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Can Time-Varying Risk of Rare Disasters Explain
Aggregate Stock Market Volatility?

JESSICA A. WACHTER∗

ABSTRACT

Why is the equity premium so high, and why are stocks so volatile? Why are stock
returns in excess of government bill rates predictable? This paper proposes an answer
to these questions based on a time-varying probability of a consumption disaster. In
the model, aggregate consumption follows a normal distribution with low volatility
most of the time, but with some probability of a consumption realization far out in
the left tail. The possibility of this poor outcome substantially increases the equity
premium, while time-variation in the probability of this outcome drives high stock
market volatility and excess return predictability.

THE MAGNITUDE OF THE expected excess return on stocks relative to bonds (the
equity premium) constitutes one of the major puzzles in financial economics. As
Mehra and Prescott (1985) show, the fluctuations observed in the consumption
growth rate over U.S. history predict an equity premium that is far too small,
assuming reasonable levels of risk aversion.1 One proposed explanation is that
the return on equities is high to compensate investors for the risk of a rare
disaster (Rietz (1988)). An open question has therefore been whether the risk
is sufficiently high, and the rare disaster sufficiently severe, to quantitatively
explain the equity premium. Recently, however, Barro (2006) shows that it is
possible to explain the equity premium using such a model when the probability
of a rare disaster is calibrated to international data on large economic declines.

While the models of Rietz (1988) and Barro (2006) advance our understanding
of the equity premium, they fall short in other respects. Most importantly, these
models predict that the volatility of stock market returns equals the volatility
of dividends. Numerous studies show, however, that this is not the case. In
fact, there is excess stock market volatility: the volatility of stock returns far
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exceeds that of dividends (e.g., Shiller (1981), LeRoy and Porter (1981), Keim
and Stambaugh (1986), Campbell and Shiller (1988), Cochrane (1992), Hodrick
(1992)). While the models of Barro and Rietz address the equity premium
puzzle, they do not address this volatility puzzle.

In the original models of Barro (2006), agents have power utility and the en-
dowment process is subject to large and relatively rare consumption declines
(disasters). This paper proposes two modifications. First, rather than being
constant, the probability of a disaster is stochastic and varies over time. Sec-
ond, the representative agent, rather than having power utility preferences,
has recursive preferences. I show that such a model can generate volatility of
stock returns close to that in the data at reasonable values of the underlying
parameters. Moreover, the model implies reasonable values for the mean and
volatility of the government bill rate.

Both time-varying disaster probabilities and recursive preferences are neces-
sary to fit the model to the data. The role of time-varying disaster probabilities
is clear; the role of recursive preferences perhaps less so. Recursive preferences,
introduced by Kreps and Porteus (1978) and Epstein and Zin (1989), retain the
appealing scale-invariance of power utility but allow for separation between
the willingness to take on risk and the willingness to substitute over time.
Power utility requires that these aspects of preferences are driven by the same
parameter, leading to the counterfactual prediction that a high price–dividend
ratio predicts a high excess return. Increasing the agent’s willingness to substi-
tute over time reduces the effect of the disaster probability on the risk-free rate.
With recursive preferences, this can be accomplished without simultaneously
reducing the agent’s risk aversion.

The model in this paper allows for time-varying disaster probabilities and
recursive utility with unit elasticity of intertemporal substitution (EIS). The
assumption that the EIS is equal to one allows the model to be solved in
closed form up to an indefinite integral. A time-varying disaster probability is
modeled by allowing the intensity for jumps to follow a square-root process (Cox,
Ingersoll, and Ross (1985)). The solution for the model reveals that allowing
the probability of a disaster to vary not only implies a time-varying equity
premium, but also increases the level of the equity premium. The dynamic
nature of the model therefore leads the equity premium to be higher than what
static considerations alone would predict.

This model can quantitatively match high equity volatility and the pre-
dictability of excess stock returns by the price–dividend ratio. Generating long-
run predictability of excess stock returns without generating counterfactual
long-run predictability in consumption or dividend growth is a central chal-
lenge for general equilibrium models of the stock market. This model meets
the challenge: while stock returns are predictable, consumption and dividend
growth are only predictable ex post if a disaster actually occurs. Because disas-
ters occur rarely, the amount of consumption predictability is quite low, just as
in the data. A second challenge for models of this type is to generate volatility
in stock returns without counterfactual volatility in the government bill rate.
This model meets this challenge as well. The model is capable of matching
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the low volatility of the government bill rate because of two competing effects.
When the risk of a disaster is high, rates of return fall because of precaution-
ary savings. However, the probability of government default (either outright
or through inflation) rises. Investors therefore require greater compensation to
hold government bills.

As I describe above, adding dynamics to the rare disaster framework allows
for a number of new insights. Note, however, that the dynamics in this paper
are relatively simple. A single state variable (the probability of a rare disaster)
drives all of the results in the model. This is parsimonious, but also unrealistic:
it implies, for instance, that the price–dividend ratio and the risk-free rate are
perfectly negatively correlated. It also implies a degree of comovement among
assets that would not hold in the data. In Section I.D, I suggest ways in which
this weakness might be overcome while still maintaining tractability.

Several recent papers also address the potential of rare disasters to explain
the aggregate stock market. Gabaix (2012) assumes power utility for the rep-
resentative agent, while also assuming the economy is driven by a linearity-
generating process (see Gabaix (2008)) that combines time-variation in the
probability of a rare disaster with time-variation in the degree to which div-
idends respond to a disaster. This set of assumptions allows him to derive
closed-form solutions for equity prices as well as for prices of other assets. In
Gabaix’s numerical calibration, only the degree to which dividends respond to
the disaster varies over time. Therefore, the economic mechanism driving stock
market volatility in Gabaix’s model is quite different from the one considered
here. Barro (2009) and Martin (2008) propose models with a constant disaster
probability and recursive utility. In contrast, the model considered here focuses
on the case of time-varying disaster probabilities. Longstaff and Piazzesi (2004)
propose a model in which consumption and the ratio between consumption and
the dividend are hit by contemporaneous downward jumps; the ratio between
consumption and dividends then reverts back to a long-run mean. They assume
a constant jump probability and power utility. In contemporaneous independent
work, Gourio (2008b) specifies a model in which the probability of a disaster
varies between two discrete values. He solves this model numerically assum-
ing recursive preferences. A related approach is taken by Veronesi (2004), who
assumes that the drift rate of the dividend process follows a Markov switching
process, with a small probability of falling into a low state. While the physical
probability of a low state is constant, the representative investor’s subjective
probability is time-varying due to learning. Veronesi assumes exponential util-
ity; this allows for the inclusion of learning but makes it difficult to assess the
magnitude of the excess volatility generated through this mechanism.

In this paper, the conditional distribution of consumption growth becomes
highly nonnormal when a disaster is relatively likely. Thus, the paper also
relates to a literature that examines the effects of nonnormalities on risk
premia. Harvey and Siddique (2000) and Dittmar (2002) examine the role of
higher-order moments on the cross-section; unlike the present paper, they take
the market return as given. Similarly to the present paper, Weitzman (2007)
constructs an endowment economy with nonnormal consumption growth.
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His model differs from the present one in that he assumes independent and
identically distributed consumption growth (with a Bayesian agent learning
about the unknown variance), and he focuses on explaining the equity
premium.

Finally, this paper draws on a literature that derives asset pricing results
assuming endowment processes that include jumps, with a focus on option
pricing (an early reference is Naik and Lee (1990)). Liu, Pan, and Wang (2005)
consider an endowment process in which jumps occur with a constant inten-
sity; their focus is on uncertainty aversion but they also consider recursive
utility. My model departs from theirs in that the probability of a jump varies
over time. Drechsler and Yaron (2011) show that a model with jumps in the
volatility of the consumption growth process can explain the behavior of im-
plied volatility and its relation to excess returns. Eraker and Shaliastovich
(2008) also model jumps in the volatility of consumption growth; they focus on
fitting the implied volatility curve. Both papers assume an EIS greater than
one and derive approximate analytical and numerical solutions. Santa-Clara
and Yan (2006) consider time-varying jump intensities, but restrict attention to
a model with power utility and implications for options. In contrast, the model
considered here focuses on recursive utility and implications for the aggregate
market.

The outline of the paper is as follows. Section I describes and solves the model,
Section II discusses the calibration and simulation, and Section III concludes.

I. Model

A. Assumptions

I assume an endowment economy with an infinitely lived representative
agent. This setup is standard, but I assume a novel process for the endowment.
Aggregate consumption (the endowment) follows the stochastic process

dCt = µCt− dt + σCt− dBt + (eZt − 1)Ct− dNt, (1)

where Bt is a standard Brownian motion and Nt is a Poisson process with
time-varying intensity λt.2 This intensity follows the process

dλt = κ(λ̄ − λt) dt + σλ

√
λt dBλ,t, (2)

where Bλ,t is also a standard Brownian motion, and Bt, Bλ,t, and Nt are assumed
to be independent. I assume Zt is a random variable whose time-invariant
distribution ν is independent of Nt, Bt, and Bλ,t. I use the notation Eν to denote
expectations of functions of Zt taken with respect to the ν-distribution. The t
subscript on Zt will be omitted when not essential for clarity.

Assumptions (1) and (2) define Ct as a mixed jump-diffusion process. The
diffusion term µCt− dt + σCt− dBt represents the behavior of consumption in

2 In what follows, all processes will be right continuous with left limits. Given a process xt, the
notation xt− will denote lims↑t xs, while xt denotes lims↓t xs.
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normal times, and implies that, when no disaster takes place, log consumption
growth over an interval %t is normally distributed with mean (µ − 1

2σ 2)%t
and variance σ 2%t. Disasters are captured by the Poisson process Nt, which
allows for large instantaneous changes (“jumps”) in Ct. Roughly speaking, λt
can be thought of as the disaster probability over the course of the next year.3
In what follows, I refer to λt as either the disaster intensity or the disaster
probability depending on the context; these terms should be understood to
have the same meaning. The instantaneous change in log consumption, should
a disaster occur, is given by Zt. Because the focus of the paper is on disasters,
Zt is assumed to be negative throughout.

In the model, a disaster is therefore a large negative shock to consumption.
The model is silent on the reason for such a decline in economic activity; ex-
amples include a fundamental change in government policy, a war, a financial
crisis, and a natural disaster. Given my focus on time-variation in the likeli-
hood of a disaster, it is probably most realistic to think of the disaster as caused
by human beings (that is, the first three examples given above, rather than a
natural disaster). The recent financial crisis in the United States illustrates
such time-variation: following the series of events in the fall of 2008, there was
much discussion of a second Great Depression, brought on by a freeze in the
financial system. The conditional probability of a disaster seemed higher, say,
than in 2006.

As Cox, Ingersoll, and Ross (1985) discuss, the solution to (2) has a station-
ary distribution provided that κ > 0 and λ̄ > 0. This stationary distribution is
Gamma with shape parameter 2κλ̄/σ 2

λ and scale parameter σ 2
λ /(2κ). If 2κλ̄ >

σ 2
λ , the Feller condition (from Feller (1951)) is satisfied, implying a finite den-

sity at zero. The top panel of Figure 1 shows the probability density func-
tion corresponding to the stationary distribution. The bottom panel shows the
probability that λt exceeds x as a function of x (the y-axis uses a log scale).
That is, the panel shows the difference between one and the cumulative dis-
tribution function for λt. As this figure shows, the stationary distribution of
λt is highly skewed. The skewness arises from the square root term multi-
plying the Brownian shock in (2): this square root term implies that high
realizations of λt make the process more volatile, and thus further high re-
alizations more likely than they would be under a standard autoregressive
process. The model therefore implies that there are times when “rare” dis-
asters can occur with high probability, but that these times are themselves
unusual.

I assume the continuous-time analogue of the utility function defined by
Epstein and Zin (1989) and Weil (1990) that generalizes power utility to allow
for preferences over the timing of the resolution of uncertainty. The continuous-
time version is formulated by Duffie and Epstein (1992); I make use of a limiting

3 More precisely, the probability of k jumps over the course of a short interval %t is approximately
equal to e−λt%t (λt%t)k

k! , where t is measured in years. In the calibrations that follow, the average
value of λt is 0.0355, implying a 0.0249 probability of a single jump over the course of a year, a
0.00044 probability of two jumps, and so forth.
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Figure 1. Distribution of the disaster probability, λt. The top panel shows the probability
density function for λt, the time-varying intensity (per year) of a disaster. The solid vertical line
is located at the unconditional mean of the process. The bottom panel shows the probability that
λ exceeds a value x, for x ranging from zero to 0.25. The y-axis on the bottom panel uses a log
(base–10) scale.

case of their model that sets the parameter associated with the intertemporal
elasticity of substitution equal to one. Define the utility function Vt for the
representative agent using the following recursion:

Vt = Et

∫ ∞

t
f (Cs, Vs) ds, (3)
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where

f (C, V ) = β(1 − γ )V
(

log C − 1
1 − γ

log((1 − γ )V )
)

. (4)

Note that Vt represents continuation utility, that is, utility of the future con-
sumption stream. The parameter β is the rate of time preference. I follow
common practice in interpreting γ as relative risk aversion. As γ approaches
one, (4) can be shown to be ordinally equivalent to logarithmic utility. I assume
throughout that β > 0 and γ > 0. Most of the discussion focuses on the case
γ > 1.

B. The Value Function and the Risk-Free Rate

Let W denote the wealth of the representative agent and J(W , λ) the value
function. In equilibrium, it must be the case that J(Wt, λt) = Vt. Conjecture that
the price–dividend ratio for the consumption claim is constant. In particular,
let St denote the value of a claim to aggregate consumption. Then

St

Ct
= l (5)

for some constant l.4 The process for consumption and the conjecture (5) imply
that St satisfies

dSt = µSt− dt + σ St− dBt + (eZt − 1)St− dNt. (6)

Let rt denote the instantaneous risk-free rate.
To solve for the value function, consider the Hamilton–Jacobi–Bellman equa-

tion for an investor who allocates wealth between St and the risk-free asset.
Let αt be the fraction of wealth in the risky asset St, and (with some abuse of
notation) let Ct be the agent’s consumption. Wealth follows the process

dWt = (Wt−αt(µ − rt + l−1)+Wt−rt − Ct− ) dt+Wt−αtσ dBt +αt(eZt − 1)Wt− dNt.

Optimal consumption and portfolio choice must satisfy the following (Duffie
and Epstein (1992)):

sup
αt,Ct

{
JW (Wtαt(µ − rt + l−1) + Wtrt − Ct) + Jλκ(λ̄ − λt) + 1

2
JWW W2

t α2
t σ 2

+ 1
2

Jλλσ
2
λ λt + λt Eν[J(Wt(1 + αt(eZt − 1)), λt)

− J(Wt, λt)] + f (Ct, J)
}

= 0, (7)

4 Indeed, the fact that St/Ct is constant (and equal to 1/β) arises from the assumption of unit
EIS, and is independent of the details of the model (see, e.g., Weil (1990)).
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where Ji denotes the first derivative of J with respect to i, for i equal to λ

or W , and Jij the second derivative of J with respect to i and j. Note that
the instantaneous return on wealth invested in the risky asset is determined
by the dividend yield l−1 as well as by the change in price. Note also that the
instantaneous expected change in the value function is given by the continuous
drift plus the expected change due to jumps.

As Appendix A. I shows, the form of the value function and the envelope condi-
tion fC = JW imply that that the wealth–consumption ratio l = β−1. Moreover,
the value function takes the form

J(W, λ) = W1−γ

1 − γ
I(λ). (8)

The function I(λ) is given by

I(λ) = ea+bλ, (9)

where

a = 1 − γ

β

(
µ − 1

2
γ σ 2

)
+ (1 − γ ) log β + b

κλ̄

β
, (10)

b = κ + β

σ 2
λ

−

√(
κ + β

σ 2
λ

)2

− 2
Eν[e(1−γ )Z − 1]

σ 2
λ

. (11)

It follows from (11) that, for γ > 1, b > 0.5 Therefore, by (8), an increase in
disaster risk reduces utility for the representative agent. As Section I.D shows,
the price of the dividend claim falls when the disaster probability rises. The
agent requires compensation for this risk (because utility is recursive, marginal
utility depends on the value function), and thus time-varying disaster risk
increases the equity premium.

Appendix A.I shows that the risk-free rate is given by

rt = β + µ − γ σ 2
︸ ︷︷ ︸

standard model

+ λt Eν[e−γ Z(eZ − 1)]︸ ︷︷ ︸
disaster risk

. (12)

The term above the first bracket in (12) is the same as in the standard model
without disaster risk; β represents the role of discounting, µ intertemporal
smoothing, and γ precautionary savings. The term multiplying λt in (12) arises
from the risk of a disaster. Because eZ < 1, the risk-free rate is decreasing in
λ. An increase in the probability of a rare disaster increases the representative
agent’s desire to save, and thus lowers the risk-free rate. The greater is risk
aversion, the greater is this effect.

5 Note that κ > 0 and β > 0 are standing assumptions.
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Figure 2. Government bill return in the time-varying disaster risk model. This figure
shows rb, the instantaneous expected return on a government bill; rL, the instantaneous expected
return on the bill conditional on no default; and r, the rate of return on a default-free security as
functions of the disaster intensity λ. All returns are in annual terms.

C. Risk of Default

Disasters often coincide with at least a partial default on government secu-
rities. This point is of empirical relevance if one tries to match the behavior of
the risk-free asset to the rate of return on government securities in the data.
I therefore allow for partial default on government debt, and consider the rate
of return on this defaultable security. I assume that, in the event of disaster,
there will be a default on government liabilities with probability q. I follow
Barro (2006) in assuming that, in the event of default, the percentage loss is
equal to the percentage decline in consumption.

Specifically, let rL
t denote the interest rate that investors would receive if

default does not occur. As shown in Appendix A.V, the equilibrium relation
between rL

t and rt is

rL
t = rt + λtqEν[e−γ Zt (1 − eZ)]. (13)

Let rb denote the instantaneous expected return on government debt. Then
rb

t = rL
t + λtqEν[eZ − 1], so

rb
t = rt + λtqEν[(e−γ Zt − 1)(1 − eZ)]. (14)

The second term in (14) has the interpretation of a disaster risk premium:
the percentage change in marginal utility is multiplied by the percentage loss
on the asset. An analogous term will appear in the expression for the equity
premium below. Figure 2 shows the face value of government debt, rL

t , the
instantaneous expected return on government debt rb

t , and the risk-free rate
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rt as a function of λt. Because of the required compensation for default, rL
t lies

above rt. The expected return lies between the two because the actual cash
flow that investors receive from the government bill will be below rL

t if default
occurs.

All three rates decrease in λt because, at these parameter values, a higher
λt induces a greater desire to save. However, rL

t and rb
t are less sensitive to

changes in λ than rt because of an opposing effect: the greater is λt, the greater
is the risk of default and therefore the greater the return investors demand for
holding the government bill. Because of a small cash flow effect, rb

t decreases
more than rL

t , but still less than rt.

D. The Dividend Claim

This section describes prices and expected returns on the aggregate stock
market. Let Dt denote the dividend. I model dividends as levered consump-
tion, that is, Dt = Cφ

t as in Abel (1999) and Campbell (2003). Ito’s Lemma
implies

dDt

Dt−
= µD dt + φσ dBt + (eφZt − 1) dNt, (15)

where µD = φµ + 1
2φ(φ − 1)σ 2. For φ > 1, dividends fall by more than consump-

tion in the event of a disaster. This is consistent with the U.S. experience (for
which accurate data on dividends are available) as discussed in Longstaff and
Piazzesi (2004).

While dividends and consumption are driven by the same shocks, (15) does
allow dividends and consumption to wander arbitrarily far from one another.
This could be avoided by modeling the consumption–dividend ratio as a sta-
tionary but persistent process, as in, for example, Lettau and Ludvigson (2005),
Longstaff and Piazzesi (2004), and Menzly, Santos, and Veronesi (2004). In or-
der to focus on the novel implications of time-varying disaster risk, I do not
take this route here.

It is convenient to price the claim to aggregate dividends by first calculat-
ing the state-price density. Unlike the case of time-additive utility, the case of
recursive utility implies that the state-price density depends on the value func-
tion. In particular, Duffie and Skiadas (1994) show that the state-price density
πt is equal to

πt = exp
{∫ t

0
fV (Cs, Vs) ds

}
fC(Ct, Vt), (16)

where fC and fV denote derivatives of f with respect to the first and second
argument, respectively.

Let Ft = F(Dt, λt) denote the price of the claim to future dividends. Absence of
arbitrage then implies that Ft is the integral of future dividend flow, discounted
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using the state-price density:

F(Dt, λt) = Et

[∫ ∞

t

πs

πt
Ds ds

]
. (17)

Define a function representing a single term in this integral:

H(Dt, λt, s − t) = Et

[
πs

πt
Ds

]
.

Then

F(Dt, λt) =
∫ ∞

0
H(Dt, λt, τ ) dτ.

The function H(Dt, λt, τ ) has an interpretation: it is the price today of a claim
to the dividend paid τ years in the future. Appendix A.III shows that H takes
a simple exponential form,

H(Dt, λt, τ ) = exp
{
aφ(τ ) + bφ(τ )λt

}
Dt,

and that the functions aφ(τ ) and bφ(τ ) have solutions

aφ(τ ) =
(

µD − µ − β + γ σ 2(1 − φ) − κλ̄

σ 2
λ

(
ζφ + bσ 2

λ − κ
))

τ

−2κλ̄

σ 2
λ

log

((
ζφ + bσ 2

λ − κ
)
(e−ζφτ − 1) + 2ζφ

2ζφ

)

(18)

bφ(τ ) = 2Eν[e(1−γ )Z − e(φ−γ )Z](1 − e−ζφτ )(
ζφ + bσ 2

λ − κ
)
(1 − e−ζφτ ) − 2ζφ

, (19)

where

ζφ =
√(

bσ 2
λ − κ

)2 + 2Eν[e(1−γ )Z − e(φ−γ )Z]σ 2
λ . (20)

Appendix A.III discusses further properties of interest, such as existence, sign,
and convergence as τ approaches infinity. In particular, for φ > 1, aφ(τ ) and bφ(τ )
are well defined for all values of τ . Moreover, bφ(τ ) is negative. The sign of bφ(τ )
is of particular importance for the model’s empirical implications. Negative
bφ(τ ) implies that, when risk premia are high (namely, when disaster risk is
high), valuations are low. Thus, the price–dividend ratio (which is F(D, λ, τ )
divided by the aggregate dividend D) predicts realized excess returns with a
negative sign.

The fact that higher risk premia go along with lower prices would seem like
a natural implication of the model. After all, don’t higher risk premia imply
higher discount rates, and don’t higher discount rates imply lower prices? The
problem with this argument is that it ignores the effect of disaster risk on the
risk-free rate. As shown in Section I.B, higher disaster risk implies a lower risk-
free rate. As is true more generally for dynamic models of the price–dividend
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ratio (Campbell and Shiller (1988)), the net effect depends on the interplay of
three forces: the effect of the disaster risk on risk premia, on the risk-free rate,
and on future cash flows. A precise form of this statement is given in Section I.F.

The result that bφ(τ ) is negative implies that, indeed, the risk premium and
cash flow effect dominate the risk-free rate effect. Thus, the price–dividend
ratio will predict excess returns with the correct sign. Appendix A.III shows
that this result holds generally under the reasonable condition that φ > 1.
Section I.G contrasts this result with what holds in a dynamic model with
power utility.

The results in this section also suggest the following testable implication:
stock market valuations should fall when the risk of a rare disaster rises. The
risk of a rare disaster is unobservable, but, given a comprehensive data set,
one can draw conclusions based on disasters that have actually occurred. This
is important because it establishes independent evidence for the mechanism in
the model.

Specifically, Barro and Ursua (2009) address the question: given a large de-
cline in the stock market, how much more likely is a decline in consumption
than otherwise? Barro and Ursua augment the data set of Barro and Ursua
(2008) with data on national stock markets. They look at cumulative multi-
year returns on stocks that coincide with macroeconomic contractions. Their
sample has 30 countries and 3,037 annual observations; there are 232 stock
market crashes (defined as cumulative returns of –25%) and 100 macroeco-
nomic contractions (defined as the average of the decline in consumption and
GDP). There is a 3.8% chance of moving from “normalcy” into a state with a
contraction of 10% or more. This number falls to 1% if one conditions on a lack
of a stock market crash. If one considers major depressions (defined as a de-
cline in fundamentals of 25% or more), there is a 0.89% chance of moving from
normalcy into a depression. Conditioning on no stock market crash reduces the
probability to 0.07%.

Also closely related is recent work by Berkman, Jacobsen, and Lee (2011),
who study the correlation between political crises and stock returns. Berk-
man, Jacobsen, and Lee make use of the International Crisis Behavior (ICB)
database, a detailed database of international political crises occurring during
the period 1918 to 2006. Rather than dating the start of a crisis with a military
action itself, the database identifies the start of a crisis with a change in the
probability of a threat.6 A regression of the return on the world market on the
number of such crises in a given month yields a coefficient that is negative and
statistically significant. Results are particularly strong for the starting year of
a crisis, for violent crises, and for crises rated as most severe. The authors also
find a statistically significant effect on valuations: the correlation between the
number of crises and the earnings–price ratio on the S&P 500 is positive and
statistically significant, as is the correlation between the crisis severity index
and the earnings–price ratio. Similar results hold for the dividend yield.

6 See Berkman, Jacobsen, and Lee (2011) for a discussion of the prior empirical literature on
the relation between political instability and stock market returns.
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Comparing the results in this section and in Section I.B indicate that both
the risk-free rate and the price–dividend ratio are driven by the disaster
probability λt; this follows from the fact that there is a single state variable.
This perfect correlation could be broken by assuming that consumption is sub-
ject to two types of disaster, each with its own time-varying intensity, and
further assuming that one type has a stronger effect on dividends (as modeled
through high φ) than the other. The real interest rate and the price–dividend
ratio would be correlated with both intensities, but to different degrees,
and thus would not be perfectly correlated with one another. The correlation
between nominal rates and the price–dividend ratio could be further reduced
by introducing a third type of consumption disaster. The three types could differ
across two dimensions: the impact on dividends and the impact on expected in-
flation. The expected inflation process would affect the prices of nominal bonds
but would not (directly) affect stocks. I conjecture that the generalized model
could be constructed to be as tractable as the present one.

E. The Equity Premium

The equity premium arises from the comovement of the agent’s marginal
utility with the price process for stocks. There are two sources of this comove-
ment: comovement during normal times (diffusion risk), and comovement in
times of disaster (jump risk). Ito’s Lemma implies that F satisfies

dFt

Ft−
= µF,t dt + σF,t[dBt dBλ,t]' + (eφZ − 1) dNt, (21)

for processes µF,t and σF,t. It is helpful to define notation for the price–dividend
ratio. Let

G(λ) =
∫ ∞

0
exp{aφ(τ ) + bφ(τ )λ} dτ. (22)

Then

σF,t = [ φσ (G′(λt)/G(λt))σλ

√
λt ]. (23)

Ito’s Lemma also implies

dπt

πt−
= µπ,t dt + σπ,t[dBt dBλ,t]' + (e−γ Zt − 1) dNt, (24)

where

σπ,t = [−γ σ bσλ

√
λt ] (25)

as shown in Appendix A.II. Finally, define

re
t = µF,t + Dt

Ft
+ λt Eν[eφZ − 1]. (26)
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Then re
t can be understood to be the instantaneous return on equities.7 The

instantaneous equity premium is therefore re
t − rt.

Appendix A.IV shows that the equity premium can be written as

re
t − rt = −σπ,tσ

'
F,t + λt Eν[(e−γ Z − 1)(1 − eφZ)]. (27)

The first term represents the portion of the equity premium that is compensa-
tion for diffusion risk (which includes time-varying λt). The second term is the
compensation for jump risk. While the diffusion term represents the comove-
ment between the state-price density and prices during normal times, the jump
risk term shows the comovement between the state-price density and prices
during disasters. That is,

Eν[(e−γ Z − 1)(1 − eφZ)] = −Eν

[(
Ft − Ft−

Ft−

)(
πt − πt−

πt−

)]

for a time t such that a jump takes place.
Substituting (23) into (27) implies

re
t − rt = φγσ 2

︸ ︷︷ ︸
standard model

− λt
G′

G
bσ 2

λ + λt Eν[(e−γ Z − 1)(1 − eφZ)]︸ ︷︷ ︸
static disaster risk︸ ︷︷ ︸

time-varying disaster risk

. (28)

The first and third terms are analogous to expressions in Barro (2006): the first
term is the equity premium in the standard model with normally distributed
consumption growth, while the third term arises from the (static) risk of a
disaster. The second term is new to the dynamic model. This is the risk premium
due to time-variation in disaster risk. Because bφ is negative, G′ is also negative.
Moreover, b is positive, so this term represents a positive contribution to the
equity premium. Because both the second and the third terms are positive, an
increase in the risk of rare disaster increases the equity premium.8

The instantaneous equity premium relative to the government bill rate is
equal to (28) minus the default premium rb

t − rt (given in (14)):

re
t − rb

t = φγσ 2 − λt
G′

G
bσ 2

λ + λt Eν[(e−γ Z − 1)((1 − q)(1 − eφZ)

+ q(eZ − eφZ))]. (29)

7 The first term in (26) is the percentage drift in prices, the second term is the instantaneous
dividend yield, and the third term is the expected decline in prices in the event of a disaster. The
first plus the third term constitutes the expected percentage change in prices.

8 Also of interest is the equity premium conditional on no disasters, which is equal to (28) less
the component due to jumps in the realized return (see (26)). This conditional equity premium is
given by

re
t − rt − λt Ev[eφZ − 1] = φγσ 2 − λt

G′

G
bσ 2

λ + λt Ev [e−γ Z(1 − eφZ)].
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Figure 3. Decomposition of the equity premium in the time-varying disaster risk model.
The solid line shows the instantaneous equity premium (the expected excess return on equity less
the expected return on the government note), the dashed line shows the equity premium in a static
model with disaster risk, and the dotted line shows what the equity premium would be if disaster
risk were zero.

The last term in (29) takes the usual form for the disaster risk premium:
the percentage change in marginal utility is multiplied by the percentage loss.
Here, with probability q, the expected loss on equity relative to bonds is reduced
because both assets perform poorly. This instantaneous equity premium is
shown in Figure 3 (solid line). The difference between the dashed line and the
solid line represents the component of the equity premium that is new to the
dynamic model, and shows that this term is large. The dotted line represents
the equity premium in the standard diffusion model without disaster risk and
is negligible compared with the disaster risk component. Figure 3 shows that
the equity premium is increasing with the disaster risk probability.

Equation (29) and Figure 3 show that the return required for holding equity
increases with the probability of a disaster. How does it depend on a more
traditional measure of risk, namely, the equity volatility? When there is no
disaster, instantaneous volatility can be computed directly from (23):

(
σF,tσ

'
F,t
) 1

2 =
(

φ2σ 2 +
(

G′(λt)
G(λt)

)2

σ 2
λ λt

) 1
2

.

Figure 4 shows that volatility is an increasing and concave function of the disas-
ter probability. When the probability of a disaster is close to zero, the variance
in the disaster probability is also very small. Thus, the volatility is close to
that of the dividend claim in nondisaster periods (φσ ). As the risk of a rare
disaster increases, so does the volatility of the disaster process. The increase in
risk rises (approximately) with the square root of λ. Because the equity price
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Figure 4. Equity volatility in the time-varying disaster risk model. The figure shows in-
stantaneous equity return volatility as a function of the disaster probability λt. All quantities are
in annual terms.

falls when the disaster probability increases, the model is consistent with the
“leverage effect” found by Black (1976), Schwert (1989), and Nelson (1991).

The above equations show that an increase in the equity premium is accom-
panied by an increase in volatility. The net effect of a change in λ on the Sharpe
ratio (the equity premium divided by the volatility) is shown in Figure 5. Bad
times, interpreted in this model as times with a high probability of disaster,
are times when investors demand a higher risk-return tradeoff than usual. Har-
vey (1989) and subsequent papers report empirical evidence that the Sharpe
ratio indeed varies countercyclically. Like the model of Campbell and Cochrane
(1999), this model is consistent with this evidence.

The time-varying disaster risk model generates a countercyclical Sharpe
ratio through two mechanisms. First, the value function varies with λt: when
disaster risk is high, investors require a greater return on all assets with prices
negatively correlated with λ. The component of the equity premium associated
with time-varying λt thus rises linearly with λ while volatility rises only with
the square root. Second, the component of the equity premium corresponding to
disaster risk itself (the last term in (29)) has no counterpart in volatility. This
term compensates equity investors for negative events that are not captured
by the standard deviation of returns.

F. Zero-Coupon Equity

To understand the dynamics of the price–dividend ratio, it is helpful to think
of the aggregate as consisting of components that pay a dividend at a specific
point in time, namely, zero-coupon equity.
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Figure 5. Sharpe ratio in the time-varying disaster risk model. This figure shows the in-
stantaneous equity premium over the government bill divided by the instantaneous equity return
volatility (the Sharpe ratio) as a function of disaster probability λt. All quantities are in annual
terms.

Recall that

H(Dt, λt, T − t) = exp
{
aφ(τ ) + bφ(τ )λt

}
Dt

is the time-t price of the claim that pays the aggregate dividend at time t + τ .
Appendix A.III shows that the risk premium on the zero-coupon claim with
maturity τ is equal to

re,(τ )
t − rt = φγσ 2 − λtσ

2
λ bφ(τ )b + λt Eν[(e−γ Z − 1)(1 − eφZ)]. (30)

Like the equity premium, the risk premium on zero-coupon equity is positive
and increasing in λt.

Zero-coupon equity can help answer the question of why the price–dividend
ratio on the aggregate market is decreasing in λt. Because bφ(0) = 0, the ques-
tion can be restated as: why is b′

φ(τ ) negative for small values of τ?9 The differ-
ential equation for bφ(τ ) is given by (A27). Evaluating at zero yields:

b′
φ(0) = Eν[e(φ−γ )Z − e(1−γ )Z] = − Eν[e−γ Z(eZ − 1)]︸ ︷︷ ︸

risk-free rate

− Eν[(e−γ Z − 1)(1 − eφZ)]︸ ︷︷ ︸
equity premium

+ Eν[eφZ − 1]︸ ︷︷ ︸
expected future dividends

. (31)

9 Note that bφ (τ ) is monotonically decreasing. This follows from the fact that, as τ increases,
e−ζφτ falls and 1 − e−ζφτ rises. The numerator of (19) therefore rises. In the denominator, the term
(ζφ + bσ 2

λ − κ)(1 − e−ζφτ ) rises, and so the denominator falls in absolute value.
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Equation (31) shows that the change in bφ(τ ) can be written in terms of risk
premium, risk-free rate, and cash flow effects. The first term multiplies λt in
the equation for the risk-free rate (12). The second term multiplies λt in the
equation for the risk premium (30) in the limit as τ approaches zero. The third
term represents the effect of a change in λt on expected future dividends: eφZ − 1
is the percentage change in dividends in the event of a disaster. The terms
corresponding to the risk-free rate and the risk premium enter with negative
signs, because higher discount rates reduce the price. Expected future dividend
growth enters with a positive sign because higher expected cash flows raise the
price. Indeed, the term corresponding to the equity premium and to expected
future dividends together exceeds that of the risk-free rate when φ > 1.

As explained in the paragraph above, understanding b′
φ(τ ) for low values of

τ is sufficient for understanding why the price–dividend ratio is a decreasing
function of λt. However, it is also instructive to decompose b′

φ(τ ) for general
values of τ . At longer maturities, it is possible for λt to change before the claim
matures. Thus, there are additional terms that account for the effect of future
changes in λt:

b′
φ(τ ) = − Eν[e−γ Z(eZ − 1)]︸ ︷︷ ︸

risk-free rate

−
(
− bσ 2

λ bφ(τ ) + Eν[(e−γ Z − 1)(1 − eφZ)]
)

︸ ︷︷ ︸
equity premium

+ Eν[eφZ − 1]︸ ︷︷ ︸
expected future dividends

+ 1
2

σ 2
λ bφ(τ )2

︸ ︷︷ ︸
Jensen’s inequality

− κbφ(τ )
︸ ︷︷ ︸

mean-reversion

.

The first three terms in this more general decomposition are analogous to those
in the simpler (31). The final two terms account for the effect of future changes
in λt. The first of these is a Jensen’s inequality term: all else equal, more
volatility in the state variable increases the price–dividend ratio. The second of
these represents the fact that, if λt is high in the present, λt is likely to decrease
in the future on account of mean reversion.

While the focus of this paper is on the aggregate market, it is also of interest to
compare the model’s implications for zero-coupon equity to the behavior of these
claims in the data.10 van Binsbergen, Brandt, and Koijen (2012) use option price
data to calculate prices and risk premia on zero-coupon equity. Their methods
are able to establish prices for dividend claims that have variable maturities
of less than 2 years. They find that these claims have expected excess returns
that are statistically different from zero. In other words, the equity premium
arises at least in part from the short-term portion of the dividend stream.
van Binsbergen, Brandt, and Koijen argue that this evidence is contrary to

10 A related issue is the behavior of zero-coupon bonds. Real, default-free bonds are described
in detail in Appendix B. The term structure of these bonds is downward-sloping, and for long
maturities (or high values of the disaster probability), the yield becomes negative. While there
is no precise counterpart for these bonds in the data, the results suggest that the model would
make counterfactual predictions regarding close approximations, such as TIPS (Treasury Inflation
Protected Securities).
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Figure 6. Risk premia on zero-coupon equity. This figure shows average risk premia on
zero-coupon equity claims as a function of maturity. Zero-coupon equity is a claim to the aggregate
dividend at a single point in time (referred to as the maturity). Risk premia are defined as expected
excess returns less the risk-free rate. The dotted line shows what risk premia would be if the
disaster risk were zero. The solid line shows risk premia in the model. Risk premia are expressed
in annual terms.

the implications of some leading asset pricing models such as Bansal and
Yaron (2004) and Campbell and Cochrane (1999). In these models, the claim
to dividends in the very near future has a premium close to zero; the equity
premium arises from dividends paid in the far future.

In contrast, the present model implies a substantial equity premium for the
short-term claim, and thus is consistent with the empirical evidence. Figure 6
plots risk premia (30) as a function of maturity. While the equity premium
is increasing in maturity (that is, the “term structure of equities” is upward-
sloping), the intercept of the graph is not at zero but rather at 5.5%. The reason
is that a major source of the equity premium is disaster risk itself. Equities
of all maturities have equal exposure to this risk, and thus even equities with
short maturities have substantial risk premia, as the data imply.11

G. Comparison with Power Utility

To understand the role played by the recursive utility assumption, it is in-
structive to consider the properties of a model with time-varying disaster risk

11 van Binsbergen, Brandt, and Koijen (2012) also show that, in their sample, short-maturity
equity has a higher risk premium than the aggregate equity claim. While the model predicts that
short-maturity equity has a lower risk premium, the data finding is not statistically significant,
and the predictions of the model appear to be well within the standard errors that van Binsbergen,
Brandt, and Koijen calculate.
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and time-additive utility.12 Consider a model with identical dynamics of con-
sumption and dividends, but where utility is given by

Vt = Et

∫ ∞

t
e−βCs−t

C1−γ
s

1 − γ
ds.

Appendix C shows that the risk-free rate under this model is equal to

rt = β + γµ − 1
2

γ (γ + 1)σ 2 − λt Eν[e−γ Z − 1], (32)

the equity premium is given by

re
t − rt = φγσ 2 + λt Eν[(e−γ Z − 1)(1 − eφZ)], (33)

and the value of the aggregate market takes the form

F(Dt, λt) = Dt

∫ ∞

0
exp

{
ap,φ(τ ) + bp,φ(τ )λt

}
dτ.

The functions ap,φ(τ ) and bp,φ(τ ) satisfy ordinary differential equations given
in Appendix C. The solutions are

ap,φ(τ ) =
(

µD − µ − β + γ σ 2
(

1
2

(γ + 1) − φ

)
− κλ̄

σ 2
λ

(ζp,φ − κ)
)

τ

− 2κλ̄

σ 2
λ

log

(
(ζp,φ − κ)

(
e−ζp,φτ − 1

)
+ 2ζp,φ

2ζp,φ

)

(34)

bp,φ(τ ) = 2Eν[e(φ−γ )Z − 1](e−ζp,φτ − 1)
(ζp,φ − κ)(1 − e−ζp,φτ ) − 2ζp,φ

, (35)

where

ζp,φ =
√

κ2 − 2Eν[e(φ−γ )Z − 1]σ 2
λ . (36)

It is useful to contrast (35) with its counterpart in the recursive utility model.
Under recursive utility, bφ(τ ) is negative for φ > 1, implying that the price–
dividend ratio is decreasing in λt. For power utility, bφ(τ ) is negative only if
φ > γ ; otherwise it is positive.13 Under the reasonable assumption that φ is

12 Gourio (2008b) also shows analytically that the power utility model cannot replicate the
predictability evidence.

13 For φ > γ , the numerator of (35) is positive, and ζp,φ > κ, so 2ζp,φ > ζp,φ − κ > (ζp,φ − κ)(1 −
e−ζp,φτ ) and the denominator is negative. For φ < γ , it is necessary to also assume that κ2 >

2Eν [e(φ−γ )Z − 1]σ 2
λ . The numerator is negative because Eν [e(φ−γ )Z − 1] > 0. The denominator is

also negative because κ > ζp,φ .
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less than γ , the power utility model makes the counterfactual prediction that
price–dividend ratios predict excess returns with a positive sign.14

What accounts for the difference between the power utility model and the
recursive utility model? The answer lies in the behavior of the risk-free rate.
Comparing (32) with (12) reveals that the risk-free rate under power utility
falls more in response to an increase in disaster risk than under recursive
utility with EIS equal to one. In the power utility model, the risk-free rate
effect exceeds the combination of the equity premium and cash flow effects,
and, as a result, the price–dividend ratio increases with disaster risk.15

II. Calibration and Simulation

A. Calibration

A.1. Distribution of Consumption Declines

The distribution of the percentage decline, 1 − eZ, is taken directly from the
data . That is, 1 − eZ is assumed to have a multinomial distribution, with out-
comes given by actual consumption declines in the data. I use the distribution
of consumption declines found by Barro and Ursua (2008). Barro and Ursua
update the original cross-country data set of Maddison (2003) used by Barro
(2006). The Maddison data consist of declines in GDP; Barro and Ursua cor-
rect errors and fill in gaps in Maddison’s GDP data, as well as construct an
analogous data set of consumption declines. I calibrate to the consumption
data because it is a more appropriate match to consumption in the model than
is GDP. However, results obtained from GDP data are very similar. The fre-
quency of large consumption declines implies an average disaster probability,
λ̄, of 3.55%.16 The distribution of consumption declines in Panel A of Figure 7
comes from data on 22 countries from 1870 to 2006. One possible concern about
the data is the relevance of this group for the United States. For this reason,
Barro and Ursua (2008) also consider the disaster distribution for a subset
consisting of developed countries. For convenience, I follow Barro and Ursua

14 Gabaix (2012) solves a model with disaster risk and power utility assuming linearity gener-
ating processes for consumption and dividends. While the theoretical model that Gabaix proposes
allows for a time-varying probability of rare disasters, the disaster probability is assumed to be
constant in the calibration and dynamics are generated by changing the degree to which divi-
dends respond to a consumption disaster. As this discussion shows, incorporating time-varying
probabilities into Gabaix’s calibrated model would likely reduce the model’s ability to match the
data.

15 As in the recursive utility model, examining b′
p,φ (0) allows a precise statement of these trade-

offs. For power utility:

b′
p,φ(0) = Eν [e(φ−γ )Z − 1]

= − Eν [e−γ Z − 1]︸ ︷︷ ︸
risk-free rate

− Eν [(e−γ Z − 1)(1 − eφZ)]︸ ︷︷ ︸
equity premium

+ Eν [eφZ − 1]︸ ︷︷ ︸
expected future dividends

,

which is greater than zero when γ > φ.
16 I follow Barro and Ursua (2008) in using a 10% cutoff to identify large consumption declines.
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Figure 7. Distribution of consumption declines in the event of a disaster. Histograms
show the distribution of large consumption declines (in percentages). Panel A shows data for 22
countries, 17 of which are OECD countries and 5 of which are not; Panel B shows data for the
subsample of OECD countries. Data are from Barro and Ursua (2008). Panel A is the distribution
of 1 − eZ in the baseline calibration, while Panel B is the distribution of 1 − eZ in the calibration
for OECD countries.

and refer to these as “OECD countries.”17 The distribution of consumption
declines in these economies is given in Panel B. There are fewer of such crises;

17 The overlap with the actual founding members of what is now known as the OECD is not exact.
The 17 countries are Australia, Belgium, Canada, Denmark, Finland, France, Germany, Italy,
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Table I
Parameters for the Time-Varying Disaster Risk Model

The table shows parameter values for the time-varying disaster risk model. The process for the
disaster intensity is given by

dλt = κ(λ̄ − λt) dt + σλ

√
λt dBλ,t.

The consumption (endowment) process is given by

dCt = µCt dt + σCt dBt + (eZt − 1)Ct− dNt,

where Nt is a Poisson process with intensity λt, and Zt is calibrated to the distribution of large
declines in GDP in the data. The dividend Dt equals Cφ

t . The representative agent has recursive
utility defined by Vt = Et

∫∞
t f (Cs, Vs) ds, with normalized aggregator

f (C, V ) = β(1 − γ )V
[
log C − 1

1 − γ
log((1 − γ )V )

]
.

Parameter values are in annual terms.

Relative risk aversion γ 3.0
Rate of time preference β 0.012
Average growth in consumption (normal times) µ 0.0252
Volatility of consumption growth (normal times) σ 0.020
Leverage φ 2.6
Average probability of a rare disaster λ̄ 0.0355
Mean reversion κ 0.080
Volatility parameter σλ 0.067
σλE

[
λ1/2] 0.0114

Probability of default given disaster q 0.40

the implied average disaster probability is 2.86%. However, eliminating the
non-OECD crises in effect eliminates many comparatively minor crises (gen-
erally occurring after World War II). The overall distribution is shifted toward
the more serious crises. In what follows, I use the distribution in Panel A for
the base calibration, while the implications of the distribution in Panel B are
explored in Section II.D.

A.2. Other Parameters

Table I describes model parameters other than the disaster distribution de-
scribed above. Results are compared with quarterly U.S. data beginning in
1947 and ending in the first quarter of 2010. Equities are constructed using
the CRSP value-weighted index, while the risk-free rate moments are con-
structed from real returns on the 3-month Treasury bill. Postwar data are
chosen as the comparison point in order to provide a clean comparison to mo-
ments of the model that are calculated conditional on no disasters having
occurred. Two types of moments are simulated from the model. The first type

Japan, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, the United Kingdom, and
the United States. The remaining five countries are Argentina, Brazil, Chile, Peru, and Taiwan.
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(referred to as “population” in the tables) is calculated based on all years in
the simulation. The second type (referred to as “conditional” in the tables) is
calculated after first eliminating years in which one or more disasters took
place.18

In the model, time is measured in years and parameter values should be
interpreted accordingly. The drift rate µ is calibrated so that, in normal periods,
the expected growth rate of log consumption is 2.5% per annum.19 The standard
deviation of log consumption σ is 2% per annum. These parameters are chosen
as in Barro (2006) to match postwar data in G7 countries. The probability of
default given disaster, q, is set equal to 0.4, calculated by Barro based on data
for 35 countries over the period 1900 to 2000.

Barro and Ursua (2008) consider values of risk aversion equal to 3.0 and
3.5; because the dynamic nature of the present model leads to a higher risk
premium, I use risk aversion equal to three. Given these parameter choices, a
rate of time preference (β) equal to 1.2% per annum matches the average real
return on the 3-month Treasury bill in postwar U.S. data.

Leverage, φ, is set equal to 2.6; this is a conservative value by the standards
of prior literature. For example, the model of Bansal and Yaron (2004) uses
leverage parameters of three and five. The ratio of dividend to consumption
volatility in postwar U.S. data is 4.9. In the present model, φ has implica-
tions for the response of dividends to a disaster, relative to consumption. For
example, if consumption falls by 40%, dividends fall by 1 − 0.62.6 = 74%. Is
this reasonable? For many countries and events in the Barro and Ursua data
set, accurate dividend and earnings information is difficult to come by. How-
ever, data on corporate earnings are available for the Great Depression, as
described by Longstaff and Piazzesi (2004), who argue that earnings may be
a better proxy for economic dividends due to artificial dividend smoothing.
Longstaff and Piazzesi report that, in the first year of the Great Depression,
when consumption fell by 10%, corporate earnings fell by more than 103%.
In their calibration, they adopt a more conservative assumption: for a 10%
decline in consumption, earnings fall by 90%. This is consistent with a lever-
age parameter of 22. However, the Longstaff and Piazzesi calibration assumes
that the consumption–dividend ratio is stationary; thus, not all of the dividend
decline is permanent. One approach to this issue would be to model a sta-
tionary consumption–dividend ratio. As argued above, this would complicate
the model significantly, so instead I adopt a relatively conservative value for
leverage along with the simpler assumption that the dividend decline, like the
consumption decline, is permanent.

Other novel parameters are (implicitly) the EIS, the mean reversion of the
disaster intensity, κ, and the volatility parameter for the disaster intensity,
σλ. The EIS is set equal to one for tractability. A number of studies conclude

18 For calculations done over consecutive years, relevant periods are omitted. For example, for
evaluating predictability over 10-year horizons, 10-year periods of the simulation with a disaster
are omitted.

19 The value µ = 2.52% reflects an adjustment for Jensen’s inequality.
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Table II
Population Moments from Simulated Data and Sample Moments from

the Historical Time Series
The model is simulated at a monthly frequency and simulated data are aggregated to an annual
frequency. Data moments are calculated using overlapping annual observations constructed from
quarterly U.S. data, from 1947 through the first quarter of 2010. With the exception of the Sharpe
ratio, moments are in percentage terms. The second column reports population moments from
simulated data. The third column reports moments from simulated data that are calculated over
years in which a disaster did not occur. The last column reports annual sample moments. Rb

denotes the gross return on the government bond, Re the gross equity return, %c growth in log
consumption, and %d growth in log dividends.

Model

Population Conditional U.S. Data

E[Rb] 0.99 1.36 1.34
σ (Rb) 3.79 2.00 2.66
E[Re − Rb] 7.61 8.85 7.06
σ (Re) 19.89 17.66 17.72
Sharpe Ratio 0.39 0.49 0.40
σ (%c) 6.36 1.99 1.34
σ (%d) 16.53 5.16 6.59

that reasonable values for this parameter lie in a range close to one, or slightly
lower than one (e.g., Vissing-Jørgensen (2002)). Mean reversion κ is chosen
to match the annual autocorrelation of the price–dividend ratio in postwar
U.S. data. Because λt is the single state variable, the autocorrelation of the
price–dividend ratio implied by the model is determined almost entirely by
the autocorrelation of λt. Setting κ equal to 0.080 generates an autocorrelation
for the price–dividend ratio equal to 0.92, its value in the data. The volatil-
ity parameter σλ is chosen to be 0.067; as discussed below, this generates a
reasonable level of volatility in stock returns. The table also reports σλE[λ1/2],
which is a measure of the annual volatility of λt. This measure indicates that
λt varies (approximately) by 1.14 percentage points a year. That is, when λt is
one standard deviation above its mean, its value is 4.49%.

B. Simulation Results

Table II describes moments from a simulation of the model as well as mo-
ments from postwar U.S. data. The model is discretized using an Euler ap-
proximation (see (Glasserman, 2004, Chap. 3)) and simulated at a monthly
frequency for 50,000 years; simulating the model at higher frequencies pro-
duces negligible differences in the results.20 First, I simulate the series λt and
% log Ct. Given the simulated series λt, the price–dividend ratio is given by
(22) and the yield on government debt, rL

t , is given by (13). Equity returns are

20 The discrete-time approximation requires setting λt to zero in the square root when it is
negative. However, this occurs in less than 1% of the simulated draws.
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computed using the series for the price–dividend ratio and for consumption
growth, while bond returns are computed using (A41). The resulting series for
monthly returns and growth rates in fundamentals are then compounded to an
annual frequency.

The model can be rejected if it offers unrealistic implications for the mean
and volatility of the aggregate market, Treasury bills, and consumption and
dividend growth as well as for predictability of stock returns and consumption
growth.21 These particular measures have been the focus of much of the recent
asset pricing literature. As I argue below, the model’s implications are in fact
realistic. Table II shows that the model generates a realistic equity premium.
In population, the equity premium is 7.6%, while conditional on no disasters it
is 8.9%. In the historical data the equity premium is 7.1%. The expected return
on the government bill is 1% in population, 1.36% conditional on no disasters,
and 1.34% in the data. The model predicts equity volatility of 19.9% per annum
in population and 17.7% conditional on no disasters. The observed volatility is
17.7%. The Sharpe ratio is 0.39 in population, 0.49 conditional on no disasters,
and 0.40 in the data.

The model is able to generate reasonable volatility for the stock market with-
out generating excessive volatility for the government bill or for consumption
and dividends. Note that the parameter values are not explicitly chosen to tar-
get a low interest rate volatility. The volatility of the government bill is 3.8%
in population, much of which is due to realized disasters; it is 2.0% conditional
on no disasters. This compares with a volatility of 2.7% in the data. Given that
interest rate volatility in the data arises largely from unexpected inflation that
is not captured by the model, the data volatility should be viewed as an upper
bound on reasonable model volatility.

The volatilities for consumption and dividends predicted by the model for pe-
riods of no disasters are also below their data counterparts. Conditional on no
disasters, consumption volatility is 2.0%, compared with 1.3% in the data. Divi-
dend volatility is 5.2%, compared with 6.6% in the data. Including rare disasters
in the data simulated from the model has a large effect on dividend volatility.
When the disasters are included, dividend volatility is 16.5%. The difference be-
tween the effect of including rare disasters on returns as compared with the ef-
fect on fundamentals is striking. Unlike dividends, returns exhibit a relatively
small difference in volatility when calculated with and without rare disasters:
19.9% versus 17.7%. This is because a large amount of the volatility in returns
arises from variation in the equity premium. Risk premia are equally variable
regardless of whether disasters actually occur in the simulated data or not.

I next discuss the model’s implications for excess return and consumption
predictability. These moments are not explicit targets of the calibration, but
follow naturally given the model’s properties, as described in Section I.D.
Table III reports the results of regressing long-horizon excess returns (the

21 While the calibration approach that I adopt has the advantages of transparency and compa-
rability to the results of other models, it has the disadvantage that it does not offer a formal test
of quantitative success.
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Table III
Long-Horizon Regressions: Excess Returns

Excess returns are regressed on the lagged price–dividend ratio in data simulated from the model
and in quarterly data from 1947 to 2010.1. The table reports predictive coefficients (β1); R2 statis-
tics; and, for the sample, Newey–West t-statistics for regressions

h∑

i=1

log
(
Re

t+i
)
− log

(
Rb

t+i
)

= β0 + β1(pt − dt) + εt.

Here, Re
t+i and Rb

t+i are, respectively, the return on the aggregate market and the return on the
government bill between t + i − 1 and t + i, and pt − dt is the log price–dividend ratio on the
aggregated market. The time-varying disaster risk model is simulated at a monthly frequency and
simulated data are aggregated to an annual frequency. Panel A reports population moments from
simulated data. Panel B reports moments from simulated data that are calculated over years in
which a disaster does not take place (for a horizon of two, for example, all 2-year periods in which
a disaster takes place are eliminated). Panel C reports sample moments.

Horizon in Years

1 2 4 6 8 10

Panel A: Model—Population Moments

β1 –0.11 –0.22 –0.40 –0.56 –0.69 –0.82
R2 0.04 0.08 0.15 0.20 0.23 0.26

Panel B: Model—Conditional Moments

β1 –0.16 –0.30 –0.56 –0.77 –0.95 –1.10
R2 0.13 0.24 0.41 0.52 0.59 0.63

Panel C: Data

β1 –0.13 –0.23 –0.33 –0.48 –0.64 –0.86
t-stat –2.62 –2.87 –3.64 –4.80 –5.82 –5.67
R2 0.09 0.17 0.23 0.30 0.38 0.43

log return on equity minus the log return on the government bill) on the
price–dividend ratio in simulated data. I calculate this regression for returns
measured over horizons ranging from 1 to 10 years. Table III reports results for
the entire simulated data set (“population moments”) for periods in the simula-
tion in which no disasters occur (“conditional moments”) and for the historical
sample.

Panel A of Table III shows population moments from simulated data. The
coefficients on the price–dividend ratio are negative: a high price–dividend
ratio corresponds to low disaster risk and therefore predicts low future expected
returns on stocks relative to bonds. The R2 is 4% at a horizon of 1 year, rising
to 26% at a horizon of 10 years. Panel B reports conditional moments. The
conditional R2s are larger: 13% at a horizon of 1 year, rising to 63% at a
horizon of 10 years. The unconditional R2 values are much lower because,
when a disaster occurs, nearly all of the unexpected return is due to the shock
to cash flows.
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Table IV
Long-Horizon Regressions: Consumption Growth

Growth in aggregate consumption is regressed on the lagged price–dividend ratio in data simulated
from the model and in quarterly data from 1947 to 2010.1. The table reports predictive coefficients
(β1); R2 statistics; and, for the sample, Newey–West t-statistics for regressions

h∑

i=1

%ct+i = β0 + β1(pt − dt) + εt.

Here, %ct+i is log growth in aggregate consumption between periods t + i − 1 and t + i, and pt − dt
is the log price–dividend ratio on the aggregated market. The time-varying disaster risk model
is simulated at a monthly frequency and simulated data are aggregated to an annual frequency.
Panel A reports population moments from simulated data. Panel B reports sample moments. The
conditional moments, calculated over periods in the simulation without disasters, are equal to zero.

Horizon in Years

1 2 4 6 8 10

Panel A: Model—Population Moments

β1 0.02 0.04 0.07 0.10 0.12 0.13
R2 0.01 0.02 0.04 0.05 0.06 0.06

Panel B: Data

β1 –0.001 –0.006 –0.009 –0.011 –0.016 –0.014
t-stat –0.22 –0.85 –1.02 –1.15 –1.09 –0.79
R2 0.0006 0.0137 0.0164 0.0180 0.0268 0.0162

The data moments are higher than the population values, but, more im-
portantly, lower than the conditional values. As demonstrated in a number of
studies (e.g., Campbell and Shiller (1988), Cochrane (1992), Fama and French
(1989), Keim and Stambaugh (1986)) and replicated in this sample, high price–
dividend ratios predict low excess returns. While returns exhibit predictabil-
ity over a wide range of sample periods, the high persistence of the price–
dividend ratio leads sample statistics to be unstable (see, for example, Lettau
and Wachter (2007) for calculations of long-horizon predictability using this
data set but for differing sample periods), and unusually low when calculated
over recent years. For this reason, the R2 statistics in the data should be viewed
as an approximate benchmark.

Another potential source of variation in returns is variation in expected fu-
ture consumption growth. According to the model, a low price–dividend ratio
indicates not only that the equity premium is likely to be high in the future,
but also that consumption growth is likely to be low because of the increased
probability of a disaster. However, a number of studies (e.g., Campbell (2003),
Cochrane (1994), Hall (1988), Lettau and Ludvigson (2001)) find that consump-
tion growth exhibits little predictability at long horizons, a finding replicated
in Panel B of Table IV. It is therefore of interest to quantify the amount of
consumption growth predictability implied by the model.
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Table IV reports the results of running long-horizon regressions of consump-
tion growth on the price–dividend ratio in data simulated from the model and
in historical data. Panel A shows the population moments implied by the model.
The model does imply some predictability in consumption growth, but the ef-
fect is very small. The R2 values never rise above 6%, even at long horizons.
This predictability arises entirely from the realization of a rare disaster. When
these rare disasters are conditioned out, there is zero predictability because
consumption follows a random walk (in simulated data, the coefficient values
are less than 0.001 and the R2 values are less than 0.0001). Thus, the model
accounts for both the predictability in long-horizon returns and the absence of
predictability in consumption growth.

Of possible concern is the dependence of these results on the assumed prob-
ability of default, equal to 0.4. Barro (2006) calculates this value based on the
number of times a disaster results in default, divided by the total number of
disasters. However, one might expect that the default is more likely to occur
during the worst disasters. The value 0.4 does not take this correlation into
account.22 To evaluate the sensitivity of the results to this assumption, I also
consider q = 0.6 (keeping all other parameters the same). This change has the
effect of raising the expected rate of return on government debt to 2.1% (con-
ditional on no disasters), as compared with a value of 1.3% when 0.4 is used.
The bond volatility falls from 2% to 1.4%. Because the government bill rate
is higher, the equity premium relative to the government bill is lower: 8.10%
rather than 8.85%. The Sharpe ratio is lower as well: 0.45 rather than 0.49. The
predictability of excess stock returns is slightly lower under this calibration:
R2 values range from 11% to 56%. Other results do not change. Thus, except
for the average government bill rate, this change improves the fit of the model
to the data. While the implied average government bill rate of 2% is slightly
higher than the sample average, it is not unreasonable given the difficulties
of measuring the mean for a highly persistent process (alternatively, one could
further lower this rate by lowering β; this has very little effect on the other
results).

Other models succeed in matching the mean and volatility of stock returns.
Two such models are those of Bansal and Yaron (2004) and Campbell and

22 One could extend the model to allow for such a correlation, without affecting tractability.
Consider the current specification of the price process for government liabilities, described in
detail in Appendix A.V:

dLt

Lt
= rL

t dt + (eZL,t − 1)dNt,

where

ZL,t =
{

Zt with probability q

0 otherwise.

Replace the latter equation by

ZL,t =
{

Zt if Zt < k
0 otherwise

for some threshold value k. In the absence of more complete data on defaults, and to maintain the
simplicity of the present model, I do not pursue this route here.
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Cochrane (1999). Despite the fact that all three models can capture these first
two unconditional moments of returns, they generate different implications
for other observable quantities. The principle mechanism in the Bansal–Yaron
model is a persistent, time-varying mean of consumption growth. Their model
therefore implies that consumption growth should be predictable at long hori-
zons. However, it is difficult to see evidence for this in the data (Table IV).
Because this model implies a smaller degree of predictability, and only then
in samples in which a disaster occurs, it is more in line with the data in this
respect. The Campbell–Cochrane model is driven by shocks to consumption
growth, and as such implies a perfect correlation between consumption and
stock returns. However, the correlation in the data is very low, and, while time-
aggregation in consumption over longer horizons mitigates this concern, it does
not eliminate it. The present model implies zero correlation in samples without
a disaster.

This model also imposes different, and arguably more reasonable, require-
ments on the utility function of the representative agent. In the main calibra-
tion, risk aversion is assumed to equal three. In contrast, in the model of Bansal
and Yaron (2004), it is assumed to equal 10, while the model of Campbell and
Cochrane (1999) assumes a time-varying risk aversion, which equals 35 when
the state variable is at its long-run mean. Bansal and Yaron also require a
higher EIS (1.5 rather than one); independent evidence discussed above sup-
ports the lower value. While a full comparison of these three models is outside
the scope of this study, it appears that the present model may offer advantages
relative to leading alternative explanations for the high equity premium and
the volatility puzzle.

C. Implied Disaster Probabilities

This section describes the disaster probabilities implied by the historical time
series of stock prices. Equation (22) shows that, in the model, the price–dividend
ratio is a strictly decreasing function of the disaster probability. In principle,
given observations on the price–dividend ratio, one could invert this function
to find the values of λt implicit in the historical data. I follow a slightly modified
approach: rather than using the price–dividend ratio itself, I use price divided
by smoothed earnings, as in Shiller (1989, Chap. 26). Dividend payouts appear
to have shifted downwards in the latter part of the sample (Fama and French
(2001)). Because the process assumed for dividends does not allow for this
shift, requiring the model to match the price–dividend ratio in the data could
yield misleading results.23 For this exercise it is particularly useful to have a
longer time series. I therefore use data on the S&P 500, which can be found on
Robert Shiller’s website (http://www.econ.yale.edu/∼shiller/data.htm). These
data begin in 1880 and are updated to the present. Because the levels of the

23 The predictability of returns and consumption is very similar regardless of which measure is
used. Thus, the choice of the price–dividend ratio versus the price–earnings ratio has little impact
on the results in Tables III and IV.
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Figure 8. Implied disaster probabilities. This figure shows the disaster probability λt implied
by historical values of the ratio of the price to the previous 10 years of earnings for the S&P 500
index. This ratio is de-meaned and set equal to the price–dividend ratio in the model (also de-
meaned). The disaster probability is found by inverting the equation for the price–dividend ratio;
when the resulting value of λt is negative, it is set to zero. The solid line depicts the average value
of the disaster probability.

price–earnings ratio and the price–dividend ratio are different, I adjust the
level of the series in the data so it is comparable to that in the model. That
is, I subtract the sample mean from the historical time series of the log price–
earnings ratio. I then add the population mean of the log price–dividend ratio
computed from the simulation of the model. I invert the resulting time series
to find the implied values of λt using (22). A few observations (namely, those
corresponding to the highest observed price–earnings ratios) imply negative
values of λt. In these instances, I set λt to zero.

Figure 8 shows the resulting time series for λt. The peak in the series occurs
in 1920, with a disaster probability of 14%. This year corresponds not only
to a recession, but also to an influenza epidemic. In fact, one of the two U.S.
disasters as defined by Barro and Ursua (2008) occurs at this time. A second
peak in the series occurs in 1932 during the Great Depression, which is the
second disaster in U.S. data. The disaster probability was relatively high in
the 1950s, declining in the 1960s, and rising again in the 1970s. The highest
postwar values of the probability occur in the 1980s, corresponding to a period
of heightened fears of a third World War. In contrast, the disaster probability
was very low in the 1990s and early part of this century (rising very slightly
with the bursting of the “tech bubble”). The financial crisis of late 2008 and
early 2009 coincides with a rapid increase in the probability of a disaster, from
zero to 5%. In 2010, the probability falls to less than 2%.
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Table V
Results from Alternative Calibrations

Panel A describes data simulated from the model when the distribution of disasters is calibrated to
those from OECD countries only. The average disaster probability λ̄ = 2.86% per annum; all other
parameters (including σλ) are unchanged. Panel B describes data simulated from the model when
the distribution of disasters is as in Panel A, except that realizations are cut in half. Risk aversion
γ is set equal to six, and λ̄ = 2.86%. All other parameter values are unchanged.

Model

Population Conditional U.S. Data

Panel A: Calibration With OECD Disasters

E[Rb] 1.56 1.86 1.34
σ (Rb) 3.38 1.75 2.66
E[Re − Rb] 6.82 7.83 7.06
σ (Re) 20.13 18.33 17.72
Sharpe Ratio 0.35 0.42 0.40
σ (%c) 5.86 1.99 1.34
σ (%d) 15.24 5.16 6.59

Panel B: Calibration with Disasters of Moderate Severity and γ = 6

E[Rb] 2.74 2.89 1.34
σ (Rb) 1.58 0.61 2.66
E[Re − Rb] 5.48 6.06 7.06
σ (Re) 16.44 15.69 17.72
Sharpe Ratio 0.34 0.38 0.40
σ (%c) 3.08 1.99 1.34
σ (%d) 8.02 5.16 6.59

D. Alternative Calibrations

Table V shows the results of two alternative calibrations of the model. Panel
A shows the results of calibrating the disaster distribution to disasters in OECD
countries only, as described in Section II.A. This calibration addresses the con-
cern that the disaster distribution is not applicable to the United States. Under
this calibration there are fewer disasters, implying a lower mean of λ̄, namely,
2.86%. I keep all other parameters the same.24 The equity premium conditional
on no disasters is 7.83% per annum, lower than in the base calibration, but still
higher than in the data. The average government bill rate is 1.86% per annum,
higher than before, but not far from the data mean of 1.34% per annum. The re-
sults for other quantities, such as return volatility, the Sharpe ratio, volatility
of consumption and dividends, and return and consumption predictability (not
shown) are quite similar. This change makes little difference because, while
disasters are less frequent under the OECD calibration, they are also more
severe (see Figure 7).

24 Rather than keeping σλ the same at 6.4%, it might seem natural to hold σλE[λ1/2] fixed, and
raise σλ accordingly. However, it is not possible to do this and keep the value function well defined.
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A second concern is that the results in this paper assume that the disasters
are permanent, rather than allowing for faster growth following a disaster (see
Gourio (2008a)). It would be of interest to consider a model allowing for time-
variation in the mean of consumption and dividends along with time-variation
in the probability of disaster. Such a change would significantly complicate the
model, so for the present paper I consider a simpler modification. I consider
the OECD above as a starting point, and reduce the percentage declines in
consumption by half. This is the fraction of the decline that is, on average,
permanent as estimated by Nakamura et al. (2011). That is, I assume that half
of the observed decline is noise, in the sense that it is immediately reversed.25

The results are given in Panel B. Under these more conservative assumptions,
the model can still capture most of the equity premium and volatility with
slightly higher risk aversion of six.

Finally, the results also assume disasters are instantaneous, rather than
occurring over multiple periods (see Constantinides (2008)). Nakamura et al.
(2011) estimate and numerically solve a model of multiperiod disasters with
recoveries. While they assume a constant disaster probability, their results pro-
vide insight into how multiperiod disasters would affect the calibration in the
current paper. Indeed, Nakamura et al. show that a model with multiperiod
disasters can match the equity premium with risk aversion that is moderately
higher than that required by a model with single-period disasters. The mech-
anism, which is also operative in the present model, is that the agent with
recursive utility considers future consumption growth to be a source of risk
along with current consumption growth.26

III. Conclusion

This paper shows that a continuous-time endowment model in which there is
time-varying risk of a rare disaster can explain many features of the aggregate
stock market. In addition to explaining the equity premium without assuming
a high value of risk aversion, it can also explain the high level of stock market
volatility. The volatility of the government bill rate remains low because of a
tradeoff between an increased desire to save due to an increase in the disaster
probability and a simultaneous increase in the risk of default. The model there-
fore offers a novel explanation of volatility in the aggregate stock market that
is consistent with other macroeconomic data. Moreover, the model accounts for
economically significant excess return predictability found in the data, as well
as the lack of long-run consumption growth predictability. Finally, the model
can be solved in closed form, allowing for straightforward computation and for

25 This is a conservative calibration because it assumes the reversal is instantaneous and certain.
Any variation in the amount of the decline that is reversed along with uncertainty about the average
reversal, would increase the risk of disasters to the agent.

26 Both multiperiod disasters and recoveries could in principle be introduced in the present
framework without affecting tractability. Allowing, for example, jumps in the drift rate of consump-
tion growth would imply disasters unfolding over multiple periods. A component of consumption
growth that would revert to a trend line would imply faster recoveries following disasters.
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potential extensions. While this paper focuses on the aggregate stock market,
the model could be extended to price additional asset classes, such as long-term
government bonds, options, and exchange rates.
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Appendix A: Solution to the Recursive Utility Model

A.I. Value Function

The value function J(W, λ) satisfies

sup
αt,Ct

{
JW (Wtαt

(
µ − rt + l−1)+ Wtrt − Ct) + Jλκ(λ̄ − λt) + 1

2
JWW W2

t α2
t σ 2

+ 1
2

Jλλσ
2
λ λt + λt Eν[J(Wt(1 + αt(eZt − 1)), λt) − J(Wt, λt)]

}

+ f (Ct, J) = 0. (A1)

In equilibrium, α = 1 and C = l−1W . Substituting these policy functions into
(A1) implies

JW Wtµ + Jλκ(λ̄ − λt) + 1
2

JWW W2
t σ 2 + 1

2
Jλλσ

2
λ λt

+ λt Eν

[
J
(
WteZt , λt

)
− J(Wt, λt)

]
+ f (Ct, J) = 0. (A2)

Conjecture that the solution to this equation takes the form

J(W, λ) = W1−γ

1 − γ
I(λ). (A3)

It is helpful to solve for the consumption-wealth ratio prior to solving for I(λ);
because EIS is equal to one, the expression for the consumption-wealth ratio is
very simple. By definition

f (C, V ) = β(1 − γ )V
(

log C − 1
1 − γ

log((1 − γ )V )
)

. (A4)

Note that

fC(C, V ) = β(1 − γ )
V
C

. (A5)

The envelope condition fC = JW , together with (A5) and the conjecture (A3),
implies

β(1 − γ )
W1−γ

1 − γ
I(λ)

1
l−1W

= W−γ I(λ).
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Solving for l yields l = β−1.
Given the consumption-wealth ratio, it follows that

f (C(W), J(W , λ)) = βW1−γ I(λ)
(

log(βW) − 1
1 − γ

log(W1−γ I(λ))
)

= βW1−γ I(λ)
(

log β − log I(λ)
1 − γ

)
. (A6)

Substituting (A3) and (A6) into (A2) implies

I(λt)µ + I′(λt)(1 − γ )−1κ(λ̄ − λt) − 1
2

γ I(λt)σ 2 + 1
2

(1 − γ )−1 I′′(λt)σ 2
λ λt

+ (1 − γ )−1 I(λt)λt Eν[e(1−γ )Z − 1] + β I(λt)
(

log β − log I(λt)
1 − γ

)
= 0. (A7)

Conjecture that a function of the form

I(λ) = ea+bλ (A8)

solves (A7). Substituting (A8) into (A7) implies

µ + b (1 − γ )−1κ(λ̄ − λt) − 1
2

γ σ 2 + 1
2

b2σ 2
λ λt(1 − γ )−1

+ (1 − γ )−1λt Eν[e(1−γ )Z − 1] + β(log β − (1 − γ )−1(a + bλt)) = 0.

Collecting terms in λt results in the following quadratic equation for b:

1
2

σ 2
λ b2 − (κ + β)b + Eν[e(1−γ )Z − 1] = 0,

implying

b = κ + β

σ 2
λ

±

√(
κ + β

σ 2
λ

)2

− 2
Eν[e(1−γ )Z − 1]

σ 2
λ

. (A9)

Collecting constant terms results in the following characterization of a in terms
of b:

a = 1 − γ

β

(
µ − 1

2
γ σ 2

)
+ (1 − γ ) log β + b

κλ̄

β
. (A10)

For the value function to exist, the term inside the square root in (A9) must
be nonnegative. This places a joint restriction on the severity of disasters,
the agent’s risk aversion and rate of time preference, and the volatility and
permanence of shocks to λt. Note also that κ > 0 and β > 0 are standing as-
sumptions that are required for the existence of λt and of the value function,
respectively.

While the presence of two roots in (A9) suggests multiple possible solutions,
a simple thought experiment reveals that only one of these roots displays
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reasonable economic properties. Consider the case of Z identically equal to
zero: the Poisson process Nt has positive realizations, but these have no eco-
nomic consequence. There are no disasters in this case and the value function
should reduce to its counterpart under the standard diffusion model. How-
ever, the choice of the positive root in (A9) implies that the representative
agent’s utility is reduced by an increased likelihood of these inconsequential
Poisson realizations. The choice of the negative root does not suffer from this
defect.27

Taking the derivative of (A1) with respect to portfolio choice α, evaluating at
α = 1, and setting to zero implies

µ − rt + l−1 = γ σ 2 − λt Eν[e−γ Z(eZ − 1)]. (A11)

Because l−1 = β, it follows that the equation for the risk-free rate is
given by

rt = β + µ − γ σ 2 + λt Eν[e−γ Z(eZ − 1)].

A.II. State-Price Density

Calculation of prices and rates of return in the economy is simplified consid-
erably by making use of the state-price density, which determines the equilib-
rium compensation investors require for bearing various risks in the economy.
As discussed in Section I.D, the state-price density is given by

πt = exp
{∫ t

0
fV (Cs, Vs) ds

}
fC(Ct, Vt). (A12)

Because the exponential term in (A12) is (locally) deterministic, covariances
of the state-price density with fundamentals, and thus risk premia, are de-
termined by the second term, fC(C, V ). In equilibrium, Vt = J(β−1Ct, λt).
Therefore,

fC(Ct, Vt) = β(1 − γ )
Vt

Ct
= βγ C−γ

t I(λt). (A13)

27 Two other considerations (perhaps not coincidentally) point toward choosing the negative root.
First, Tauchen (2005) suggests choosing the root such that the solution approaches a well-defined
limit as σλ approaches zero (this holds for the negative root but not the positive root). Second, for
the present calibration, the choice of the negative root is more conservative in that it implies a
smaller equity premium and lower equity volatility than the choice of a positive root.
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Ito’s Lemma and (A13) imply28

dπt

πt−
= µπ,t dt + σπ,t[dBt dBλ,t]' + (e−γ Zt − 1) dNt, (A14)

where

σπ,t =
[
− γ σ bσλ

√
λt
]
. (A15)

It follows from no-arbitrage that

µπ,t = −rt − λt Eν[e−γ Z − 1] (A16)

= −µ − β + γ σ 2 − λt(Eν[e−γ Z(eZ − 1)] + Eν[e−γ Z − 1]), (A17)

where (A17) follows from (12).
In the event of a disaster, marginal utility (as represented by the state-price

density) jumps upward, as can be seen by the term multiplying the Poisson pro-
cess in (A14). This upward jump represents the fact that investors require com-
pensation for bearing disaster risk. The first element of (A15) implies that the
standard diffusion risk in consumption is priced; more interestingly, changes
in λt are also priced as reflected by the second element of (A15).

A.III. Pricing Equity Claims

Let Ft = F(Dt, λt) denote the price of the claim to the aggregate dividend. It
follows from the absence of arbitrage that

F(Dt, λt) = Et

[∫ ∞

t

πs

πt
Ds ds

]
. (A18)

As discussed in Section II.D, F is an integral of expressions of the form Et[πs
πt

Ds].
It is convenient to calculate these expectations first, and then calculate F as
the integral of these expectations (since one-dimensional integrals are typically
very simple to compute numerically).

Let Ht = H(Dt, λt, s − t) denote the price of the asset that pays the aggregate
dividend at time T , that is,

H(Dt, λt, s − t) = Et

[
πs

πt
Ds

]
.

28 To compute the term in (24) multiplying the Poisson shock, note that

πt − πt−

πt−
= fC (Ct, Vt) − fC (Ct− , Vt− )

fC (Ct− , Vt− )
=

C−γ
t − C−γ

t−

C−γ

t−
,

where the second equality follows from (A13).
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No-arbitrage implies that H(Ds, λs, 0) = Ds and

πt H(Dt, λt, s − t) = Et
[
πs H(Ds, λs, 0)

]
.

That is, πt Ht follows a martingale. Conjecture that

H(Dt, λt, τ ) = Dt exp
{
aφ(τ ) + bφ(τ )λt

}
. (A19)

Ito’s Lemma then implies

dHt

Ht−
= µH,t dt + σH,t[dBt dBλ,t]' + (eφZt − 1) dNt, (A20)

for processes µH,t and σH,t defined below. Applying Ito’s Lemma to πt Ht implies
that the product can be written as

πt Ht = π0 H0 +
∫ t

0
πs Hs

(
µH,s + µπ,s + σπ,sσ

'
H,s
)

ds

+
∫ t

0
πs Hs

(
σH,s + σπ,s

)
[dBs dBλ,s]' +

∑

0<si≤t

(πsi Hsi − πs−
i

Hs−
i
), (A21)

where si = inf{s : Ns = i} (that is, the time at which the ith jump occurs).
I use (A21) to derive a differential equation for H. The first step is to compute

the expectation of the jump term
∑

0<si≤t(πsi Hsi − πs−
i

Hs−
i
). Note that πt is the

product of a pure diffusion process and C−γ
t , while Ht is the product of a pure

diffusion process and Dt = Cφ
t . The pure diffusion processes are not affected by

the jump. Therefore,

Eν

[
πt Ht − πt− H−

πt− Ht−

]
= 1

C−γ
t− Dt−

Eν

[
(Ct−eZt )−γ Dt−eφZt − C−γ

t− Dt−
]

= Eν[e(φ−γ )Z − 1].

Adding and subtracting the “jump compensation term” from (A21) yields:

πt Ht = π0 H0 +
∫ t

0
πs Hs

(
µH,s + µπ,s + σπ,sσ

'
H,s + λs Eν[e(φ−γ )Z − 1]

)
ds

+
∫ t

0
πs Fs(σH,s + σπ,s)[dBs dBλ,s]'

+




∑

0<si≤t

(πsi Hsi − πs−
i

Hs−
i
) −

∫ t

0
πs Hsλs Eν[e(φ−γ )Z − 1] ds



 . (A22)

Under mild regularity conditions analogous to those given in Duffie, Pan, and
Singleton (2000, Proposition 1), the second and third terms on the right-hand
side of (A22) are martingales. Therefore, the first term on the right-hand side
of (A22) must also be a martingale, and it follows that the integrand of this
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term must equal zero:

µH,t + µπ,t + σH,tσ
'
π,t + λt Eν[e(φ−γ )Z − 1] = 0. (A23)

Finally, it follows from Ito’s Lemma that µH and σH are given by

µH,t = 1
H

(
HDµD + Hλκ(λ̄ − λt) − ∂ H

∂τ
+ 1

2
Hλλσ

2
λ λt

)

= µD + bφ(τ )κ(λ̄ − λt) − (a′
φ(τ ) + b′

φ(τ )λt) + 1
2

bφ(τ )2σ 2
λ λt (A24)

and

σH,t = 1
H

(HDµD[σD 0] + Hλ[0 σλ

√
λt])

= [φσ bφ(τ )σλ

√
λt], (A25)

where HD and Hλ denote partial derivatives of H with respect to D and λ,
respectively, and where Hλλ denotes the second derivative with respect to λ.
Substituting these equations, along with (25) and (A17), into (A23) implies

µD + bφ(τ )κ(λ̄ − λt) − a′
φ(τ ) − b′

φ(τ )λt + 1
2 b2

φ(τ )σ 2
λ λt − µ − β + γ σ 2

− λt Eν[e−γ Z(eZ − 1)] − λt Eν[e−γ Z − 1] − γ σ 2φ + bφ(τ )bσ 2
λ λt

+ λt Eν[e(φ−γ )Z − 1] = 0.

Collecting constant terms results in the following ordinary differential equation
for aφ :

a′
φ(τ ) = µD − µ − β + γ σ 2 − γ σ 2φ + κλ̄bφ(τ ), (A26)

while collecting terms multiplying λ results in the following ordinary differen-
tial equation for bφ :

b′
φ(τ ) = 1

2
σ 2

λ bφ(τ )2 + (bσ 2
λ − κ)bφ(τ ) + Eν[e(φ−γ )Z − e(1−γ )Z]. (A27)

The boundary conditions are aφ(0) = bφ(0) = 0. The solutions are

aφ(τ ) =
(

µD − µ − β + γ σ 2(1 − φ) − κλ̄

σ 2
λ

(
ζφ + bσ 2

λ − κ
))

τ

− 2κλ̄

σ 2
λ

log

((
ζφ + bσ 2

λ − κ
)
(e−ζφτ − 1) + 2ζφ

2ζφ

)

(A28)

bφ(τ ) = 2Eν[e(1−γ )Z − e(φ−γ )Z](1 − e−ζφτ )(
ζφ + bσ 2

λ − κ
)
(1 − e−ζφτ ) − 2ζφ

, (A29)
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where

ζφ =
√(

bσ 2
λ − κ

)2 + 2Eν

[
e(1−γ )Z − e(φ−γ )Z

]
σ 2

λ . (A30)

The conditions Z < 0, σλ > 0 and φ > 1 are sufficient for the existence of aφ(τ )
and bφ(τ ) at all values of τ .29 First, because Z is negative, Eν[e(1−γ )Z − e(φ−γ )Z] >

0 and thus the term inside the square root of is guaranteed to be positive.
Moreover, ζφ > |bσ 2

λ − κ| ≥ bσ 2
λ − κ, implying that the denominator (ζφ + bσ 2

λ −
κ)(1 − e−ζφτ ) − 2ζφ is strictly negative for all τ . This argument also establishes
that bφ(τ ) < 0 for all τ .

The last discussion shows that bφ(τ ) exists and is negative for all τ . I now
show that bφ(τ ) converges as τ goes to infinity. It follows from (A29) that

lim
τ→∞

bφ(τ ) = 2Eν[e(φ−γ )Z − e(1−γ )Z]
ζφ + κ − bσ 2

λ

= − 1
σ 2

λ

(
ζφ − κ + bσ 2

λ

)
,

where the second line follows from the fact that ζ 2
φ − (κ − bσλ)2 = −2Eν[e(φ−γ )Z −

e(1−γ )Z]σ 2
λ . The constant term aφ(τ ) does not approach a finite limit itself, but

its asymptotic slope is given by

lim
τ→∞

aφ(τ )
τ

= µD − µ − β + γ σ 2(1 − φ) − κλ̄

σ 2
λ

(
ζφ + bσ 2

λ − κ
)
.

Finally, let re,(τ ) denote the instantaneous expected return on zero-coupon
equity with maturity τ . Because zero-coupon equity pays only a terminal divi-
dend at maturity, its instantaneous expected return is simply the drift plus the
expected percentage change in price in the event of a disaster:

re,(τ )
t ≡ µH,t + λt Eν[eφZ − 1].

Therefore, it follows from (A16) and (A23) that the risk premium is given by

re,(τ )
t − rt = −σπ,tσ

'
H,t − λt

(
Eν

[
e(φ−γ )Z − 1

]
− Eν[e−γ Z − 1] − Eν

[
eφZ − 1

])
.

It follows that

re,(τ )
t − rt = φγσ 2 − λtbφ(τ )bσ 2

λ + λt Eν[(e−γ Z − 1)(1 − eφZ)]. (A31)

A.IV. Equity Premium

To derive an expression for the premium on the aggregate market, I
first return to the expression for the price of the dividend claim given in

29 These functions also exist for the limiting cases of φ = 1, σλ = 0, and Z = 0. If φ = 1, G(λ)
equals the wealth-consumption ratio: bφ(τ ) = 0 and aφ(τ ) = −βτ . If σλ = 0, G(λ) can be shown to
converge to its analogue in a model with constant disaster risk. If Z = 0, the expressions converge
to the standard model with only normal shocks to consumption.
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Appendix A.III:

F(Dt, λt) = Et

[∫ ∞

t

πs

πt
Ds ds

]
. (A32)

I use this expression to derive a “local” no-arbitrage condition analogous to
(A23). Multiplying each side of (A32) by πt implies

πt Ft = Et

∫ ∞

t
πuDu du. (A33)

The same equation must hold at any time s > t:

πs Fs = Es

∫ ∞

s
πuDu du. (A34)

Combining (A33) and (A34) implies

πt Ft = Et

[
πs Fs +

∫ s

t
πuDu du

]
. (A35)

Adding
∫ t

0 πuDu du to both sides of (A35) implies

πt Ft +
∫ t

0
πuDu du = Et

[
πs Fs +

∫ s

0
πuDu du

]
. (A36)

Therefore πt Ft +
∫ t

0 πuDu du is a martingale. Further, as in Appendix A.III,

πt Ft +
∫ t

0
πs Ds ds =

∫ t

0
πs Fs

(
µF,s + µπ,s + Ds

Fs
+ σπ,sσ

'
F,s + λs Eν[e(φ−γ )Z − 1]

)
ds

+
∫ t

0
πs Fs(σF,s + σπ,s)[dBs dBλ,s]'

+




∑

0<si≤t

(πsi Fsi − πs−
i

Fs−
i
) −

∫ t

0
πs Fsλs Eν[e(φ−γ )Z − 1] ds



 , (A37)

where si = inf{s : Ns = i}. The second and the third terms on the right-hand
side of (A37) are martingales. Therefore, the first term in (A37) must also be a
martingale, and it follows that the integrand of this term must equal zero:

µF,t + µπ,t + Dt

Ft
+ σπ,tσ

'
F,t + λt Eν[e(φ−γ )Z − 1] = 0. (A38)

Substituting (A16) into (A38) and re-arranging implies

µF,t + Dt

Ft
− rt = −σπ,tσ

'
F,t − λt(Eν[e(φ−γ )Z − 1] − Eν[e−γ Z − 1]). (A39)

The left-hand side of (A39) is the instantaneous equity premium conditional
on no disasters occurring. The instantaneous equity premium in population is
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given by this quantity, plus the expected percentage change if a disaster occurs.
That is, if re

t is defined as

re
t ≡ µF,t + Dt

Ft
+ λt Eν[eφZ − 1],

then, from (A39), it follows that the equity premium in population equals

re
t − rt = −σπ,tσ

'
F,t − λt(Eν[e(φ−γ )Z − 1] − Eν[e−γ Z − 1] − Eν[eφZ − 1])

= −σπ,tσ
'
F,t + λt Eν[(e−γ Z − 1)(1 − eφZ)]. (A40)

A.V. Default

Consider government debt with an instantaneous maturity. Let Lt be the
price process resulting from rolling over instantaneous government debt. Then
Lt follows the process

dLt

Lt
= rL

t dt + (eZL,t − 1)dNt, (A41)

where rL
t is the “face value” of government debt (i.e., the amount investors

receive if there is no default), ZL,t is a random variable whose distribution
will be described shortly, and Nt is the same Poisson process that drives the
consumption process. Assume that, in the event of a disaster, there will be
a default on government liabilities with probability q. I follow Barro (2006)
and assume that in the event of default, the percentage loss is equal to the
percentage decline in consumption. Therefore,

ZL,t =
{

Zt with probability q

0 otherwise.
(A42)

By no-arbitrage, the process Lt must satisfy

rL
t + µπ.t + λt Eν[e−γ ZeZL − 1] = 0. (A43)

Equation (A43) is the analogue of the equity pricing equation (A38) (note that
the “dividend” on government liabilities is zero). It follows from the definition
of ZL that

Eν[e−γ ZeZL − 1] = qEν[e(1−γ )Z − 1] + (1 − q)Eν[e−γ Z − 1]. (A44)

The expression for µπ,t is given by (A17). Substituting into (A43) and solving
for rL

t yields

rL
t = rt + λt Eν[e−γ Zt − 1] − λt((1 − q)Eν[e−γ Zt − 1] + qEν[e(1−γ )Zt − 1]),

which reduces to (13), the expression in the text.
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Appendix B: Prices and Returns on Long-Term Bonds

The price at time t of a real, default-free zero-coupon bond maturing at time
s > t is given by Et[πs/πt]. The steps in Appendix A.III can be followed to
conclude that this price is given by

Et

[
πs

πt

]
= exp{a0(τ ) + b0(τ )λt},

where a0(τ ) and b0(τ ) satisfy the differential equations

a′
0(τ ) = −µ − β + γ σ 2 + κλ̄b0(τ ) (B1)

b′
0(τ ) = 1

2
σ 2

λ b0(τ )2 + (bσ 2
λ − κ)b0(τ ) + Eν[e(−γ )Z − e(1−γ )Z] (B2)

and boundary conditions a0(τ ) = b0(τ ) = 0. These correspond to the differential
equations in Appendix A.III, with φ = 0 and µD = 0.

The fact that long-term bond prices move with the disaster probability, com-
bined with the fact that changes in the disaster probability are priced in the
model, implies that expected returns on long-term bonds differ from the risk-
free rate. Specifically, let r(τ )

t denote the instantaneous expected return on a
default-free zero-coupon bond with maturity τ . The same reasoning used to
derive (A31) shows

r(τ )
t − rt = −λtb0(τ )bσ 2

λ . (B3)

Risk premia on default-free bonds arise only from the correlation with the
time-varying probability of a disaster (there is no covariance with shocks to
consumption, during a disaster or otherwise). Intuitively, this risk premium
should be negative, because bond prices rise when interest rates fall, which
occurs when disaster risk is high (keeping in mind that the investor requires
a premium to hold assets with prices positively correlated with disaster risk).
Indeed, as I show below, b0(τ ) is positive for relevant parameter values. Because
b is positive (as shown in Section I.B) risk premia on bonds are negative and
the real default-free term structure will be downward sloping.

I now give the solutions to (B1) and (B2). Unlike for equities, there are two
cases.30

Case 1: (bσ 2
λ − κ)2 − 2Eν[e−γ Z − e(1−γ )Z]σ 2

λ > 0. In this case, the solution resem-
bles that of equities. Thus, the solution is given by (18) to (20), with µD = φ = 0:

b0(τ ) = 2Eν[e−γ Z − e(1−γ )Z](e−ζ0τ − 1)(
ζ0 + bσ 2

λ − κ
)
(1 − e−ζ0τ ) − 2ζ0

(B4)

30 The difference arises from the fact that the analogue to Eν [e−γ Z − e(1−γ )Z] in the case of
equities is Eν [e(φ−γ )Z − e(1−γ )Z], which is negative rather than positive.
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ζ0 =
√(

bσ 2
λ − κ

)2 − 2Eν

[
e−γ Z − e(1−γ )Z

]
σ 2

λ , (B5)

and

a0(τ ) =
(

−µ − β + γ σ 2 − κλ̄

σ 2
λ

(ζ0 + bσ 2
λ − κ)

)
τ

−2κλ̄

σ 2
λ

log

((
ζ0 + bσ 2

λ − κ
) (

e−ζ0τ − 1
)
+ 2ζ0

2ζ0

)

. (B6)

These functions exist for all τ provided that bσ 2
λ < κ. If, however, bσ 2

λ > κ, then
there is some finite τ at which bond prices go to infinity.31

If bσ 2
λ > κ, then b0(τ ) is positive for all τ . This follows from the fact that the nu-

merator is negative because Eν[e−γ Z − e(1−γ )Z] > 0. Moreover, ζ0 < |bσ 2
λ − κ| =

κ − bσ 2
λ , so ζ0 + bσ 2

λ − κ < 0, implying that the denominator is also negative.
If bσ 2

λ < κ, then similar reasoning implies that b0(τ ) is positive for τ less than
the maturity at which bond prices become infinite. Therefore, an increase in
the risk of a disaster raises prices of long-term default-free bonds. This is not
surprising since an increase in the risk of a disaster decreases the risk-free
rate.

Case 2: (bσ 2
λ − κ)2 − 2Eν[e−γ Z − e(1−γ )Z]σ 2

λ < 0. This case applies for the cali-
brations given in this paper. Here, the solution takes the form

b0(τ ) = 1
σ 2

λ

η tan
(

1
2

ητ + arctan
(

bσ 2
λ − κ

η

))
−
(

bσ 2
λ − κ

σ 2
λ

)
, (B7)

where

η =
√

2Eν[e−γ Z − e(1−γ )Z]σ 2
λ −

(
bσ 2

λ − κ
)2

and where arctan(·) denotes the inverse tangent function.32 It follows that

a0(τ ) =
(

−µ − β + γ σ 2 − κλ̄

σ 2
λ

(
bσ 2

λ − κ
))

τ

− 2κλ̄

σ 2
λ

log




cos

(
1
2ητ + arctan

(
bσ 2

λ −κ

η

))

cos
(
arctan

(
bσ 2

λ −κ

η

))



 . (B8)

31 Consider the case of bσ 2
λ − κ < 0. Then ζ0 < κ − bσ 2

λ . It follows that the denominator in (B4)
is negative for all τ , and that b0(τ ) exists for all τ > 0. Now consider bσ 2

λ − κ > 0. Then ζ0 <

bσ 2
λ − κ. For τ sufficiently small, the second term in the denominator 2ζ0 exceeds the first term

(ζ0 + bσ 2
λ − κ)(1 − e−ζ0τ ), and so the denominator is negative. As τ approaches infinity, however,

the denominator approaches bσ 2
λ − κ − ζ0 > 0. Because the denominator is a continuous function,

there must exist a τ for which it equals zero.
32 While this solution appears very different from that in (A29), they can both be expressed in

terms of the hyperbolic tangent.
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Figure B1. Yields on zero-coupon bonds. This figure shows continuously compounded yields
to maturity on default-free zero-coupon bonds as a function of maturity. Yields are shown for three
values of the disaster probability: zero, average, and the 90th percentile critical value. Yields are
in annual terms.

The functions a0(τ ) and b0(τ ) approach infinity as 1
2ητ + arctan( bσ 2

λ −κ

η
) ap-

proaches π/2 (where π denotes the geometric constant). Real bond prices there-
fore become unbounded at a finite maturity. For the baseline calibration, this
occurs at a maturity of 33 years. While this conclusion may seem extreme, it is
useful to remember that even a very small probability of default would change
this result.

Figure B1 shows zero-coupon bond yields for λ at zero, at its mean, and at the
90th percentile for parameter values given in Table I. The figure shows that
the yield curve shifts down as the disaster probability shifts up. As mentioned
above, the yield curves are downward sloping because of the negative risk
premia on bonds. The slope increases in magnitude with an increase in the
disaster probability. Treasury yield curves are upward sloping on average in
the data. It is important to keep in mind that there are several differences
between the data and the model. First, Treasury bonds in the data are subject
to inflation risk. Because inflation might be expected to rise in the event of a
disaster, or perhaps with even an increased probability of disaster, introducing
inflation could very well lead to positive risk premia on nominal bonds. Because
inflation is a persistent process, long-term bonds carry greater exposure to this
risk than short-term bonds. This could lead to an upward slope of the term
structure. Second, all government bonds are subject to some risk of default,
either through inflation or outright. Because default could be expected to effect
all debt outstanding when it occurs, long-term bonds would again be exposed
to more risk. To summarize, because the main economic force causing very low
yields is the protection that bonds offer in very bad states (when short-term
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interest rates are low), introducing inflation or default in these states would
significantly change these results.

Appendix C: Solution to the Power Utility Model

Consider time-separable utility with

Vt = Et

∫ ∞

t
e−βs C1−γ

s

1 − γ
ds.

The state-price density for this model takes the familiar form

πt = e−βtC−γ
t . (C1)

Ito’s Lemma implies that the state-price density follows the process

dπt

πt−
= µπ,t dt + σπ,t[dBt dBλ,t]' + (e−γ Z − 1) dNt,

where

µπ,t = −β − γµ + 1
2

γ (γ + 1)σ 2, (C2)

and

σπ,t = [−γ σ 0]. (C3)

Risk of changes in the disaster probability are not priced in the power utility
model.

The absence of arbitrage implies

µπ,t = −rt − λt Eν[e−γ Z − 1]. (C4)

It follows from (C2) that the risk-free rate under power utility is given by

rt = β + γµ − 1
2

γ (γ + 1)σ 2 − λt Eν[e−γ Z − 1].

As in the recursive utility model, let F(Dt, λt) denote the price of the dividend
claim and H(Dt, λt, τ ) the price of zero-coupon equity with maturity τ . Equa-
tions (A18) and (A23) are still satisfied, except of course the process for πt is
different. The solution takes the form

H(Dt, λt, τ ) = Dt exp{ap,φ(τ ) + bp,φ(τ )λ},

where ap,φ(τ ) and bp,φ(τ ) satisfy ordinary differential equations

a′
p,φ(τ ) = µD − γµ − β + 1

2
γ (γ + 1)σ 2 − γ σ 2φ + κλ̄bp,φ(τ )
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and

b′
p,φ(τ ) = 1

2
σ 2

λ bp,φ(τ )2 − κbp,φ(τ ) + Eν[e(φ−γ )Z − 1]

with boundary conditions ap,φ(0) = bp,φ(0) = 0. These ordinary differential
equations take the same form as those in the recursive utility case and therefore
have solutions analogous to those given in the main text.

The equity premium for power utility can be computed in the same way as
for recursive utility (see Appendix A.IV). The equity premium is given by

re
t − rt = −σπ,tσ

'
F,t + λt Eν[(e−γ Z − 1)(1 − eφZ)].

Thus the equity premium takes the same general form as under recursive
utility. However, σπ,t is different. Ito’s Lemma implies

σF,t = [ φσ (G′(λt)/G(λt))σλ

√
λt ].

Therefore, from (C3), it follows that

re
t − rt = φγσ 2 + λt Eν[(e−γ Z − 1)(1 − eφZ)].
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