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Can the Membrane Be a Unification Model?*
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Whether a membrane model can generate massless particles in the spectrum is studied by calculating
the Casimir energy.

§1. Introduction

String theories have opened a new area in quantum field theory, i.e., the field theory
of extended objects. Although the notion of the field for non-locally extended object can
be traced back to the article by Yukawa in 1950, the theory has been known to have a
number of difficulties” such as the causality trouble, the existence of ghosts, distresses in
introducing interactions, etc. »

The success of string field theories,” however, taught us how to overcome these
problems. First, the theory must be so made that the model represents a continuously
extended matter which is causal as a classical theory. Second, the model should have
high enough local symmetry to eliminate all negative norm components of coordinates.
Third, when one introduces interactions between extended objects, the continuity condi-
tion of the world manifold should be imposed. The reparametrization invariance of the
world manifold swept out by the extended body seems to be necessary at least. Fourth,
when the model is quantized, there occur a number of quantum mechanical anomalies.”
These must be eliminated by adjusting some parameters, such as dimensions of space-time.

However, when it comes to the question whether the extended object model can be a
unification theory of fundamental interactions, it is another problem. In string theories
we know that there appear always massless spin one and two particles which play the
roles of gauge particle and graviton in certain critical dlmensmns In this article we
address ourselves to this problem and ask whether massless partlcles are able to be
expected® in the membrane model, for instance.

This problem is also related with the speculation that the superstrmg might be a thin
limit of a membrane.” As will be discussed below, we can answer this question by
calculating the Casimir energy of a membrane. .

In the following we will first make simple observations about classical and quantum
mechanics of extended objects. Then we will point out that a spin-mass relationship (the
Regge trajectory) can be calculable in an infinite limit of string tension. This enables us
to judge whether massless particles appear or not. In a simple membrane model we show
our calculations.

*) Work supported in part by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science
and Culture (# 61540202) and the Grant-in-Aid for Co-operative Research (# 61306010).
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1380 K. Kikkawa and M. Yamasaki

§2. Spin-mass relation of extended objects

Let us consider an #-dimensinally extended object which is governed by the action®

Sn:_

;;/a’"ddr[det as]'?, | 2-1)

where
Gao=0.X*0sX,

and x» is a tension parameter. The coordinate X*(z, o1, -, 0a) represents a point of the
object parametrized by c.(a=0,1, -, %) and r. The dimensions of space-time are as-
sumed to be D. The right-hand side of (2-1) is nothing but the volume of world body
swept out by the object, and reduces to the Nambu-Goto action® for n=1.

The dimension of the parameter x, is [ML'"*T '] where M, L and T represent mass,
length and time, respectively. We try to obtain a relationship between the spin angular
momentum J and the rest mass of rotating object. Possible parameters which participate
in the relationship are the light velocity ¢, x., J, m and the Planck constant #Z. Dimen-
sional analysis at once leads us to

J=A(x) " (cm)" """+ Ba (2-2)

where A and B are dimensionless numbers.'” In the classical theory only the first term
on the r.h.s. of (2:2) survives. It may be worth while to note that (2-2) is valid not only
for the particular model (2+1) but also for any model which is characterized by a single
constant x.. In what follows we adopt the natural unit convention where c=7%=1.

In quantum theory the second term on the r.h.s. of (2-2) arises due to the Casimir effect
of the extended object, i.e., the sum of zero-point energies. In the bosonic string model,
for example, the mass squared is shifted by

1 D—2,& .
o 2 (712::1%)’ (2 3)

where D—2 is the number of independent oscillation modes. Although (2-3) is infinite
Brink and Nielsen'" argued that a physically meaningful number can be extracted out by
some regularizations. One simple method is to use Riemann’s zeta function defined by

¢(s)= in ' . (2-4)

The quantity of our interest is now obtained by making an analytic continuation of &(s)
in s from s>1 to negative region and is

o . _ _ _L .
Using (2-5) and (2-3), we arrive at the spin-mass relation
]:LMZ_'_M , ' i (2.6)

P 24
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Can the Membrane Be a Unification Model? 1381

where M? is the mass operator of string and p=1 for open string and p=2 for closed string.
To get a massless particle (M>=0) with an integer spin, the dimensions of space-time has
to be either 2 or 26 [D>26 is excluded by other reason]. It is a miracle that the Casimir
term (2-5) in the string model has happened to be a rational number so that J is made an
integer by adjusting dimensions of space-time. ’

What would happen in other extended models? Note, first of all, that the constant B
in (2-2) is independent of x», so one can calculate B even in x,—o limit. The partition
function

Z»=lim @X"exp(— ;;/d”ahﬁ) 2-7D

Kp—+o0

implies that a semi-classical approximation becomes exact in the infinite limit of xa.
In the next section we will first find a classical solution to the equation of motion

0a(v — g g%, X*)=0. (2-8)
Then we make an expansion of X” around the classical solution as

1
Xn

X*=X4

v ‘ (2-9)

and substitute it into S» and keep the terms up to the second order in quantum fluctuation
Y*, ’

Su=Sn 1+ f d"0de = g 0. Y " K23, Y, . (2-10)

The Casimir term is able to be obtained from the second term in (2-10).

Before closing this section let us make a comment for the validity of our arguments.
The action S, is in general unrenormalizable when it is regarded as a field theory in n+1
dimensions for #>1. To make our arguments well defined we assume that the theory is
effectively described by the action (2-1) and the ultraviolet behavior is regularized by a
cutoff parameter. Since the Casimir effect is known to be cutoff independent as demon-
strated by Brink and Nielsen'” in the string model, we assume that it works also for higher
dimensional models. As is well known the Casimir energy is always finite in the semi-
classical approximation if # is even.'?

§3. Membrane model

The classical solution to (2:7) which corresponds to the leading trajectory may be
found among rigid rotator solutions, because all kinematical motions so contribute to
generating angular momentum that the solution attains the highest spin."® For a mem-
brane to keep the form extended in two dimensions we need the body rotating in the X*-
X? plane as well as in the X*-X* plane. In a synchronous gauge where X°= and X0:.X
=0 (i=1, 2), a solution is given by

Xa=f(o1, o2)cosant,

Xa&=7F(o, oz)sinwnt,
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1382 K. Kikkawa and M. Yamasaki

Xa=g(o1, 2)coswr (3-1)
Xi=g(o, oz)sinwsr,
Xé=0 for 5=i=D-1,
where f and g are arbitrary functions satisfying the condition
1— 02— wg*=0 (3-2)

at the boundary of membrane.®
The classical action for the solution (3:1) is

x:T
dwiwz’

Ser=— (3 . 3)
where T=n—n.

The semiclassical quantization of periodic motions has been explored by Dashen,
Hasslacher and Neveu'” and applied to the rotating string by Sato, Uehara and Kikkawa.'?
Provided that the center of mass is at rest we find a set of classical periodic solutions
with the energy (rest mass) £ and the period n is given by (3-1) with

LD o=p2a(%) =, (3-9)

w: q’

where (p, ¢) are relatively prime integers. For given (, ¢) the membrane revolves p and
¢ times in the X'-X* and X°-X* planes, respectively, in a period z.
The propagator of the membrane is given by'®

ki) =r{s0-0 224

— /%f) exp(id07)Ds(46) | (3-5)

and

DA(46) =73} [dueo TF 2072 | s s |
5(40)=—i% | duyo T\ 2706(0)36(T)

X Tr'®[exp(in(l +40/27)(E — H'®) +1Sa)]

de(E) . exp(idbe(E)) ]
dE l—exp(Zirz'a/‘(E)) ’

=Tr(Q’[27r . (3+6)

where

_l 21761( 32 3 rr@ 1/2> .
a(E)= 3V 1 E 9 H\QEY#), v 37
In the above expressions, H? representé the operator Hamiltonian associated with the

second term on the r.h.s. of (2-10). The integer ; is defined as an eigenvalue of the angular
momentum operator

*) Our classical solutions are acceptable for D25, For D=4, one has to look for more complicated, probably
non-rigid rotator, solutions. Following arguments are valid for D 25.
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J=pJ24qJ3 (3-8)

where J' and J* are generators of X*-X? and X3 X" rotations. The summation over /
in (3-6) extends over the number of revolutions within the time interval T". In performing
the integral of n in (3+6), we have made the stationary phase approximation with respect
to n.

The mass spectrum of the membrane is given by the pole of the propagator, ie.,

i=a(E). A | (3-9)

The leading trajectory is the solution having the maximum angular momentum for a given
value of £. An average angular momentum (pJ%2+¢J*)/(p+g)=a/(p+q) takes maxi-
mum for p=g since « is proportional to vpg. The minimum value of H'? is equal to the
ground state expectation value <0|H “”IO) which is nothing but the Casimir energy. H@
has the following form:

H<0>=nz;mn,l<N,,,l+%) , (3-10)

where the suffix (#, /) represents a quantum oscillation, N,: the number operator of the
mode, and o is the angular frequency defined in (3-4). [Details will be found in Appendix
A.] The Casimir energy is now given by

ZOIH@I0>=(D—5)Aba+ AR+ AR, (1)

where A+ and A/(7=1, 2) are contributions from transverse modes Y (=5, 6, «--, D—1)
_and other two modes.

Combining (3-11) with (3-7) and (3-9), and taking the limit £ -0, we finally obtain the
intercept of the spin-mass trajectory,

j= =5 I(D=5) Afa+ AR+ AR (312)

Now the question is whether the r.h.s. of (3 12) is able to be made an integer by adjusting
an integer parameter D.

For the leading trajectory (p=g=1) we have calculated A’s [Appendix A], and
obtained

A= Af1= 3 31 2/ +[IT+1/0(n+1/4)—1/16, | (3-13)
=3 3V o/ 111+ 3/4)(n+3/4)+7/16 . (3-14)

We carry out these summations by using a generalized ¢-function method. Let us
define Z(v; b, ¢) by

Z(v; b, c)= i gm[(n—klZl—kc)(?H-c)—I—b]‘”’Z

n=017

(=3

=3 S [+ c)m+c)+ b2 | (3-15)

n=0m=0

=]
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1384 , K. Kikkawa and M. Yamasaki

As will be shown in Appendix B we have succeeded in getting an integral representation
of the r.h.s. of (3:15). Then we have made an analytic continuation of Z in v from
v>2 to v=—1 to get the values of A’s.

It is very difficult to prove in general that (3-12) can be or cannot be an integer. For
practical purpose, however, massless particles have to have either /=1 or 2. We obtained
the values by numerical calculation, namely,

%Atlz%As# —0.1392569--- | (3-16)
% 2=0.028828483-- (3-17)

To get the spin 2 massless particle (the graviton) we find from (3-12)

D=18.568962--- (3-18)
and to get the spin 1 (the gauge boson) _

D=11.387989-+- . . | (3-19)

In either case the dimensions of space-time have to be far from an integer. We are
confident in these numbers at least down to six places of decimals, hence the membrane
does not provide massless particles in any integer dimensions.

§4. Conclusion and discussion

We have discussed possibility that higher dimensionally extended object models can

generate massless particles. Unless massless particles are generated, the model cannot be

a candidate for a unification theory. It has been shown that the massless criterion can be
exactly calculable in the semiclassical approximation provided that the model is meaning-
ful.

For a simple membrane model we have demonstrated that the massless particle is
unable to be generated in integer dimensions. This also excludes that the superstring
may be a certain limit of a membrane model.” Classically one can imagine a thin strip
limit of membrane which may behave like a string with polarizations distributed on it, but
the Casimir term is different depending on whether the object is a membrane or a string
because their excitation spectra are distinct from one another.

Considering the behavior of Z-functions, we are skeptical that any other model than
string can generate massless particles. We, however, have not considered the role of
supersymmetry. A possible model which deserves being considered may be the model,

S=-— 0leg®(0aX*0o X+ 02 Y “05 Yu) + eA*y*Dad— e(Fi2+ G2, (4-1)

which will be discussed elsewhere.
Appe_ndix A

We define the quantum fluctuation Z* around the classical solution (3:1) as follows:
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Can the Membrane Be a Unification Model? 1385

X#:XL"‘!_'_RIZ(C()IT)RB‘t(CUZT)Z# , (A'l)

where R;(8) is a rotation operator in the 7-j plane by §. To the second order of Z#, the
action (2:10) for =2 becomes

S[X1=Sa[ X&)+ S z#; X4, (A-2)
S@=g, @4 @ (A-3)

8,9 =2 [dedfdg 7| ~ 2N 2+ 002N 2+ )
A9 (04 0.2 A (2 0,2

}

wzga—i(21+w2g3—iz3}

A () ()

LoV ) (7 52

__(Z +(1)1Zl){(1)1fa—le+a)1fa—agz

~ 224+ w2

(TIN5 (%G (a9
A=1— 0"~ wlg, . (A-6)>

where the integral variables f and ¢ are What appear in the classical solution (3-1), and
they are in the range,

0=1—wl’f*—wlg*<l. (A-7)

The variables (o1, 02) on a membrane have been rewritten in (f, g) as new variables. In
the following, we consider only when @:=w,=w, since this case provides the leading
trajectory.

The equations of motion for the transverse components Z*(5<:<D—1) are

Fi .
(#=-D)z"=0, (A

where
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1386 K. Kikkawa and M. Yamasaki

D=(1-w’f*— )< ot zfgz )=o( af“’a@) | (A-9)
and |
W< af+gi>21—o (A-10)

on the boundary. Using polar variables (4, 7) in the (¥, g) plane, and using Z* defined as
Z'=e""e"R (y), (A-11)

we obtain the following ordinary differential equation for R(»),

(1= )Gt (-0t S LR =~ (BR ). (A-12)

To satisfy the boundary condition (A-10), R“(») has to be finite at »=0 and r=1/w.
Using power series expansion of 7, we obtain the energy spectra,

E.=20/(n+I[+1/)n+1/0)~1/16 . (n=0,1,2, -, =0, £1,%2, ) (A-13)

Next, we consider the longltudmal components Z',Z% Z® and Z*. The variation of
S@ by Z' provides,

2 AN .

Z(g“f)‘af—-O _ (A-14)
and

ﬁ{f(z'u wZ'*)+ (24 +wZ%)=0 (A-15)

on the boundary. Similarly the variation by Z* provides the same equations but in which
Z' is replaced by Z°% Z* by Z*, and f by g. Z*' and Z* have no dynamical mode due to
reparametrization invariance of f and g.

On the other hand, the equation of motion for Z% and Z* are as follows:

figi
& _)10_2 af Yar| || 7] .
{(az-i-a) D(O . 2w ) 4 =0 (A 16)
aggc?g
with the boundary condition,
%{a)fz(Z'l— wZ®)+ wfg(Z3~wZ*)
T w2g2)< af+gi>22+a)2fg< 2 i>z4} 0 (A-17)

and similar equations with Z' replaced by Z% Z? by Z* and f by g. Combining (A-13)
and (A-15), we find that Z% and Z* have to be regular on the boundary. Let Z2 and Z* be
as follows:

220z ysnbny 9| uo ysenb Aq L95Z681/6.2€1/9/9./3101He/d)d/wod dnodlwepese//:sdpy woly papeojumoq



Can the Membrane Be a Unification Model? 1387

An k(V)X(+)k( 6)+Bm k(T)Xgn) 1 k(ﬁ)

ZZ __ JIE T
[ Z4] —¢ : iAm,k(V)xéfn)k(ﬂ/Z—H)i‘B,,,,k(r)xz‘;,)Lk(;f/Z—@)] ’ (A-18)

(m=0,1,2,-, £=0,1,2,3)

x£+;3(€)=cos<(2n+ RO+ iI”) . (A-19)

Then we obtain the following coupled ordinary differential equations:

2
(- Lot Lhmt B+ B~ o mt b+ D) Ana(r)

rdr
b= k=2) B}, (A-20)
v
2
[(1_0)27’2){ d?;Z —|—7dr—%(4m+k_2)}+E”2+a)?‘(4m+k*~3):|Bm',k(7’)
+w2<7i+4m+k>A (7)=0 | (A-21)
d}’ K m,k .

Imposing Amx(#) and Bn,x(#) to be regular at »=0 and » =1/w, we look for eigenvalues
by well-known power expansion method and find the eigenvalues,

B, =20/l 3D+ 3/0+7/16 (A-22)

and -

»

E,=2wV(n+l+1/8)(n+1/4)—1/16, - (A-23)

where #=0,1, 2, -~ and /=0, £1, £2, ---
Appendix B

We perform the analytic continuation of Z(v; b, ¢) defined by (3-15) with respect to v.
Note first the summand is expressed as

{n+c)Ym+c)+ b}y 2= ' /dtt(”’”‘le‘“’"”’e"’”‘”*”(n+c)“"’z. (B-1)

_1 -
v

(%)

Performing the sum with respect to », then we obtain

2 bt/(n+c)(n+c)—u/2 kf( bt)k 2 (1’Z+C) (vi2)—k

n=0

=(tp) orm [ st € g (0 Ts). (BD)

Here we have used the followmg parameter integral formula:

< -—a__ o 1 “ a—1 _-—s(n+c)
Eo(n%-c) _ngof(a)/; dss“ e
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1388 K. Kikkawa and M. Yamasaki

:%a)[odssa_l o (B-3)
(=D*(z/2)*
10=(5) Earie oty (B-4)

where /.(2) is the v-th Bessel function. Using (B-1) and (B-2), we obtain

b—(u/4)+(1/2)

) _ R wio-am_e e .
Z(v: b, ¢) - <i> [ar [astis) e 2/ts)  (B5)
2
zb—(w4)+(1/2) ) .
= [Tay ), (B-6)
r(3)
where
1
fly)= £ dz(1—2z)7 22D~ g (2, v), (B-7)
2 _2(1-c)y
92, V)=(Vz y) P [, 1(24/ bzy*) (ey(1+m§y f)(ey<1—m>_1) . (B-8)

Equation (B-6) is well defined at v>2. Performing the analytic continuation Wifh respect
to v down to around v=—1, we obtain

fu(y) %A‘ldzzwz(l—Z)_uzgu(Z, y)

O
+@i42>—y 'é daz"(1— 2" 5::2 9z, v), (B-9)
205, = (g Ty ). (B-10)

Let v=—1+¢, then

Z(—1+¢; b, c)=%[%+fh+0(e)] , (B-11)
a=--Lr0)] . (B-12)
Alzlwdy IOg(y)'s;—ifﬂ(y)_l:aa—;a_any(Y)} 2=, - . (B-13)

Using (B-8) and (B+9), we have found that A, vanishes and therefore Z(—1; b, ¢) is finite.
In evaluation of A, in Eq. (B-13), the second term is analytically calculable, but the first

term is not. So we have computed the first term numerlcally The following is the
result. When ¢=5/4 and b=—1/186,
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Can the Membrane Be a Unification Model? 1389

Ai=—0.3647609 +%ﬁ=5.838828. _ (B-14)

When ¢=3/4 and 6=7/16,

A= —3.754627+%71’4ﬁ=0.5699207. (B-15)

4)
5)
6)
7)
9
10)
11)
12)
13)

14)
15)
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