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Can the galactic rotation curves be explained in brane world models?
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We consider solutions with conformal symmetry of the static, spherically symmetric gravitational field
equations in the vacuum in the brane world scenario. By assuming that the vector field generating the sym-
metry is nonstatic, the general solution of the field equations on the brane can be obtained in an exact
parametric form, with the conformal factor taken as parameter. As a physical application of the obtained
solutions we consider the behavior of the angular velocity of a test particle moving in a stable circular orbit. In
this case the tangential velocity can be expressed as a function of the conformal factor and some integration
constants only. For a specific range of integration constants, the tangential velocity of the test particle tends, in
the limit of large radial distances, to a constant value. This behavior is specific to galactic rotation curves and
is explained usually by invoking the hypothesis of dark matter. The limiting value of the angular velocity of the
test particle can be obtained as a function of the baryonic mass and radius of the galaxy. The behavior of the
dark radiation and dark pressure terms is also considered in detail, and it is shown that they can be expressed
in terms of the rotational velocity of a test particle. Hence all the predictions of the present model can be tested
observationally. Therefore the existence of the nonlocal effects, generated by the free gravitational field of the
bulk in a conformally symmetric brane, may provide an explanation for the dynamics of the neutral hydrogen
clouds at large distances from the galactic center.

DOI: 10.1103/PhysRevD.70.024010 PACS number~s!: 04.50.1h, 04.20.Cv, 04.20.Jb, 95.35.1d
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I. INTRODUCTION

Einstein’s theory of general relativity, and some of
generalizations, proved to be in excellent agreement w
observational or experimental results in the solar system
nary star systems, or laboratory@1#. However, it has long
been known that Newtonian or general relativistic mechan
applied to the visible matter in galaxies and clusters does
correctly describe the dynamics of those systems. The r
tion curves of spiral galaxies@2# are one of the best pieces o
evidence showing the problems Newtonian mechanics an
standard general relativity has to face on the galactic or
tergalactic scale. In these galaxies neutral hydrogen clo
are observed at large distances from the center, much be
the extent of the luminous matter. Assuming a nonrelativis
Doppler effect and emission from stable circular orbits in
Newtonian gravitational field, the frequency shifts in the 2
cm-line hydrogen emission lines allows measurement of
velocity of the clouds. Since the clouds move in circu
orbits with velocityv tg(r ), the orbits are maintained by th
balance between the centrifugal accelerationv tg

2 /r and the
gravitational attraction forceGM(r )/r 2 of the total mass
M (r ) contained within the orbit. This allows an expressi
of the mass profile of the galaxy in the formM (r )
5rv tg

2 /G.
Observations show that the rotational velocities incre

near the center of the galaxy and then remain nearly cons
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at a value ofv tg`;200 km/s@2#. This leads to a mass profil
M (r )5rv tg`

2 /G. Consequently, the mass within a distancer
from the center of the galaxy increases linearly withr, even
at large distances where very little luminous matter can
detected. This behavior of the galactic rotation curves is
plained by postulating the existence of some dark~invisible!
matter, distributed in a spherical halo around the galax
The dark matter is assumed to be a cold, pressureless
dium. There are many possible candidates for dark ma
the most popular ones being weakly interacting massive
ticles ~WIMPs!. Their interaction cross sections with norm
baryonic matter, while extremely small, are expected to
nonzero and we may expect to detect them directly. It
also been suggested that the dark matter in the Univ
might be composed of superheavy particles, with m
>1010 GeV. But observational results show that the da
matter can be composed of superheavy particles only if th
interact weakly with normal matter or if their mass is abo
1015 GeV @3#.

From a general relativistic point of view the space-tim
geometries associated with dark matter halos were con
ered in@4#, where several properties of this space-time a
the characteristics of the possible energy-momentum ten
which could produce such geometries have been discus
The form of the galactic potentials can be obtained, withi
general relativistic framework, from the observed rotati
curves, without specific reference to any metric theory
gravity. Given the potential, the gravitational mass can
determined by way of an anisotropy function of the stat
spherically symmetric gravitational galactic field@5#. The
possibility that dark matter has a substantial amounts of p
sure, comparable in magnitude to the energy density,
©2004 The American Physical Society10-1
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been investigated in@6#. Galaxy halo models, consistent wit
observations of flat rotation curves, are possible for a var
of equations of state with anisotropic pressures.

However, despite more than 20 years of intense exp
mental and observational effort, up to now nonongravita-
tional evidence for dark matter has ever been found: no
rect evidence of it and no annihilation radiation from
Moreover, accelerator and reactor experiments do not s
port the physics~beyond the standard model! on which the
dark matter hypothesis is based.

Therefore, it seems that the possibility that Einstein’s~and
the Newtonian! gravity breaks down at the scale of galaxi
cannot be excludeda priori. Several theoretical models
based on a modification of Newton’s law or of general re
tivity, have been proposed to explain the behavior of
galactic rotation curves. A modified gravitational potent
of the form f52GM@11a exp(2r/r0)#/(11a)r, with
a520.9 andr 0'30 kpc, can explain flat rotational curve
for most of the galaxies@7#.

In another model, called Modified Orbital Newtonian D
namics~MOND!, and proposed by Milgrom@8#, the Poisson
equation for the gravitational potential¹2f54pGr is re-
placed by an equation of the form¹@m(x)(u¹fu/a0)#
54pGr, wherea0 is a fixed constant andm(x) a function
satisfying the conditionsm(x)5x for x!1 andm(x)51 for
x@1. The force law, giving the accelerationa of a test par-
ticle, becomesa5aN for aN@a0 and a5AaNa0 for aN
!a0, where aN is the usual Newtonian acceleration. Th
rotation curves of the galaxies are predicted to be flat,
they can be calculated once the distribution of baryonic m
ter is known. Alternative theoretical models to explain t
galactic rotation curves have been elaborated recently
Mannheim@9# and Moffat and Sokolov@10#.

A general analysis of the possibility of an alternati
gravity theory explaining the dynamics of galactic syste
without dark matter was performed by Zhytnikov and Nes
@11#. From very general assumptions about the structure
relativistic gravity theory~the theory is metric and invarian
under general coordinates transformation, has a good li
approximation, it does not possess any unusual gauge
dom, and it is not a higher derivative gravity! a general ex-
pression for the metric to order (v/c)2 has been derived. Thi
allows us to compare the predictions of the theory with va
ous experimental data: the Newtonian limit, light deflecti
and retardation, rotation of galaxies, and gravitational le
ing. The general conclusion of this study is that the possi
ity for any gravity theory to explain the behavior of galaxi
without dark matter is rather improbable.

The idea that our four-dimensional Universe might be
four-dimensional space-time, embedded in a higher dim
sional space-time, had been proposed and studied, from
mathematical and physical points of view, for a long tim
~for a full account of the existing results on the subject a
on the early references see@12#!. The embedding approach t
gravity has its origins in the book by Eisenhart@13#. The
mathematical problems of the embeddings in higher dim
sional space-times, with applications to general relativ
have been discussed in detail as early as 1965@14#. By using
a more physical approach Akama@15# and Rubakov and
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Shaposhnikov@16# have suggested that we may live on
domain wall in a higher dimensional space. Earlier ref
ences to these topics can also be found in Bandos and K
mer @17#. In this paper a generalization of the embeddi
approach ford-dimensional gravity based uponp-brane theo-
ries is considered.

Recently, as a result of the proposal by Randall and S
drum @18# that our four-dimensional space-time is a thre
brane, embedded in a five-dimensional space-time~the bulk!,
the idea of the embedding of our Universe in a higher dim
sional space had attracted again a considerable interest
cording to the brane world scenario, the physical fields~elec-
tromagnetic, Yang-Mills, etc.! in our four-dimensional
Universe are confined to the three-brane. These fields
assumed to arise as fluctuations of branes in string theo
Only gravity can freely propagate in both the brane and b
space-times, with the gravitational self-couplings not sign
cantly modified. This model originated from the study of
single three-brane embedded in five dimensions, with the
metric given byds25e2 f (y)hmndxmdxn1dy2, which, due to
the appearance of the warp factor, could produce a la
hierarchy between the scale of particle physics and grav
Even if the fifth dimension is uncompactified, standard 4
gravity is reproduced on the brane. Hence this model allo
the presence of large or even infinite noncompact extra
mensions. Our brane is identified as a domain wall in a fi
dimensional anti–de Sitter space-time. For a review of
namics and geometry of brane universes see@19#.

As a result of the correction terms coming from the ex
dimensions, significant deviations from the Einstein theo
occur in brane world models at very high energies@20#.
Gravity is largely modified at the electroweak scale 1 Te
The cosmological implications of the brane world theor
have been extensively investigated in the physical literat
@21#. Gravitational collapse can also produce high energ
with five-dimensional effects playing an important role in t
formation of black holes@22#.

For standard general relativistic spherical compact obje
the exterior space-time is described by the Schwarzsc
metric. In the five-dimensional brane world models, the h
energy corrections to the energy density, together with
Weyl stresses from bulk gravitons, imply that on the bra
the exterior metric of a static star is no longer the Schwar
child metric @23#. The presence of Weyl stresses also me
that the matching conditions do not have a unique solut
on the brane; knowledge of the five-dimensional Weyl ten
is needed as a minimum condition for uniqueness. Sta
spherically symmetric exterior vacuum solutions of the bra
world models have been proposed first by Dadhichet al. @23#
and Germani and Maartens@24#. The solution obtained in
@23# has the mathematical form of the Reissner-Nordstr¨m
solution, in which a tidal Weyl parameter plays the role
the electric charge of the general relativistic solution. A s
ond exterior solution, which also matches a constant den
interior, has been derived in@24#. Other classes of exact o
approximate@using the multipole (1/r ) expansion# solutions
of vacuum field equations on the brane have been obtaine
@25#.

The vacuum field equations on the brane have been
0-2
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duced to a system of two ordinary differential equatio
which describe all the geometric properties of the vacuum
functions of the dark pressure and dark radiation terms~the
projections of the Weyl curvature of the bulk, generati
nonlocal brane stresses! in @26#. Several classes of exact s
lutions of the vacuum gravitational field equations on t
brane have been derived, and vacuums with particular s
metries have been investigated by using Lie group te
niques. A homology theorem for the static, spherically sy
metric gravitational field equations in the vacuum on t
brane has also been proved.

It is the purpose of the present paper to extend the
proach initiated in@26# by considering vacuum space-time
on the brane that are related to some more general Lie gr
of transformations and to investigate their possible phys
relevance for the explanation of the dynamics of galaxies
a group of admissible transformations we chose the o
parameter group of conformal motions. More exactly,
consider spherically symmetric and static solutions of
gravitational field equations for which the metric tensorgmn

has the propertyLjgmn5c(r )gmn , where the left-hand side
is the Lie derivative of the metric tensor, describing t
gravitational field in vacuum on the brane, with respect to
vector fieldjm, andc, the conformal factor, is an arbitrar
function of the radial coordinater. As for the vector fieldjm

we assume that it isnonstatic. With these assumptions th
gravitational field equations, describing the static vacu
brane, can be integrated in Schwarzschild coordinates,
an exact solution, corresponding to a brane admitting a o
parameter group of motions, can be obtained. The gen
solution of the field equations depends on three arbitr
integration constants. The conformal symmetry also uniqu
fixes the mathematical form of the dark radiation and d
pressure terms, respectively, which describe the nonloca
fects induced by the gravitational field of the bulk.

As a physical application of the conformally symmetr
vacuum brane model we consider the behavior of the ang
velocity of a test particle moving in a stable circular orbit.
turns out that for this case the tangential velocity can
expressed as a function of the conformal factorc and some
constants of integration only, the velocity being inverse
proportional to the conformal factorc. For a specific range
of the integration constants the tangential velocity of the
particle tends, in the limit of large radial distances, to a c
stant value. This behavior is specific to the galactic rotat
curves and is explained usually by invoking the hypothe
of dark matter. However, in the present approach the cons
velocity in the larger limit of a test particle moving in the
gravitational field of a galaxy is due to the existence of no
local effects from the bulk, transmitted via the nonzero co
ponents of the bulk Weyl tensor and of the conformally sy
metric geometrical structure of the static gravitational fie
on the brane. The existence of the dark radiation term g
erates an equivalent mass term, which is linearly increas
with distance and is proportional to the baryonic mass of
galaxy. All the relevant physical parameters~metric tensor
components, dark radiation, and dark pressure! can be ob-
tained as functions of the tangential velocity, and hence t
can be determined observationally.
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The present paper is organized as follows. The basic eq
tions describing the spherically symmetric gravitational fie
equations in the vacuum on the brane are derived in Sec
The general solution of the vacuum brane space-times ad
ting a one-parameter group of conformal motions, with no
static conformal symmetry, is obtained in Sec. III. The b
havior of the angular velocity of a test particle in stab
circular motion is considered in Sec. IV. We conclude a
discuss our results in Sec. V.

II. FIELD EQUATIONS FOR A STATIC, SPHERICALLY
SYMMETRIC VACUUM BRANE

On the five-dimensional space-time~the bulk!, with the
negative vacuum energyL5 and brane energy momentum a
a source of the gravitational field, the Einstein field equatio
are given by

GIJ5k5
2TIJ , TIJ52L5gIJ1d~Y!@2lbgIJ1TIJ

matter#,
~1!

with lb the vacuum energy on the brane andk5
258pG5. In

this space-time a brane is a fixed point ofZ2 symmetry. In
the following capital Latin indices run in the range 0, . . . ,4,
while Greek indices take the values 0, . . . ,3.

Assuming a metric of the form ds25(nInJ
1gIJ)dxIdxJ, with nIdxI5dx the unit normal to thex
5const hypersurfaces andgIJ the induced metric onx
5const hypersurfaces, the effective four-dimensional gra
tational equations on the brane~the Gauss equation! take the
form @20#:

Gmn52Lgmn1k4
2Tmn1k5

4Smn2Emn , ~2!

whereSmn is the local quadratic energy-momentum corre
tion

Smn5
1

12
TTmn2

1

4
Tm

aTna1
1

24
gmn~3TabTab2T2!,

~3!

and Emn is the nonlocal effect from the free bulk gravita
tional field, the transmitted projection of the bulk Weyl te
sor CIAJB , EIJ5CIAJBnAnB, with the property EIJ

→Emnd I
mdJ

n asx→0. We have also denotedk4
258pG, with

G the usual four-dimensional gravitational constant.
The four-dimensional cosmological constantL and the

four-dimensional coupling constantk4 are given by L
5k5

2(L51k5
2lb

2/6)/2 and k4
25k5

4lb/6, respectively. In the
limit lb

21→0 we recover standard general relativity.
The Einstein equation in the bulk and the Codazzi eq

tion also imply conservation of the energy-momentum ten
of the matter on the brane,DnTm

n50, whereDn denotes the
brane covariant derivative. Moreover, from the contrac
Bianchi identities on the brane it follows that the project
Weyl tensor should obey the constraintDnEm

n5k5
4DnSm

n.
The symmetry properties ofEmn imply that in general we

can decompose it irreducibly with respect to a chosen fo
velocity field um as @19#
0-3
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Emn52k4FUS umun1
1

3
hmnD1Pmn12Q(mun)G , ~4!

where k5k5 /k4 , hmn5gmn1umun projects orthogonal to
um, the ‘‘dark radiation’’ termU52k4Emnumun is a scalar,
Qm5k4hm

aEab a spatial vector, andPmn52k4@h(m
a hn)

b

2 1
3 hmnhab#Eab a spatial, symmetric, and trace-free tenso
In the case of the vacuum state we haver5p50, Tmn

[0, and consequentlySmn50. Therefore, by neglecting th
effect of the cosmological constant, the field equations
scribing a static brane take the form

Rmn52Emn , ~5!

with the traceR of the Ricci tensorRmn satisfying the con-
dition R5Rm

m5Em
m50.

In the vacuum caseEmn satisfies the constraintDnEm
n

50. In an inertial frame at any point on the brane we ha
um5d0

m and hmn5diag(0,1,1,1). In a static vacuumQm50
and the constraint forEmn takes the form@24#

1

3
DmU1

4

3
UAm1DnPmn1AnPmn50, ~6!

whereDm is the projection~orthogonal toum) of the covari-
ant derivative andAm5unDnum is the four-acceleration. In
the static spherically symmetric case we may chooseAm
5A(r )r m and Pmn5P(r )(r mr n2 1

3 hmn), where A(r ) and
P(r ) ~the ‘‘dark pressure’’! are some scalar functions of th
radial distancer, andr m is a unit radial vector@23#.

We chose the static spherically symmetric metric on
brane in the form

ds252en(r )dt21el(r )dr21r 2~du21sin2udf2!. ~7!

Then the gravitational field equations and the effect
energy-momentum tensor conservation equation in
vacuum take the form@26#

2e2lS 1

r 2
2

l8

r D 1
1

r 2
5

48pG

k4lb

U, ~8!

e2lS n8

r
1

1

r 2D 2
1

r 2
5

16pG

k4lb

~U12P!, ~9!

e2lS n91
n82

2
1

n82l8

r
2

n8l8

2
D 5

32pG

k4lb

~U2P!,

~10!

n852
U812P8

2U1P
2

6P

r ~2U1P!
. ~11!

In the following we shall denotea516pG/k4lb .
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III. GENERAL SOLUTION OF THE VACUUM BRANE
FIELD EQUATIONS WITH NONSTATIC CONFORMAL

SYMMETRY

The system of the field equations for the vacuum on
brane is underdetermined. A functional relation between
dark energyU and the dark pressureP must be specified in
order to solve the equations. An alternative method, wh
avoidsad hocspecifications, is to assume that the brane
mapped conformally onto itself along the directionj, so that

Ljgmn5gmn,ljl1glnj ,m
l 1gmlj ,n

l 5cgmn , ~12!

where c is the conformal factor. As for the choice ofj,
Herrera and Ponce de Leon@27# assumed that

j5j0~r !
]

]t
1j1~r !

]

]r
. ~13!

Using this form of the conformal vector in Eqs.~12!
one obtains j05A, j15(B/2)r exp(2l/2), c(r )
5B exp(2l/2), and exp(n)5C2r2, whereA, B, C are con-
stants.A may be set to zero sinceA]/]t is a Killing vector
andB may be set to 1 by a rescalingj→B21j, c→B21c,
which leaves Eq.~12! invariant. This form ofj gives the
most generalj invariant under the Killing symmetries—tha
is, @]/]t,j#505@Xa ,j#, whereXa generatesSO(3). This
form of the metric, obtained by imposing static conform
symmetry, has been used in@28# to investigate the propertie
of strange stars. The general solution of the vacuum br
gravitational field equations for this choice ofj has been
obtained in@26#.

A more general conformal symmetry has been propo
by Maartens and Maharajah@29#, which generalizes the iso
tropic conformal vectort]/]t1r ]/]r of the Minkowski
space-time, but weakens the static symmetry ofj in Eq. ~13!:

j5j0~ t,r !
]

]t
1j1~ t,r !

]

]r
. ~14!

Moreover, we assume that the conformal factorc is static,
c5c(r ). With this form of j, Eq. ~12! gives, immediately
~we denote85d/dr),

n8j112
]j0

]t
5c, ~15!

l8j112
]j1

]r
5c, ~16!

j15
rc

2
. ~17!

By solving Eqs.~15!–~17! we obtain@29#

j05A1
1

2

k

B
t, ~18!

c5Be2l/2, ~19!
0-4
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en5C2r 2expS 22kB21E dr

rc D , ~20!

wherek is a separation constant andA, B, andC are integra-
tion constants. Without any loss of generality we can cho
A50. Thus for the vector fieldj we obtain

j5
1

2

k

B
t

]

]t
1

rc~r !

2

]

]r
, ~21!

while the metric tensor components of the static vacu
brane can be expressed as a function of the confor
factor in the form exp(l)5B2c22 and exp(n)
5C2r2exp(22kB21*dr/rc), respectively.

Substitution of these forms of the metric functions in t
field equations~8!–~10! gives

2
c2

B2 S 1

r 2
1

2

r

c8

c D 1
1

r 2
53aU, ~22!

c2

B2 S 3

r 2
22

k

B

1

r 2c
D 2

1

r 2
5a~U12P!, ~23!

c2S 2
c8

rc
22

k

B

1

r 2c
1

k2

B2

1

r 2c2
1

1

r 2D 5a~U2P!. ~24!

By multiplying Eq. ~24! by 2, adding the equation thu
obtained to Eq.~23!, and equating the resulting equation wi
Eq. ~22! gives the following differential equation satisfied b
the functionc:

3rcc813c223
k

B
c1

k2

B2
2B250. ~25!

For kÞ6B2 the general solution of Eq.~25! is given by

r 25R0
2 F~c!

U3c223
k

B
c1

k2

B2
2B2U , ~26!
02401
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whereR0 is an arbitrary constant of integration:

F~c!5expS 23
k

BE dc

3c223
k

B
c1

k2

B2
2B2D ~27!

and

F~c!5S uc2c2u
uc2c1u D

m

, kP~22B2,2B2!, ~28!

F~c!5expS 62B

c7BD , k562B2, ~29!

F~c!5expF2
k

B
n arctannS c2

k

2BD G ,
kP~2`,22B2!ø~2B2,1`!. ~30!

In Eqs.~28!–~30! we have also denoted

c1,25

3
k

B
6A12B223

k2

B2

6
,

m5
3k

BA12B223
k2

B2

, n5
6

A3
k2

B2
212B2

.

~31!

For the dark radiation and dark pressure we obtain
general expressions
U~c!5

U3c223
k

B
c1

k2

B2
2B2US c222

k

B
c1

2

3

k2

B2
1

1

3
B2D

3aB2R0
2F~c!

~32!

and

P~c!5

U3c223
k

B
c1

k2

B2
2B2UF4c222

k

B
c2

1

3 S k2

B2
2B2D 22G

3aR0
2F~c!

, ~33!

respectively.
Generally,c cannot be expressed in an exact analytical form as a function ofr. Hence the functions exp(l)5B2c22,
0-5
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exp~n!5
C2R0

2

F~c!S 3c223
k

B
c1

k2

B2
2B2D , ~34!

U(c) andP(c) can be obtained, as functions of the radial distancer, only in a parametric form, withc taken as parameter
However, because of the arbitrariness in the choice of the reference system in the general theory of relativity, we ca

the coordinates to any transformation which does not violate the central symmetry of the line element. Therefore, b
ducing a new radial coordinater̄ 5c(r ), so that

r 5r ~ r̄ !5
R0

AF~ r̄ !

AU3r̄ 223
k

B
r̄ 1

k2

B2
2B2U

, ~35!

we obtain the line element of the static, spherically symmetric metric admitting a conformal symmetry with a nonstatic
field on the vacuum brane in the form

ds25
R0

2

F~ r̄ !U3r̄ 223
k

B
r̄ 1

k2

B2
2B2U F 2C2dt21

9B2F2~ r̄ !dr̄2

U3r̄ 223
k

B
r̄ 1

k2

B2
2B2U2 1F2~ r̄ !dV2G , kÞ6B2, ~36!

wheredV25du21sin2udf2 is the metric of a unit sphere.
Therefore, by using the new variabler̄ the three classes of conformally symmetric solutions of the gravitational

equations on the brane take the form

ds25
R0

2

3

u r̄ 2c1um21

u r̄ 2c2um11 F2C2dt21B2
u r̄ 2c2u2m22

u r̄ 2c1u2m12
dr̄21

u r̄ 2c2u2m

u r̄ 2c1u2m
dV2G , kP~22B2,2B2!, ~37!

ds25
R0

2

3

expS 72B

r̄ 7B
D

~ r̄ 7B!2
F 2C2dt21B2

expS 64B

r̄ 7B
D

~ r̄ 7B!4
dr̄21expS 64B

r̄ 7B
D dV2G , k562B2, ~38!

ds25

R0
2expF k

B
n arctannS r̄ 2

k

2BD G
U3r̄ 223

k

B
r̄ 1

k2

B2
2B2U 5 2C2dt21

9B2expF22
k

B
n arctannS r̄ 2

k

2BD Gdr̄2

U3r̄ 223
k

B
r̄ 1

k2

B2
2B2U2

1expF22
k

B
n arctannS r̄ 2

k

2BD GdV26 , kP~2`,22B2!ø~2B2,1`!. ~39!

The general solution of the field equations can be obtained in an exact analytical form for some particular valuk.
Hence by takingk56B2 we immediately obtain

c5
R0

r
6B, ~40!

with the corresponding line element given by
024010-6
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ds25
1

S R0

r
6BD 2 ~2C2dt21B2dr2!1r 2~du21sin2udf2!, k56B2. ~41!

For the dark radiation and the dark pressure we find

U~r !5
1

aR0
2 S R0

r D 4

, P~r !5
2

aR0
2 S 2R0

3r
6BD S R0

r D 3

, k56B2. ~42!
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IV. STABLE CIRCULAR ORBITS IN CONFORMALLY
SYMMETRIC SPACE-TIMES ON THE BRANE

We shall consider now the problem of constructing sta
circular timelike geodesic orbits in a static spherical
spherically symmetric field on the brane, with line eleme
given in a general form by Eq.~7!. The motion of a test
particle in the gravitational field can be described by
Lagrangian@4#

2L5S ds

dt D 2

52en(r )S dt

dt D 2

1el(r )S dr

dt D 2

1r 2S dV

dt D 2

,

~43!

where we denoted byt the affine parameter along the ge
desics. In the timelike caset corresponds to the proper time
In the following we denote by an overdot the differentiati
with respect tot. From the Lagrangian given by Eq.~43! it
follows that the energyE5en ṫ and thew componentl w

5r 2sin2uẇ of the angular momentum of the particle are co
served quantities,E5const andl w5const. Theu component
of the angular momentum,l u5r 2u̇, is not a constant of mo
tion, but the total angular momentuml 25 l u

21( l w /sinu)2 is a
conserved quantity,l 25const. The total angular momentu
can be expressed in terms of the solid angle asl 25r 4V̇2 @4#.

In the timelike case the equation of the geodesic or
can be written in the form

ṙ 21V~r !50, ~44!

where the potentialV(r ) is given by

V~r !52e2lS E2e2n2
l 2

r 2
21D . ~45!

Restricting the radial motion to stable circular orbits im
plies imposing the conditionsṙ 50 and ]V/]r 50, so that
the potential describes an extremum of the motion. In or
that this extremum be a minimum the condition]2V/]r 2

.0 is also required. These three conditions imply that
circular motion is stable. They also lead to the followin
expressions of the energy and total angular momentum o
particle @4,5#:

E25
2en

22rn8
, l 25

r 3n8

22rn8
. ~46!
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On the other hand, the line element, given by Eq.~7!, can
be rewritten in terms of the spatial components of the vel
ity, normalized with the speed of light, measured by an in
tial observer far from the source, asds252dt2(12v2) @4#,
where

v25e2nFelS dr

dt D
2

1r 2S dV

dt D 2G . ~47!

For a stable circular orbit,ṙ 50, and the tangential veloc
ity of the test particle can be expressed as

v tg
2 5

r 2

en S dV

dt D 2

. ~48!

In terms of the conserved quantities the angular veloc
is given by

v tg
2 5

en

r 2

l 2

E2
. ~49!

With the use of Eqs.~46! we obtain

v tg
2 5

rn8

2
. ~50!

Thus, the rotational velocity of the test body is determin
by the metric coefficient exp(n) only.

In the case of the motion of a test particle in a confo
mally symmetric, static spherically symmetric space-tim
with a nonstatic vector field generating the symmetry,
metric coefficient exp(n) is given by Eq.~20!. Therefore for
the angular velocity we find the simple expression

v tg
2 512

k

B

1

c
. ~51!

Equation~51! gives a simple physical interpretation of th
conformal factorc in terms of the tangential velocity,c
5(k/B)@(12v tg

2 )21#. On the other hand, the metric coeffi
cient exp(l) can also be expressed as a function of the t
gential velocity only:

exp~l!5
B4

k2
~12v tg

2 !2. ~52!
0-7
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From Eq.~51! it follows that the general, physically ac
ceptable, range of the parameterc is cP@k/B,`), corre-
sponding to a variation of the tangential velocity betwe
zero and the speed of light. However, in the ca
kP(22B2,2B2), the limiting value of the radial coordinate
r→`, is obtained, as one can see from Eq.~28!, in the limits
c→c1 or c→c2 ~the corresponding limit depends on th
numerical values of the parametersk andB). Assuming that
r→` for c→c1, it follows that in the larger limit the
tangential velocity of a test particle in stable circular moti
in a conformally symmetric static vacuum space-time on
brane tends to a limiting, nonzero valuev tg` , v→v tg` , r
→`, given by

v tg`5A12
6k

3k1A12B423k2
. ~53!

For B51.00000034 andk50.9999999 the limiting tan-
gential velocity is given byv tg`;0.00072;216.3 km/s,
which is of the order of the observed galactic rotational
locities.

FIG. 1. Variation, as a function of the parameterr /R0, of the
tangential velocityv tg of a test particle in a stable circular orbit in
conformally symmetric vacuum space-time on the brane, foB
51.00001 and different values ofk: k50.9999 ~solid curve!, k
50.99985~dotted curve!, andk50.9998~dashed curve!.
02401
n
e

e

-

In the case of a conformally symmetric static vacuu
space-time on the brane, the general dependence of the
gential velocityv tg on the radial coordinater is given, with
the use of Eq.~26!, in a parametric form, withc taken as
parameter. In this model it is not possible to express
tangential velocity as an analytical function ofr.

The variation ofv tg as a function of the radial distance
represented, for some particular values ofk andB, in Fig. 1.

In the limit of large r, r→`, and for this choice of the
numerical values of the arbitrary parametersk and B, the
tangential velocity tends to a constant value. The numer
value of the limiting velocity is extremely sensitive to th
values ofk andB.

The variations of the metric coefficients exp(n) and
exp(l) are represented in Figs. 2 and 3, respectively.

The metric components satisfy the conditions exp(n)<1
and exp(l)>1, respectively.

The dark radiation and dark pressure terms can also
represented, as a function of the tangential velocity of a
body, in the form

FIG. 2. Variation, as a function of the parameterr /R0, of the
metric coefficient exp(n)/C2R0

2 for a static, conformally symmetric
vacuum space-time on the brane, forB51.00001 and different val-
ues ofk: k50.9999~solid curve!, k50.99985~dotted curve!, and
k50.9998~dashed curve!.
U~v tg!5
$B4~12v tg

2 !1k2@2v tg
2 ~11v tg

2 !21#%uk2@11v tg
2 ~11v tg

2 !#2B4~12v tg
2 !2u

9aR0
2B6~12v tg

2 !4FF k

B
~12v tg

2 !21G ~54!

and

P~v tg!5
$B2~B226!~11v tg

2 !1k2@51v tg
2 ~82v tg

2 !#%uk2@11v tg
2 ~11v tg

2 !#2B4~12v tg
2 !2u

9aR0
2B4FF k

B
~12v tg

2 !21G , ~55!
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respectively.
The variation of the dark radiationU is represented, as

function of r /R0, in Fig. 4.
The dark radiation term is positive for all values of th

radial coordinater, U(r )>0, ;r P(0,̀ ). In the limit of
large r, U tends to zero, limr→`U(r )50. The variation of
the dark pressure as a function ofr is represented in Fig. 5

In the present model the dark pressure is negative, s
fying the conditionP(r )<0, ;r P(0,̀ ). In the large time
limit, similar to the dark radiation term, the dark pressu
also tends to zero, limr→`P(r )50.

V. DISCUSSIONS AND FINAL REMARKS

In order to obtain a manifestly coordinate invariant ch
acterization of certain geometrical properties of geometr
like, for example, curvature singularities, Petrov type of t
Weyl tensor, etc., the scalar invariants of the Riemann ten
have been extensively used. Two scalars, which have b
considered in the physical literature, are the Kretschm
scalars, RiemSq[Ri jkl R

i jkl and RicciSq[Ri j R
i j , where

Ri jkl is the Riemann curvature tensor.

FIG. 3. Variation, as a function of the parameterr /R0, of the
metric coefficient exp„l… for a static, conformally symmetric
vacuum space-time on the brane, forB51.00001 and different val-
ues ofk: k50.9999~solid curve!, k50.99985~dotted curve!, and
k50.9998~dashed curve!.

FIG. 4. Variation, as a function of the parameterr /R0, of the
dark radiation term 3aB2R0

2U for a static, conformally symmetric
vacuum space-time on the brane, forB51.00001 and different val-
ues ofk: k50.9999~solid curve!, k50.99985~dotted curve!, and
k50.9998~dashed curve!.
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For space-times which are the product of 2 tw
dimensional spaces, one Lorentzian and one Riemann
subject to a separability condition on the function whi
couples the two-spaces, it has been suggested in@30# that the
set C5$R,r 1 ,r 2 ,w2% forms an independent set of scal
polynomial invariants, satisfying the number of degrees
freedom in the curvature.R5gil gjkRi jkl is the Ricci scalar
and the quantitiesr 1 , r 2, and w2 are defined according to
@31#

r 15fABȦḂfABȦḂ5
1

4
Sa

bSb
a ,

r 25fABȦḂfCĊ
BḂ

fCAĊȦ52
1

8
Sa

bSb
cSc

a , ~56!

w25CABCDCEF
CDCEFAB

5
1

32
~3Eb

aHc
bHa

c2Eb
aEc

bEa
c!

1
i

32
~Hb

aHc
bHa

c23Eb
aEc

bHa
c!, ~57!

whereSa
b5Ra

b2 1
4 Rda

b is the trace-free Ricci tensor,fABȦḂ
denotes the spinor equivalent ofSab , CABCD denotes the
spinor equivalent of the Weyl tensorCabcd, and C̄abcd de-
notes the complex conjugate of the self-dual Weyl tens
Cabcd

1 5 1
2 (Cabcd2 i * Cabcd). Eac5Cabcdu

bud and Hac

5Cabcd* ubud are the ‘‘electric’’ and ‘‘magnetic’’ parts of the
Weyl tensor, respectively, whereua is a timelike unit vector
andCabcd* 5 1

2 habe fCcd
e f is the dual tensor. The expressions

the invariants for some particular values of the integrat
constantsk andB are presented in the Appendix. As a res
of their complicated form, we shall not present the values
the invariants for other values ofk and B. For theB51, k
52 case the invariants diverge atr 51, while for the B
51, k561 case they diverge forr→0.

In the present paper we have obtained all the conform
symmetric solutions of the vacuum field equations in t
brane world model, under the assumption of a nonstatic c
formal symmetry, and we have discussed some of th
physical properties. In particular we have considered the

FIG. 5. Variation, as a function of the parameterr /R0, of the
dark pressure term 3aR0

2P for a static, conformally symmetric
vacuum space-time on the brane, forB51.00001 and different val-
ues ofk: k50.9999~solid curve!, k50.99985~dotted curve!, and
k50.9998~dashed curve!.
0-9
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havior of the angular velocity of a test particle in a stab
circular orbit on the brane. The conformal factorc, together
with two constants of integration, uniquely determines
rotational velocity of the particle. In the limit of large radia
distances and for a particular set of values of the integra
constants the angular velocity tends to a constant value.
behavior is typical for massive particles~hydrogen clouds!
outside galaxies. Thus the rotational galactic curves can
naturally explained in brane world models. The galaxy
embedded in a modified, spherically symmetric geome
generated by the nonzero contribution of the Weyl ten
from the bulk. The extra terms, which can be described
terms of a dark radiation termU and a dark pressure termP,
act as a ‘‘matter’’ distribution outside the galaxy. The pa
ticles moving in this geometry feel the gravitational effec
of U and P, which can also be described, equivalently,
means of a mass term.

The behavior of the metric coefficients and of the angu
velocity in the solutions we have obtained depend on t
arbitrary constants of integrationk and B. Their numerical
value can be obtained by assuming the continuity of the m
ric coefficient exp(l) across the vacuum boundary of th
galaxy. For simplicity we assume that inside the ‘‘norma
~baryonic! luminous matter, with densityrB , which form a
tio
st

th
io

ex

o
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galaxy, the nonlocal effects of the Weyl tensor can be
glected. We define the vacuum boundaryr 0 of the galaxy
~which for simplicity is assumed to have spherical symm
try! by the conditionrB(r 0)'0. Therefore at the vacuum
boundary the metric coefficient exp(l)5122GMB /r0, where
MB54p*0

r 0rB(r )r 2dr is the total baryonic mass inside th
radius r 0. The continuity of exp(l) through the surfacer
5r 0 gives

12
2GMB

r 0
5

c2~r 0!

B2
5

k2

B4

1

@12v tg
2 ~r 0!#2

, ~58!

leading to

k2

B4
5S 12

2GMB

r 0
D @12v tg

2 ~r 0!#2. ~59!

Therefore the ratiok2/B4 can be determined observation
ally. With the help of Eq.~59! the limiting angular velocity
of the test particle rotating in the conformally symmetr
gravitational field on the brane, given by Eq.~53!, can be
expressed, as a function of the total baryonic mass of
galaxy only, in the form
v tg`5!12

6A12
2GMB

r 0
S 12

GMB

r 0
D

3A12
2GMB

r 0
S 12

GMB

r 0
D 1A1223S 12

2GMB

r 0
D S 12

GMB

r 0
D 2

, ~60!
on-

-
the

r-
ian
he
where we have also used the Newtonian approxima
v tg

2 (r 0)5GMB /r 0 to eliminate the angular velocity of a te
particle at the vacuum boundary of the galaxy.

Since for a galaxyGMB /r 0 has a very small value, we
can expandv tg` in a power series ofGMB /r 0, thus obtain-
ing

v tg`'
2

A3
AGMB

r 0
1

1

12A3
S GMB

r 0
D 3/2

1OF S GMB

r 0
D 5/2G .

~61!

For a galaxy with baryonic mass of the order 109M ( and
radius of the order ofr 0'70 kpc, Eq. ~61! gives v tg`

'287 km/s, which is of the same order of magnitude as
observed value of the angular velocity of the galactic rotat
curves.

From the field equation~8! it follows that in the vacuum
outside the galaxy the metric tensor component exp(2l) can
be expressed in terms of the dark radiation only as
(2l)5122GMU /r, whereMU53a* r 0

r U(r )r 2dr represents

the ‘‘mass’’ associated with the dark radiation component
n

e
n

p

f

the energy-momentum tensor on the brane. By using the c
formal symmetry and the expression of the ratiok2/B4 we
obtain forMU the expression

MU~r !5
r

2G H 12S 12
2GMB

r 0
D F12v tg

2 ~r 0!

12v tg
2 ~r !

G 2J . ~62!

Sincev tg
2 (r 0) andv tg

2 (r ) are much smaller than 1, it fol
lows that the dark radiation mass can be approximated by
very simple scaling relation

MU~r !'MB

r

r 0
. ~63!

MU is linearly increasing with distance and is propo
tional to the baryonic mass of the galaxy. In the Newton
limit, from the equality between the centrifugal force and t
gravitational force it follows thatMB /r 05v tg

2 (r 0)/G, lead-
ing to

MU~r !'
v tg

2 ~r 0!

G
r . ~64!
0-10
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In conclusion, in the present paper we have investiga
conformally symmetric vacuum solutions of the gravitation
field equations on the brane and analyzed the motion of
particles in stable circular orbits in this geometry. By usi
the continuity of the metric coefficients a complete descr
tion of the motion of the particles outside a galaxy can
obtained. In the large distance limit the angular velocity
the particles tends to a constant value, which can be de
mined as a function of the baryonic~luminous! mass and the
radius of the galaxy. All the relevant physical quantities,
cluding the dark energy and the dark pressure terms, w
describe the nonlocal effects due to the gravitational field
the bulk, are expressed in terms of observable parame
More general conformally symmetric solutions on the bra
and their physical properties, will be considered in detail i
future publication.

APPENDIX

In this appendix we present the values of t
Kretschmann scalars RiemSq[Ri jkl R

i jkl and RicciSq
[Ri j R

i j and some values of the independent set of the sc
polynomial invariants$R,r 1 ,r 2 ,w2% for the exact static,
spherically symmetric vacuum brane with conformal sy
metry for some particular values of the integration consta
k andB.

For k52 andB51 the expressions of the invariants ar
s

.

s-
.
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R50, RicciSq518R0
24e24/(r 21)~r 21!4~928r 112r 2

216r 316r 4!, ~A1!

RiemSq572R0
24e24/(r 21)~r 21!4~624r 16r 228r 313r 4!,

~A2!

r 15
1

4
RicciSq, r 25

81

4R0
6

e26/(r 21)~r 21!6~r 222!

3~124r 12r 2!, ~A3!

Re~w2!52
81

4R0
6

e26/(r 21)~r 21!6. ~A4!

For B51 andk561 we obtain

R50, RicciSq5
4R0

2~6r 268R0r 13R0
2!

r 8
, ~A5!

RiemSq52RicciSq, ~A6!

r 15
RicciSq

4
, r 25

3R0
3~2r 365R0r 214R0

2r 6R0
3!

r 12
,

~A7!

Re~w2!50. ~A8!
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