# Can the viral reservoir of latently infected CD4<sup>+</sup> T cells be eradicated with antiretroviral HIV drugs?

**Robert Smith?** 

Department of Mathematics and Faculty of Medicine The University of Ottawa



# Outline

- Mechanics of latently infected cells
- Mathematical model
- Impulsive differential equations
- Limiting results for infinite amount of drug
- More realistic dosing regimens
- Implications.

# Antiretroviral HIV drugs

- If drugs are taken sufficiently often, the virus will be controlled
- However, it is not eradicated from the body
- Viral rebound occurs when drugs are stopped.



# Viral reservoirs

- This rebound occurs due to reservoirs, eg
- eyes
- brain
- testicles
- follicular dendritic cells
- latently infected cells



# Viral reservoirs

- This rebound occurs due to reservoirs, eg
- eyes
- brain
- testicles
- follicular dendritic cells
- latently infected cells

It's been suggested that these are the primary reservoir for viral rebound.



# Latently infected cells

- Virologically quiescent (Chun et al, J Clin Invest 2005)
- <1 latently infected cell per million resting CD4<sup>+</sup> T cells (Chun et al, Nature 1997)
- 10<sup>3</sup>-10<sup>6</sup> cells per patient (Ramratran *et al*, Nat Med 2000)
- Halflife of 6-44 months (Finzi et al, Nat Med 1999)
- Do not produce virus until activated (Blankson et al, Annu Rev Med 2002).



# Current therapy

- Current HIV therapy consists of a combination of antiretroviral drugs
- These are primarily drawn from two major classes:
  - Reverse Transcriptase Inhibitors (RTIs)
  - Protease Inhibitors (PIs).



# The two drug classes

- Reverse Transcriptase Inhibitors prevent viral infection of a T cell
- Protease Inhibitors Anti-HIV Drugs result in the creation of noninfectious virus, thus Virus preventing new cells from becoming infected.



# Assumptions

We assume that

drugs have no effect on latently infected cells

(likely true for RTIs, not for PIs)

 latently infected cells live for maximal time: as long as susceptible cells

(and hence much longer than productively infected cells)

This is the most extreme scenario.

RTI=reverse transcriptase inhibitor PI=protease inhibitor

# Modelling latently infected cells

- We model latently infected cells via a separate compartment
- They become infected at rate  $\alpha_L$
- They are not productively infected until leaving the latent state at rate *p*<sub>L</sub>.



# Modelling CD4<sup>+</sup> T cells

- Susceptible cells may be inhibited with RTIs, Pls or both
- Infected cells may be inhibited by PIs
- Cells inhibited with RTIs cannot be infected while they remain in this state
- Drug effects wear off at different rates for each drug.



RTI=reverse transcriptase inhibitor PI=protease inhibitor

# Impulsive Differential Equations

- Assume drug effects are instantaneous
- That is, the time-to-peak is assumed to be negligible
- This results in a system of *impulsive differential equations*.



# Impulsive effect

 According to impulsive theory, we can describe the nature of the impulse at time r<sub>k</sub> via the difference equation

$$\Delta y \equiv y(r_k^+) - y(r_k^-) = f(r_k, y(r_k^-))$$
Difference
equation
Depends on the
time of impulse
and the state
immediately

beforehand.

# Impulsive DEs

- Solutions are continuous for  $t \neq r_k$
- Solutions undergo an instantaneous change in state when t = r<sub>k</sub>
- Such approximations are reasonable when the cycle time is sufficiently large, compared to the time-to-peak.
   Thousands of HIV particles emerging from an infected T-cell



*r<sub>k</sub>=impulse time* 

# Putting it together

 The model thus consists of a system of ODEs (virus and T cells) together with an ODE and a difference equation (drugs).



# The model (figure)



# The model (equations)

$$\begin{aligned} \frac{dV_I}{dt} &= n_I T_I - d_V V_I \\ \frac{dA_B}{dt} &= p_A V_I - d_A A_B \\ \frac{dT_S}{dt} &= \lambda - r_I T_S V_I - d_S T_S - r_R T_S R - r_P T_S P + m_R T_R + m_P T_{PN} \\ \frac{dT_I}{dt} &= q_I T_S V_I - d_I T_I + p_L T_L - \delta_A A_B T_I - r_P T_I P + m_P T_{PI} \\ \frac{dT_L}{dt} &= \alpha_L T_S V_I + \alpha_L T_{PN} V_I - d_L T_L - p_L T_L \\ \frac{dT_R}{dt} &= r_R T_S R - d_S T_R + m_P T_{RP} - m_R T_R - r_P T_R P \\ \frac{dT_{RP}}{dt} &= r_R T_S P - d_S T_{RP} - m_P T_{RP} - m_R T_{RP} + r_P T_R P \\ \frac{dT_{PN}}{dt} &= r_P T_S P - d_S T_{PN} - r_I T_{PN} V_I - r_R T_{PN} R - m_P T_{PN} + m_R T_{RI} \\ \frac{dT_{PI}}{dt} &= q_I T_{PN} V_I - d_I T_{PI} - \delta_A A_B T_{PI} + r_P T_I P - m_P T_{PI} \end{aligned}$$

 $T_S$ =Susceptible T cells  $T_I$ =Infected  $T_R$ =RTI inhibited  $T_{RP}$ =RTI + PI inhibited  $\lambda$ =Iymphic source  $T_{PN}$ =PI inhibited (not infected)  $T_{PI}$ =PI inhibited (infected)  $T_L$ =Latently infected  $A_B$ =antibodies R=Reverse Transcriptase Inhibitor P=Protease Inhibitor  $n_I$ =# particles  $m_R, m_P$ =RTI, PI waning rates  $p_L$ = activation rate  $p_A$ =antibody production rate  $d_S, d_I, d_L, d_{V,} d_A$ =death rates  $r_I, \alpha_V, q_I$ =infection rates  $r_R, r_P$ =drug inhibition rates  $\delta_A$ =antibody clearance rate

#### ...with the (impulsive) dynamics of the drugs:

| $\frac{dR}{dt}$ | = | $-d_R R$ | t | $\neq$ | $t_k$   |
|-----------------|---|----------|---|--------|---------|
| $\frac{dP}{dt}$ | — | $-d_P P$ | t | $\neq$ | $s_k$   |
| $\Delta R$      | = | $R^i$    | t | =      | $t_k$   |
| $\Delta P$      | = | $P^i$    | t | =      | $s_k$ . |

*R*=*R*everse Transcriptase Inhibitor P=Protease Inhibitor  $d_R, d_P$ =drug clearance rates  $R^i$ =*R*TI dosage  $P^i$ =*P*I dosage  $t_k$ =*R*TI dosage times  $s_k$ =*P*I dosage times

# Absence of drugs

• There's a disease-free equilibrium

 $(V_I, A_B, T_S, T_I, T_L, T_R, T_{RP}, T_{PN}, T_{PI}) = \left(0, 0, \frac{\lambda}{d_S}, 0, 0, 0, 0, 0, 0\right)$ 

and an endemic equilibrium of the form

 $(V_I, A_B, T_S, T_I, T_L, T_R, T_{RP}, T_{PN}, T_{PI}) = (\bar{V}_I, \bar{A}_B, \bar{T}_S, \bar{T}_I, \bar{T}_L, 0, 0, 0, 0)$ 

 We can prove: the disease-free equilibrium is unstable in the absence of drugs
 Proof: Smith? & Aggarwala, 2009.

 $T_S$ =Susceptible T cells  $T_I$ =Infected (wild type)  $\lambda$ =Iymphic source  $T_R$ =RTI inhibited  $T_{RP}$ =RTI + PI inhibited  $T_{PNI}$ =PI inhibited (not infected)  $T_{PI}$ =PI inhibited (infected)  $T_L$ =Latently infected  $A_B$ =antibodies  $d_S$ =susceptible cell death rate

# The presence of drugs

- There are no equilibria, due to impulses
- Instead, there are impulsive orbits with variation in the state variables, due to the drug dynamics
- The disease-free impulsive orbit is in the form

 $(V_I, A_B, T_S, T_I, T_L, T_R, T_{RP}, T_{PN}, T_{PI}) = (0, 0, \hat{T}_S, 0, 0, \hat{T}_R, \hat{T}_{RP}, \hat{T}_{PN}, 0).$ 

 $T_{S}$ =Susceptible T cells  $T_{I}$ =Infected (wild type)  $T_{R}$ =RTI inhibited  $T_{RP}$ =RTI + PI inhibited  $T_{PN}$ =PI inhibited (not infected)  $T_{PI}$ =PI inhibited (infected)  $T_{L}$ =Latently infected  $A_{B}$ =antibodies

$$R(t) = R(t_k^+)e^{-d_R(t-t_k)} t_k < t \le t_{k+1}$$
  

$$R(t_k^+) = R(t_k^-) + R^i$$

R=drug $d_R=decay rate$  $R^i=dosage$  $t_k=impulse time$ 

$$R(t) = R(t_k^+)e^{-d_R(t-t_k)} t_k < t \le t_{k+1}$$
  

$$R(t_k^+) = R(t_k^-) + R^i$$

Hence

R=drug $d_R=decay rate$  $R^i=dosage$  $t_k=impulse time$ 

$$R(t) = R(t_k^+)e^{-d_R(t-t_k)} t_k < t \le t_{k+1}$$
  

$$R(t_k^+) = R(t_k^-) + R^i$$

#### Hence

$$R(t_k^+) \to \frac{R^i}{1 - \mathrm{e}^{-d_{\mathrm{R}}\tau}}$$



$$R(t) = R(t_k^+)e^{-d_R(t-t_k)} t_k < t \le t_{k+1}$$
  

$$R(t_k^+) = R(t_k^-) + R^i$$

Hence

$$R(t_k^+) \to \frac{R^i}{1 - \mathrm{e}^{-d_{\mathrm{R}}\tau}}$$

as  $k \to \infty$ , where  $\tau = t_{k+1} - t_k$  is the dosing interval.

R=drug $d_R=decay rate$  $R^i=dosage$  $t_k=impulse time$ 

# Impulsive periodic orbit

- Thus, for the drugs, there is a unique, positive impulsive periodic orbit with one impulse per cycle
- It can also be shown that the endpoints of each cycle monotonically approach the endpoints of this periodic orbit.



### **Disease-free orbit**

The disease-free orbit satisfies

 $\hat{T}_{PN} = \frac{r_P P \hat{T}_S + m_R \hat{T}_{RP}}{d_S + r_R R + m_P} \qquad \qquad \hat{T}_S = \frac{f_1}{f_2} T_{RP}$  $\hat{T}_R = \frac{r_R R \hat{T}_S + m_P \hat{T}_{RP}}{d_S + m_R + r_P P} \qquad \qquad \hat{T}_{RP} = \frac{\lambda}{f_3}$ 

#### where

 $f_{1} = d_{S}(d_{S} + r_{P}P + m_{R})(d_{S} + r_{R}R + m_{P}) + m_{P}(d_{S} + m_{R})(d_{S} + r_{R}R + m_{P})$  $+ m_{R}(d_{S} + m_{P})(d_{S} + r_{P}P + m_{R})$   $f_{2} = r_{R}Rr_{P}P(2d_{S} + m_{R} + m_{P} + r_{R}R + r_{P}P)$  $f_{3} = \left[d_{S} + r_{R}R + r_{P}P - \frac{m_{R}r_{R}R}{d_{S} + r_{P}P + m_{R}} - \frac{m_{P}r_{P}P}{d_{S} + r_{R}R + m_{P}}\right]\frac{f_{1}}{f_{2}}$  $- \frac{m_{R}m_{P}}{d_{S} + r_{P}P + m_{R}} - \frac{m_{R}m_{P}}{d_{S} + r_{R}R + m_{P}}$ 

### Intermediate calculations

• We have

$$\lim_{r_P P \to \infty} f_1 = \infty$$

$$\lim_{r_P P \to \infty} f_2 = \infty$$

$$\lim_{r_P \to \infty} \frac{f_1}{f_2} = 0$$

$$\begin{cases}
f_1 &= d_S(d_S + r_P P + m_R)(d_S + r_R R + m_P) \\
&+ m_P(d_S + m_R)(d_S + r_R R + m_P) \\
&+ m_R(d_S + m_P)(d_S + r_P P + m_R) \\
f_2 &= r_R R r_P P(2d_S + m_R + m_P + r_R R + r_P P)
\end{cases}$$

R=reverse transcriptase inhibitor P=protease inhibitor  $d_S$ =susceptible cell death rates  $m_{R'}m_P$ =RTI, PI waning rates  $r_R,r_P$ =drug inhibition rates

### **Further calculations**

$$r_{P}P\frac{f_{1}}{f_{2}} = \frac{d_{S}(d_{S} + r_{R}R + m_{P})(d_{S} + r_{P}P + m_{R})}{r_{R}R(2d_{S} + m_{P} + m_{R} + r_{P}P + r_{R}R)} + \frac{m_{R}(d_{S} + m_{P})(d_{S} + r_{P}P + m_{R}) + m_{P}(d_{S} + m_{R})(d_{S} + r_{R}R + m_{P})}{r_{R}R(2d_{S} + m_{P} + m_{R} + r_{P}P + r_{R}R)}$$

## Limiting values

$$\lim_{r_P P \to \infty} T_S = \lim_{r_P P \to \infty} \frac{f_1}{f_2} \lim_{r_P P \to \infty} T_{RP}$$
$$= 0$$

$$\hat{T}_{S} = \frac{f_{1}}{f_{2}}T_{RP}$$

$$\hat{T}_{RP} = \frac{\lambda}{f_{3}}$$

$$\hat{T}_{PN} = \frac{r_{P}P\hat{T}_{S} + m_{R}\hat{T}_{RP}}{d_{S} + r_{R}R + m_{P}}$$

$$\hat{T}_{R} = \frac{r_{R}R\hat{T}_{S} + m_{P}\hat{T}_{RP}}{d_{S} + m_{R} + r_{P}P}$$

# Pls can also control virus

- We have thus proved the following:
- If PIs are taken with sufficient frequency, then

$$T_{RP} + T_{PN} \to \frac{\lambda}{d_S}$$

 $\lambda/d_{\rm S}$  = the level of CD4<sup>+</sup> T cells in the uninfected body

as the dosing interval shrinks to zero

• It follows that, with sufficient application, PIs can theoretically control the virus.

PI=protease inhibitor  $T_{PN}$ =PI inhibited (not infected)  $\lambda$ =lymphic source  $T_{RP}$ =RTI+PI inhibited  $d_S$ =susceptible cell death rate

# RTIs theoretically control virus

- Similarly:
- If RTIs are taken with sufficient frequency, then  $T_R + T_{RP} \rightarrow \frac{\lambda}{d_S}$

 $\lambda/d_{\rm S}$  = the level of CD4<sup>+</sup> T cells in the

uninfected body

as the dosing interval shrinks to zero

• It follows that, with sufficient application, RTIs can theoretically control the virus.

RTI=reverse transcriptase inhibitor  $d_S$ =susceptible cell death rate  $T_R$ =RTI inhibited  $T_{RP}$ =RTI+PI inhibited  $\lambda$ =lymphic source

# Both drugs together

• If RTIs and PIs are taken with sufficient frequency, then  $T_{RP} \rightarrow \frac{\lambda}{d_S}$ 

 $\lambda/d_{\rm S}$  = the level of CD4<sup>+</sup> T cells in the uninfected body

as the dosing interval shrinks to zero

- Thus, with sufficient application, combination therapy can theoretically control the virus
- In particular, the latently infected cells are driven to extinction.

RTI=reverse transcriptase inhibitor PI=protease inhibitor  $\lambda$ =lymphic source  $T_{RP}$ =RTI+PI inhibited  $d_S$ =susceptible cell death rate

# Why is this? (Mathematically)

• As 
$$P \to \infty$$
,  
 $T'_I \to -\infty$   
unless  $T_I \to 0$ 

$$\begin{aligned} \frac{dV_I}{dt} &= n_I T_I - d_V V_I \\ \frac{dA_B}{dt} &= p_A V_I - d_A A_B \\ \frac{dT_S}{dt} &= \lambda - r_I T_S V_I - d_S T_S - r_R T_S R - r_P T_S P + m_R T_R + m_P T_{PN} \\ \frac{dT_I}{dt} &= q_I T_S V_I - d_I T_I + p_L T_L - \delta_A A_B T_I - r_P T_I P + m_P T_{PI} \\ \frac{dT_L}{dt} &= \alpha_L T_S V_I + \alpha_L T_{PN} V_I - d_L T_L - p_L T_L \\ \frac{dT_R}{dt} &= r_R T_S R - d_S T_R + m_P T_{RP} - m_R T_R - r_P T_R P \\ \frac{dT_{RP}}{dt} &= r_R T_S P - d_S T_{RP} - m_P T_{RP} - m_R T_{RP} + r_P T_R P \\ \frac{dT_{PN}}{dt} &= r_P T_S P - d_S T_{PN} - r_I T_{PN} V_I - r_R T_{PN} R - m_P T_{PN} + m_R T_{RP} \end{aligned}$$

P=protease inhibitor  $T_S$ =Susceptible T cells  $T_I$ =Infected  $T_R$ =RTI inhibited  $T_{PI}$ =PI inhibited (infected)  $T_L$ =Latently infected  $A_B$ =antibodies

# Why is this? (Biologically)

- As RTIs→∞,T<sub>S</sub> cells instantly become T<sub>R</sub> cells and cannot be infected
- As PIs→∞, cells instantly become T<sub>PN</sub> or T<sub>PI</sub> cells and don't produce infectious virus
- Essentially, the drugs "overwhelm" the virus.



RTI=reverse transcriptase inhibitor PI=protease inhibitor  $T_S$ =Susceptible cells  $T_{PNI}$ =Protease inhibited (not infected)  $T_{PN}$ =protease inhibited (not infected)  $T_{PI}$ =protease inhibited (infected)  $T_R$ =RTI inhibited

# Realistic regimens

- Of course, we can't take drugs infinitely often
- Too much drug is toxic for the patient
- But these theoretical results match more realistic dosing regimens
- We simulated Didanosine, supplemented by a low-level PI.

# The case of no drugs



High viral load, high reservoir of latently infected cells.

# RTIs taken twice daily, no PIs



Moderate viral load, low reservoir of latently infected cells.

## Low-level PI, no RTIs



High viral load, high reservoir of latently infected cells.

# Both drugs



 Both viral load and reservoir of latently infected cells are eradicated.

# Summary

- The model predicts that latently infected cells can be eradicated by sufficient drugs
- This happens even if they live for maximal time and are wholly unaffected by the drugs
- Except...
- ...we know this doesn't happen.



# The problem with viral elimination

- Viral elimination doesn't occur
- If you stop taking drugs, the virus rebounds
- So what does this mean?



# Implications

- We ignored other viral reservoirs
- eg eyes, brain, testicles, follicular dendritic cells, CTLs, etc
- These reservoirs must contribute to sustaining the low-level viral load
- Thus, latently infected cells cannot sustain a viral reservoir on their own.



# Conclusion

- Mathematical models are useful for exploring hypothetical questions
- In this case, the hypothesis that latently infected cells are the sole viral reservoir
- If it were, the model predicts complete eradication, which we know doesn't happen
- This occurs even under the most extreme assumptions: that latently infected cells are immune to drugs and live for maximal time
- Thus, other viral reservoirs are critical.



 <u>R.J. Smith?</u> and B.D. Aggarwala. Can the viral reservoir of latently infected CD4+ T cells be eradicated with antiretroviral HIV drugs? (Journal of Mathematical Biology 2009, 59: 697-715)

