yet a reduction of the exponential growth rate well
ahead of the effects of lockdown is clearly visible, possibly
due to social feedback effects or other disturbances. Two step
reduction were thus applied also in those cases.

The parameters of the model were tuned manually to obtain
a good fit with the available data. In particular, τm is easily
tuned to match the delay between the lockdown and the peak
of Nr(t), Rt = β/γ and ρ1 determine the growth rates in the
pre-lockdown behaviour of Nr(t), ρ2, γ and ǫ determine the
shape and decay rate of the post-lockdown behaviour of Nr(t).
Tr(t) is the integral of Nr(t), so fitting it helps refining the
parameter tuning considering the noisy nature of Nr(t), which
is also affected by a weekly oscillation due to repeating lab
schedules. Finally, δ is tuned to match the peak of active cases
Ar(t), which is much wider and delayed than the peak of Ir(t).
A detailed error analysis was not performed and could be the
subject of future work considering a more extensive data set;
in any case, high parameter accuracy is not required to support
the forthcoming analysis.

The values obtained for the four outbreaks are reported in
Table I. They are fairly consistent with each other and are
compatible with the ones reported in [11] and [21]. The initial
reproduction number R0 and the current reproduction numbers
R1 and R2 computed after each change of β are reported,
as well as the doubling times Td0 and Td1 of the unstable
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Fig. 1. Italian outbreak validation: new daily reported cases.

Fig. 2. Italian outbreak validation: active and total reported cases.

mode before and after the first change of β, and the maximum
reproduction number Rl corresponding to the controllability
limit derived in Section III-B4.

The detailed results for the case of Italy, computed with the
code available online in [22], are reported in Figs. 1-2. The
interplay between Et and Rt accounts for the growth or decay
of cases, depending on Rt. The E compartment is essential to
explain why Nr(t) does not drop sharply, when β is sharply
reduced, once the τm delay has elapsed, while the L com-
partment is necessary to explain the much slower dynamic
response of active reported cases Ar(t). The validation results
of the other cases are reported in [23].

III. CONTROL

The effects of the application of the two control policies
outlined in the Introduction will now be analysed. The title of
this section may well be “Respect the Unstable” [24]: feed-
back control strategies should not be applied light-heartedly
to safety-critical unstable systems.

A. Suppression

The suppression strategy can be brutally summarized in the
following terms: as soon as Ar(t) reaches a value As which is
scary enough to decision makers to overcome their reluctance
to disrupt the social and economic life of their country, drastic
containment measures are taken:

u(t) =

{

0, Ar(t) < As

ū, Ar(t) ≥ As.
(16)

If the threshold As is crossed at time ts and ū is large enough,
then β(ū)/γ < 1 and thus r < 0. Assuming also d(t) remains
constant for t ≥ ts, Eqs. (9)–(11) form a homogeneous LTI
system with three negative eigenvalues r, p, and −δ. The actual
number of eventually tested positive exposed subject Et(t) will
start decaying immediately; however, the number of new daily
reported infectious cases Nr(t) will continue its exponential
growth for τm days, before starting to decay as well. The num-
ber of reported active cases Ar(t), hence the required number
of beds in hospitals and intensive care units, will also stop
increasing exponentially after τm days, but will continue grow-
ing and peak much later, due to the much slower time constant
1/δ, see, e.g., Fig. 2. Then, states and outputs asymptotically
approach the equilibrium in the origin, that corresponds to the
eradication of the virus.

The peak value of active cases Ap = max Ar(t) can be com-
puted by numerical integration of Eqs. (9)–(11) and (14). The
ratio M = Ap/Ar(ts) can be quite large, e.g., M = 8 for the
Italian outbreak and M = 10 for the French outbreak.

Assuming that a fraction σ (about 4% in Italy) of active
cases requires intensive care, and that Nic intensive care beds
are available, a wise choice of As requires σAr(t) < Nic ∀t;
hence, As < Nic/σM. Political decision-makers without a
training in mathematical modelling may have difficulties in
understanding the role and magnitude of factor M and may be
caught by surprise once it is too late to act.

B. Mitigation

1) Policy Statement: The basic idea of mitigation policies is
to manage the outbreak, in particular the trajectory of Ar(t), in
order to avoid overloading the public health system, without
trying to suppress it. This strategy was followed until 16 March
2020 by the U.K. government, which aimed at achieving herd
immunity [25], and until at least 10 June 2020 by the Swedish
government [26].

2) Mathematical formalization: The first step to enact this
strategy is to compute a reference control policy u0(t),
obtained by the application of suitable NPIs over time, whose
effects on β is accurately calibrated, leading to reference
trajectories N0

r (t), A0
r (t) and T0

r (t) for the corresponding
indicators, respecting the constraint σA0

r (t) < Nic. These tra-
jectories can be obtained by means of constrained optimal
control, using sophisticated models of the epidemic as, e.g.,
the ones reported in [10], [11], and [12].

The unstable nature of the state trajectories while r > 0
makes an open-loop implementation of this policy infeasible,
unless one wants to risk runaways that can cause the collapse
of the public health system. The reference trajectory should
rather be followed by adapting the public policy measures u(t)

in real time, based on the values of Nr(t), Ar(t), and Tr(t),
which are constantly monitored by the authorities. This corre-
sponds in principle to closing a feedback loop to stabilize the
unstable reference trajectory, see Fig. 3.

3) Ideal Feedback Controller Design: The process
model (9)-(14) can be linearized around the reference
trajectory at time ta, obtaining a linear model with con-
stant coefficients except for the terms β(u0(ta), d(ta)) and
∂β(u0(ta),d(ta))

∂u
, which depend on ta for non-trivial reference

control trajectories u0(t). For the sake of the subsequent
analysis, we assume that these parameters change over a
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TABLE I
MODEL PARAMETERS (TIME CONSTANTS IN DAYS)

Fig. 3. Mitigation control architecture.

time scale which is much longer than the time scale of the
closed-loop system feedback response, a common assumption
when dealing with gain-scheduling control, and thus consider
them as constants, with the value they have at time ta around
which the feedback stability analysis is performed. The
transfer functions of the linearized process then read:

�Nr(s)

�u(t)
=

µ(ta)(s + γ )

(s − p(ta))(s − r(ta))
e−τms (17)

�Ar(s)

�u(t)
=

µ(ta)(s + (γ + δ))

(s − p(ta))(s − r(ta))(s + δ)
e−τms (18)

�Tr(s)

�u(t)
=

µ(ta)(s + γ )

(s − p(ta))(s − r(ta))s
e−τms (19)

where µ(ta) = ǫ
∂β(u0(ta),d(ta))

∂u
I0(ta), and p(ta) and r(ta) are

the eigenvalues of system (9)-(10) linearized at t = ta around
the reference trajectory.

By making the very optimistic assumptions that the param-
eters ǫ, γ , δ, and τm are constant and perfectly known, that
the function β(u, d) that expresses the effects of public pol-
icy decisions is perfectly known, monotonously decreasing
and smooth with respect to u, and that d(t) ≡ 0, one can
design the feedback controller CFB as a linear controller C(s)

with gain scheduling, that compensates for the nonlinearity
of the process gain, resulting in a linear and (approximately)
time-invariant loop dynamics. While doing so, one should
also account for an additional delay τc of 2 ÷ 4 days within
the controller, corresponding to the decision making and
implementation delay. Assuming one wants to use Nr(t) for
feedback control, the overall control law is thus:

u(t) = u0(t) +
1

µ(t − τc)
uf (t − τc) (20)

uf (s) = C(s)
[

N0
r (s) − Nr(s)

]

(21)

and the loop transfer function of the controlled system is

L(s) = C(s)
µr(s + γ )

(s − p(t − τc))(s − r(t − τc))
e−s(τm+τc), (22)

where µr is the ratio between the actual value of the gain
µ of transfer function (17) and its reference value used for
gain scheduling. In ideal conditions, µr = 1, though results
from [13] imply this gain is subject to significant uncer-
tainty. In case one wants to control Ar(t) or Tr(t), similar
consideration apply, using (18) or (19) instead of (17).

In all the three cases, the loop transfer function reveals the
very dangerous nature of this process, which features a time
delay τ , an uncertain gain µr, and an unstable pole with time
constant T if β(ta)/γ > 1, where

T =
1

r
=

Td

log(2)
(23)

τ = τt + τr + τc. (24)

Considering the values reported in Table I, Td = 4.3 ÷ 5.8
before lockdown, while τ = 9 ÷ 12 days.

4) Control Feasibility: In order to guarantee some robustness
of the system performance against the large gain uncertainty
of the process, the Bode plot of |L(jω)| should maintain a
roughly constant slope over a sufficiently wide interval around
the crossover frequency ωc, thus approximating Bode’s ideal
loop transfer function.

When Rt(t) > 1, hence r(t) > 0, the analysis reported
in [27, Sec. 4.6], leads to conclude that if one wants to limit
the maximum norm of the sensitivity function Ms < 2 to
achieve some robustness, the product of the unstable pole r

and of the time delay τ should be rτ < 0.156. Introducing
the doubling time Td, this condition becomes:

τ

Td

< 0.225, (25)

i.e., under very optimistic assumptions on the knowledge of
the process parameters, feedback control is feasible only if the
overall loop delay is less than a quarter of the doubling time
of the outbreak. Considering the values reported in Table I,
this limitation translates into Rt(t) < 1.1.

When Rt(t) < 1, hence r(t) < 0, [27] concludes that the
maximum crossover frequency is 1.57/τ ; hence, the time con-
stant of the response of the feedback controller to unexpected
disturbances cannot be less than T = τ/1.57.

Unfortunately there is no theorem that can be directly
invoked to prove that any feedback control policy would not
suffer from the same limitations of a carefully scheduled lin-
ear controller. However, the results of this analysis provides an
insightful benchmark, pointing out the crucial role of measure-
ment and decision delays, which should explicitly be taken into
account for feedback control design, and minimized as much
as possible. It also suggest that robust feedback control may
not be feasible around trajectories where Rt is significantly
above one. For example, this may explain the runaway sce-
narios happening with non-negligible likelihood in [15], when
taking into account the statistical distribution of the uncertain
process parameters.

IV. CONCLUSION

Governments all the world over are faced with very chal-
lenging life-or-death decisions regarding the management of
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the COVID-19 epidemic, involving the balance between pub-
lic health and economic issues. In order to take such decisions,
they rely on expert advice based on the results of epidemio-
logical mathematical models and on daily case reports, based
on swab test results.

This letter puts the problem in a control systems perspective
as a feedback control problem, using a simple model to capture
the control-relevant dynamic response of those reports to the
application of NPIs. The model was tuned and validated with
data from four different outbreaks.

These are the main results of the analysis:
• The suppression strategy is effective if NPIs are strong

enough to obtain Rt < 1, but it requires to understand
the role of the multiplicative factor M to correctly decide
when it is the right time to enforce them.

• Mitigation strategies are limited by the combination of
delay, uncertainty, and unstable dynamics. Designing
robust stabilizing controllers around trajectories with
Rt > 1.1 is likely to be difficult or impossible. Reducing
the overall delay by 50% would bring the limit to
Rt > 1.2. This information is particularly relevant for
the management of the reopening phase after lockdown.

• Measurement and decision delays play a crucial role in
determining the feedback control performance and stabil-
ity; hence, they should be explicitly taken into account in
the design of any feedback controller, and minimized as
much as possible, e.g., by promoting fast testing policies
and technologies.

• The analysis and design of NPIs can benefit from con-
trol theory tools, possibly suggesting viable solutions or
pointing out shortcomings of proposed strategies, that are
not obvious to epidemiologists and physicians.

At the time of this writing, the emerging consensus seems
to be that the safest policy to address exponentially growing
COVID-19 outbreaks is to apply aggressive enough suppres-
sion policies; the results reported in this letter can further
motivate why this is actually the case.

These results could also be useful to devise effective and
safe strategies to cope with the reopening phase that countries
face after successfully suppressing the first outbreak, in par-
ticular if the number of new daily cases becomes too large to
allow for testing, tracing and tracking of individual cases.
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