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Abstract
Our aim is to compare the fundamental notions of quantum physics - contextuality
vs. incompatibility. One has to distinguish two different notions of contextuality, Bohr-
contextuality and Bell-contextuality. The latter is defined operationally via violation of
noncontextuality (Bell type) inequalities. This sort of contextuality will be compared with
incompatibility. It is easy to show that, for quantum observables, there is no contextu-
ality without incompatibility. The natural question arises: What is contextuality without
incompatibility? (What is “dry-residue”?) Generally this is the very complex question. We
concentrated on contextuality for four quantum observables. We shown that, for “natural
quantum observables” , contextuality is reduced to incompatibility. But, generally contex-
tuality without incompatibility may have some physical content. We found a mathematical
constraint extracting the contextuality component from incompatibility. However, the phys-
ical meaning of this constraint is not clear. In Appendix 1, we briefly discuss another sort
of contextuality based on Bohr’s contextuality-incompatibility principle. Bohr-contextuality
plays the crucial role in quantum foundations. Incompatibility is, in fact, a consequence of
Bohr-contextuality. Finally, we remark that outside of physics, e.g., in cognitive psychology
and decision making Bell-contextuality distilled of incompatibility can play the important
role.

Keywords Contextuality · Incompatibility · Complementarity principle ·
Joint probability distribution · Noncontextual inequalities · Product of commutators

1 Introduction

Contextuality formalized in the form of violation of noncontextuality inequalities, Bell-
contextuality [1, 2], is a hot topic in quantum physics (see, e.g., [3, 4] and references herein).
Unfortunately, it is typically presented in the mathematical framework and its physical
meaning is unclear.
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We stress that, in fact, one has to distinguish two different notions of contextuality, Bohr-
contextuality and Bell-contextuality. In this paper, we consider the latter, see Appendix 2
for for the former. Therefore we shall speak simply about contextuality (having in mind
Bell-contextuality).

We point out that discussions on this sort contextuality are typically started with
heuristically more attractive definition going back to Bell [1, 2]. It can be called explicit
contextuality: if A, B,C are three quantum observables, such that Acompatible with
B and C, a measurement of A might give different result depending upon whether
A is measured with B or with C. However, for incompatible observables B and
C, this statement is not testable experimentally.1 Therefore we proceed with Bell-
contextuality that is straightforwardly coupled to experiment. (This approach to contex-
tuality was actively driven by Adan Cabello; so it may be natural to call it Bell-Cabello
contextuality.)

It is easy to show that, for quantum observables, there is no contextuality without
incompatibility: for compatible observables, it is impossible to violate any noncontextuality
inequality (Theorem 1, Section 2). The natural question arises:

Has contextuality without incompatibility any physical meaning?
Generally this is the very complex question. I do not know the answer to it for gen-

eral noncontextuality inequalities. And I hope that this paper would stimulate foundational
research in this direction. We concentrate on contextuality for four quantum observables -
noncontextuality analog of the CHSH-inequality.

We proved that, for “natural quantum observables” , contextuality is reduced to incom-
patibility2 (in [9–11], the same conclusion was obtained for quantum nonlocality, cf.
[12–16]).

At the same time, we shown that generally contextuality without incompatibility may
have some physical content. We found a mathematical constraint extracting the contextual-
ity component from incompatibility. However, the physical meaning of this constraint is not
clear.

We also remark that there exist positive answers to the inverse question: there can be
(non-quantum, quasi-classical) incompatibility without contextuality; as exposed by finite
automata [21] as well as for generalized urn models [22], see [23].

In appendix, we briefly discuss another sort of contextuality that is understood more
generally in accordance with the Bohr message [24] that all experimental arrangement
(experimental context) has to be taken into account in the process of measurement; he
pointed to “the impossibility of any sharp separation between the behavior of atomic objects
and the interaction with the measuring instruments which serve to define the conditions
under which the phenomena appear.” Here “phenomenon” is understood as the individual
output of measurement [10, 24–26]. Bohr-contextuality is the basis of quantum founda-
tions. Moreover, this is the root of the Bohr’s complementarity principle. Incompatibility
is a consequence of contextuality, but the latter has to be understood as Bohr-contextuality,
Appendix 1 (see also [27]).

1Svozil proposed to appeal to counterfactuals to design an experimental test for explicit contextuality, see
[5–8] for such a test. Unfortunately, he did not elaborate this framework and these papers are practically
forgotten.
2Outside of physics, e.g., in cognitive psychology and decision making contextuality distilled of incompati-
bility can play the important role [17–20].
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2 Quantum Theory: Bell-contextuality vs. Bohr-incompatibility

In this paper, we consider dichotomous observables taking values ±1.
We follow paper [4] (one of the best and clearest representations of contextuality). Con-

sider a set of observables {X1, ..., Xn}; a context C is a set of indexes such that Xi, Xj are
compatible for all pairs i, j ∈ C. A contextuality structure for these observables is given by
a set of contexts C = {C}, or simply the maximal contexts. For each context C, we measure
pairwise correlations for observables Xi and Xj with indexes i, j ∈ C as well as aver-
ages 〈Xi〉 of observables Xi . The n-cycle contextuality scenario is given by n observables
X1, ..., Xn and the set of maximal contexts

Cn = {{X1, X2}, ..., {Xn−1, Xn}, {Xn,X1}}. (1)

Statistical data associated with this set of contexts is given by the collection of averages and
correlations:

{〈X1〉, ...., 〈Xn〉; 〈X1X2〉, ..., 〈Xn−1Xn〉, 〈Xn,X1〉}. (2)

Theorem 1 from paper [4] describes all tight noncontextuality inequalities. In particular,
for n = 4 we have inequality:

|〈X1X2〉 + 〈X2X3〉 + 〈X3X4〉 − 〈X4X1〉| ≤ 2. (3)

Theorem 2 [4] demonstrates that, for n ≥ 4 (cf. Appendix 1 for n = 3), aforementioned
tight noncontexuality inequalities are violated by quantum correlations. But,

what is the physical root of quantum violations?
Unfortunately, the formal mathematical calculations [4] used to show violation of non-

contextuality inequalities for quantum observables do not clarify physics behind these
violations.

Let us turn to the quantum physics, i.e., X1, ..., Xn are not arbitrary observables, but
quantum physical ones. In the quantum formalism, they are represented by Hermitian oper-
ators X̂1, ..., X̂n. Denote the orthogonal projectors onto the corresponding eigenspaces by
the symbols Êjα, α = ±1.

Suppose now that these observables are compatible with each other, i.e., any two observ-
ables Xi,Xj can be jointly measurable, so in the operator formalism, [X̂i , X̂j ] = 0. The
quantum theory has one amazing feature that is not so widely emphasized:

Pairwise joint measurability implies k-wise joint measurability for any k ≤ n.
If all pairs can be jointly measured, then even any family of observables {Xi1 , ..., Xik }

can be jointly measured as well. In principle, there is no reason for this. This is the specialty
of quantum theory.

The joint probability distribution (JPD) of compatible observables is defined by the
following formula [28]:

Pi1...ik (αi1 , ..., αik ) = TrρÊi1αi1
· · · Êikαik

. (4)

In particular, by setting k = n we obtain JPD of all observables,

P1...n(α1, ..., αn) = TrρÊ1α1 · · · Ênαn . (5)

We remark that the probability distributions given by (4) can be obtained from the latter
JPD as the marginal probability distributions:

Pi1...ik (αi1 , ..., αik ) =
∑

αj ,j �=i1...ik

P1...n(α1, ..., αn). (6)
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This formula implies as well that the marginals of JPD Pi1...ik of the rank k generate JPDs
of the rank k − 1. In particular, we have the consistency rules for JPDs of ranks 2 and 1,

Pi(αi) =
∑

αj

Pij (αi, αj ) (7)

(in quantum physics, this condition is known as no signaling), and ranks 3 and 2 consistency:

Pij (αi, αj ) =
∑

αk

Pijk(αi, αj , αk) (8)

We have the classical probability framework; the Kolmogorov probability model with the
probability measure P ≡ P1...n. In this classical probabilistic framework we can prove any
noncontextuality inequality (any Bell-type inequality, cf. [29–36], [26, 27]). It is impossi-
ble to violate them for compatible quantum observables. We can formulate this result as a
simple mathematical statement:

Theorem 1 For quantum observables X1, ..., Xn, (Bell-)contextuality implies incompati-
bility of at least two of them.

Thus, there is no Bell-contextuality without incompatibility. Does the latter contain
something more than incompatibility?

Finally, we remark that noncontextuality inequalities started to be used in applications
outside of physics, e.g., in psychology, cognitive science, and decision making [17–20].
If one does not assume that observables are represented by Hermitian operators in Hilbert
space, then “no-go” Theorem 1 loses its value.

3 Is Contextuality Reduced to Incompatibility?

In [9], I analyzed in details the CHSH-inequality; the CHSH-correlation has the form:

� = 〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉, (9)

where observables Ai are compatible with observables Bj , i, j = 1, 2. In [9], the tensor
product structure of the state space was not explored and quantum observables were repre-
sented by Hermitian operators Âi , B̂j acting an arbitrary Hilbert space. In this framework
the CHSH-inequality can be treated as the noncontextuality inequality for four observables;
by setting in (9) A2 = X1, B1 = X2, A1 = X3, B2 = X4, we obtain the correlation:

� = 〈X1X2〉 + 〈X2X3〉 + 〈X3X4〉 − 〈X4X1〉, (10)

since we work with quantum observables, we proceed under the compatibility assumption

[X̂1, X̂2] = 0, [X̂3, X̂2] = 0, [X̂3, X̂4] = 0, [X̂1, X̂4] = 0. (11)

Now set
M̂13 = i[X̂1, X̂3] and M̂34 = i[X̂2, X̂4]. (12)

These are Hermitian operators, so they represent some quantum observables M13 and M34.
We remark that these observables are compatible:

[M̂13, M̂34] = 0. (13)

The following theorem is the noncontextuality reinterpretation of the main result of paper
[9]:
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Theorem 2 Condition
M̂13 ◦ M̂34 �= 0. (14)

is necessary and sufficient for violation of the noncontextuality inequality (3) for some
quantum state.

Proof’s scheme. Consider the operator

�̂ = X̂1X̂2 + X̂2X̂3 + X̂3X̂4 − X̂4X̂1. (15)

Then we have
�̂2 = 4 + [X̂1, X̂3][X̂2, X̂4] = 4 + M̂13M̂34. (16)

Then it is easy to show that ‖�̂2‖ > 4, if and only if condition (14) holds. Finally, we note
that

sup
‖ψ‖=1

|〈ψ |�̂|ψ〉 = ‖�̂‖ =
√

‖�̂2‖. (17)

We remark that condition (14) is trivially satisfied for incompatible observables, if the
state space and observables have the tensor product structure: H = H13 ⊗ H24 and

X̂i = X̂i ⊗ I, X̂j = I ⊗ X̂j , (18)

where
X̂i : H13 → H13, i = 1, 3, X̂j : H24 → H44, j = 2, 4. (19)

Here condition (14) is reduced to incompatibility condition:

[X̂i , : X̂j ] �= 0, i = 1, 3; j = 2, 4. (20)

In particular, for compound systems, contextuality (“nonlocality”) is exactly incompatibil-
ity. The same is valid for any tensor decomposition of the state space of a single quantum
system with observables of the type (18). In the tensor product case, contextuality without
incompatibility leads to the notion with the empty content.

But, it may happen that Xi-observables, i = 1, 3, and Xj -observables, j = 2, 4, are not
connected via the tensor product structure. In this case, the interpretation of constraint (14)
is nontrivial. What is its physical meaning? I have no idea.

Of course, the main problem is that it is not clear at all how to measure the observables
of the commutator-type.

4 Conclusion

In quantum physics, there is no contextuality without incompatibility. This is well known,
but not so highly emphasized feature of quantum observables.

For fourth quantum observables, these two notions coincide under validity of constraint
(14). If it is violated, then, for such observables, there is still a hope that quantum contextual-
ity without incompatibility has some nontrivial physical meaning. (What?) The problem of
nontrivial physical meaning of “pure contextuality”, i.e., one distilled from incompatibility,
for n > 4 observables (as well as n = 3, see Appendix 2) is open.

Finding the right physical interpretation for contextuality beyond incompatibility is
important for demystification of quantum physics (cf. with discussion of Svozil [23] on
“quantum focus pocus”).

Funding Open access funding provided by Linnaeus University.
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Appendix 1: Structuring Bohr’s Contextuality and Complementarity
Into a Single Principle

As was emphasized in [27], the complementarity principle is closely coupled with the
notion of contextuality that is understood in Bohr’s sense. Bohr did not use the notion
“experimental context”. He operated with the notion of experimental condition [24]:

“Strictly speaking, the mathematical formalism of quantum mechanics and electrody-
namics merely offers rules of calculation for the deduction of expectations pertaining to
observations obtained under well-deffined experimental conditions specified by classical
physical concepts.”

Unfortunately, Bohr did not formulate his views on quantum foundations in the form
of principles, similar to Einstein’s principles of relativity. These views were presented
in the form of the foundational statements connected with long texts on the general
structure of quantum theory and its methodology, especially methodology of quantum mea-
surements. And these statements were often modified year to year. Nevertheless, careful
reading of Bohr’s works leads to clear picture of quantum foundations. We remark that
in this picture there is nothing mystical or too much surprising. This is logically well
structured reasoning on specialty of quantum measurements (and, for Bohr, the quantum
theory is a measurement theory). In my previous papers, I called this bunch of Bohr’s
views the complementarity principle. This can lead to misunderstanding. Nowadays, the
complementarity principle is typically reduced to the wave-particle duality - the exis-
tence of incompatible observables (experimental contexts). The latter is just the concluding
accord of long Bohr’s play, the play on contextuality of quantum measurements. Since
this paper is devoted to contextuality, this is the good place to restructure my formula-
tion [9, 11, 27] of the Bohr’s complementarity principle [24] - to highlight its contextual
counterpart.

We start with pointing to the physical basis of quantum contextuality and complemen-
tarity. Bohr stressed [37, 38] that the essence of the quantum theory “may be expressed in
the so-called quantum postulate, which attributes to any atomic process an essential discon-
tinuity, or rather individuality, completely foreign to the classical theories and symbolised
by Planck’s quantum of action.” This postulate is about nature as it is. And the postulate
is the root of the fundamental principles of the quantum theory (the quantum measurement
theory).

We continue with the famous citation of Bohr that presents the essence of his views
on contextuality and complementarity of quantum measurements, see Bohr ([24], v. 2, p.
40-41):

“This crucial point ... implies the impossibility of any sharp separation between the
behaviour of atomic objects and the interaction with the measuring instruments which serve
to define the conditions under which the phenomena appear. In fact, the individuality of the
typical quantum effects finds its proper expression in the circumstance that any attempt of
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subdividing the phenomena will demand a change in the experimental arrangement intro-
ducing new possibilities of interaction between objects and measuring instruments which
in principle cannot be controlled. Consequently, evidence obtained under different experi-
mental conditions cannot be comprehended within a single picture, but must be regarded as
complementary in the sense that only the totality of the phenomena exhausts the possible
information about the objects.”

By the quantum postulate there exists indivisible quantum of action given by the Planck
constant h. Its presence prevents approaching the internal features of a quantum system.
Therefore it is meaningless (from the viewpoint of physics) to build scientific theories about
such features. This reasoning (rooted in the quantum postulate) implies:

Principle of Contextuality The output of any quantum observable is indivisibly composed
of the contributions of the system and the measurement apparatus.

There is no reason to expect that all experimental contexts can be combined and all
observables can be measured jointly. Hence, incompatible observables (complementary
experimental contexts) may exist. Moreover, they should exist, otherwise the contextuality
principle would have the empty content. Really, if all experimental contexts can be com-
bined into single context C and all observables can be jointly measured in this context, then
the outputs of such joint measurements can be assigned directly to a system. To be more
careful, we have to say: “assigned to a system and context C ′′. But, the latter can be omitted,
since this is the same context for all observables. This reasoning implies:

Principle of Complementarity There exist incompatible observables (complementary
experimental contexts).

Since both principles, contextuality and complementarity, are so closely interrelated, it is
natural to unify them into the single principle, Contextuality-Complementarity principle.

Bohr’s viewpoint on contextuality and its coupling with complementarity was explored
in a series of author’s papers, see, e.g., monograph [26].

This is the right place to stress once again the difference between Bohr-contextuality
and the notion of contextuality that is widely used in considerations related to the Bell-type
inequalities, Bell-contextuality [1, 2].3 The former has no relation to joint measurement. It is
about context-dependence of outputs of a single observable. Of course, joint measurement
of a compatible observable can also be considered as specification of experimental context.
However, such viewpoint on contextualization only overshadow the original Bohr’s view:
contextuality as impossibility to separate (in measurement’s output) the contributions of the
system and measurement device.

We remark that coupling of the contextuality principle to the quantum postulate, the exis-
tence of the Planck constant, is important only for foundations of quantum physics. Outside
of physics, one can start directly with the contextuality principle. It can be applied even to
nonphysical systems, see, e.g., [17–20] on applications to decision making, cognitive and
social sciences. However, the class of observables described by quantum mechanics is very
special; they are represented by Hermitian operators acting in compelx Hilbert space, see
Section 2 for foundational consequences.

In the line of the above reasoning (I hope that Bohr would agree with it), the existence of
complementary experimental contexts and incompatible observables is very natural, there is
nothing mystical in this. This is a consequence of (Bohr-)contextuality and the latter in turn

3We remark that Bell did not use the term “contextuality”.
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is a consequence of the quantum postulate. Since we claim that quantum nonocality and
Bell-contextuality are reduced to the existence of incompatible observables - the principle
of complementarity, it seems that the only mystery of quantum physics is the quantum
postulate (see [39] for details).

Appendix 2: Suppes-Zanotti Inequality: Has it Any Relation
to Quantum Physics?

The case n = 3, X1, X2, X3, is special. Here the tight noncontextuality inequality was
derived by Suppes and Zanotti [40]:

〈X1X2〉 − 〈X2X3〉 + 〈X1X3〉 ≤ 1. (21)

Often this inequality is misleadingly coupled to the original Bell inequality. However, the
Suppes-Zanotti inequality has nothing to do with quantum mechanics. Since it is assumed
that all pairs of observables are compatible, the JPD for quantum observables always exists
and this inequality is always satisfied. So, the criterion of the existence of JPD derived in
[40] has no relation to quantum mechanics.

The original Bell inequality has the form:

〈X1X2〉 − 〈X3X4〉 + 〈X1X4〉 ≤ 1. (22)

Here observable X1 should be compatible with observables X2, X4 and X3 with X4. This
is the inequality based on three contexts for four observables. It is not a tight noncontextu-
ality inequality, so it is not covered by Theorem 1 [4]. Surprisingly this inequality is more
complicated than inequality (3), see [41] for some steps towards its analysis.
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