
76 COMMUNICATIONS OF THE ACM | MAY 2015 | VOL. 58 | NO. 5

and must disallow optimizations that
might adversely affect a program’s result.

This paper argues the restructur-
ings and annotations, when per-
formed by developers, are not dif-
ficult and should be part of every
programmer’s repertoire for modern
computers. These changes include
transforming an array of structures
into a structure of arrays, blocking
loops to increase data reuse, anno-
tating parallel loops, and adopting
more parallel algorithms. Conceptu-
ally, none of these changes is difficult
to understand—although finding a
new algorithm may be challenging.
However, these modifications can
introduce errors into a program and
can be complex to apply to a large ap-
plication, where a data structure may
be shared by many routines.

Of course, program optimization
in general can have similarly perni-
cious effects on program structure
and readability, so these concerns
are not limited to parallel programs.
Balanced against the challenge of
directly writing a correct, high-per-
forming parallel program, restruc-
turing and annotation appear to be
a reasonable methodology that pro-
duces maintainable programs. How-
ever, this approach would have little
value if the resulting programs do not
run significantly faster.

The paper’s principal contribu-
tion is to demonstrate this division of
labor between human and compiler
achieves its goal of effectively using
hardware parallelism to improve
performance. Mature, modern com-
pilers—aided by restructuring and
annotation—can produce extremely
efficient parallel code. Neither com-
pilers nor people are very good at
achieving this goal on their own.	

James Larus is a professor and dean of computer and
communications sciences at EPFL, Lausanne, Switzerland.

Copyright held by author.

WHAT IS THE best way to program a par-
allel computer? Common answers are
to have a compiler transform a sequen-
tial program into a parallel one or to
write a parallel program using a paral-
lel language or library.

In the early days of parallel comput-
ers, parallelizing compilers offered
the tantalizing promise of running
unmodified “dusty deck” sequential
FORTRAN programs on the emerging
parallel computers. Although research
on these compilers led to many pro-
gram analysis and representation in-
novations used in modern compilers,
the resulting tools were not successful
at parallelizing most applications, and
developers turned instead to libraries
such as pthreads and MPI.

In this approach, programs use
parallel constructs; either explicitly
parallel operations such as fork-join
or implicitly parallel operations such
as map and reduce. These abstrac-
tions in theory should encourage de-
velopers to think “parallel” and write
parallel programs, but in practice,
even with them, parallel program-
ming is challenging because of new
types of errors such as data races and
the diversity of parallel machines (for
example, message passing, shared
memory, and SIMD).

So, what can a developer do to im-
prove the performance of his or her
code on a modern, parallel micropro-
cessor with multiple cores and vector
processing units? The following paper
advocates an appealing division of la-
bor between a developer and a compil-
er, with the human restructuring code
and data structures and forcing paral-
lel execution of some loops, thereby
increasing the opportunities for the
compiler to generate and optimize
parallel machine code.

The results in this paper are quite
striking. For 11 computationally in-
tensive kernels, code developed in this
manner performed within an average
of 30% of the best hand-optimized code

and did not require the developer to
use low-level programming constructs
or to understand a machine’s architec-
ture and instruction set.

But why is this division of labor
necessary? Why are compilers un-
able to parallelize and vectorize these
(relatively simple) programs? The au-
thors allude to “difficult issues such
as dependency analysis, memory alias
analysis, and control-flow analysis.”
In practice, compilers employ a large
repertoire of local optimizations,
each of which incrementally im-
proves a small region of code. Large,
pervasive restructurings that change
how a program computes its result
are outside of the purview of a tradi-
tional compiler. Until recent work on
program synthesis, there has been
little research on efficient techniques
for exploring large spaces of possible
transformations. Moreover, even for
local optimizations, compilers are
hamstrung by conservative program
analysis, which at best only approxi-
mates a program’s potential behaviora

a	 Many program analyses, if fully precise, would
allow solution of the Turing halting problem.

Technical Perspective
Programming
Multicore Computers
By James Larus

To view the accompanying paper,
visit doi.acm.org/10.1145/2742910 rh

research highlights

DOI:10.1145/2742908

The following
paper argues
the restructurings
and annotations,
when performed
by developers,
should be part of
every programmer’s
repertoire for
modern computers.

http://doi.acm.org/10.1145/2742910
http://dx.doi.org/10.1145/2742910

