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ABSTRACT

Lattari, E, Andrade, ML, Filho, AS, Moura, AM, Neto, GM, Silva,

JG, Rocha, NB, Yuan, T-F, Arias-Carrión, O, and Machado, S.

Can transcranial direct current stimulation improve the resis-

tance strength and decrease the rating perceived scale in rec-

reational weight-training experience? J Strength Cond Res 30

(12): 3381–3387, 2016—The goal of this study was to evalu-

ate the acute efficacy of anodic transcranial direct current stim-

ulation on the total volume of repetitions and perceived exertion

in recreationally trained individuals in strength. The sample

consisted of 10 participants trained in exercise against resis-

tance for at least 3 months. Participants underwent elbow flex-

ion exercise at barbell with a specific load of 10 repetition

maximum (10RM), responded immediately after the OMNI-

RES scale, and were stimulated for 20 minutes with a tDSC

protocol (2 mA), depending on randomization. After applying

the tDSC, subjects were again subjected to perform elbow

flexion with 10RM load and, soon after, again responded to

OMNI-RES scale. All subjects underwent the 3 experimental

conditions of the study, c-tDSC, a-tDSC, and sham-tDSC,

which were randomized. A range of 48–72 hours was allowed

between each assessment visit. An interaction to condition and

time (F = 52.395; p # 0.001) has shown that repetitions com-

pleted after anodic condition were higher compared with the

other conditions in the postsession. In relation to perceived

exertion, verified by OMNI-RES scale, 2-way analysis of vari-

ance for repeated measures showed an interaction between

condition and time (F = 28.445; p # 0.001), where the per-

ceived exertion was decreased after the a-tDSC condition and

increased after the c-tDSC condition. In strict terms of perfor-

mance, it seems to be beneficial to attend a session of 20 mi-

nutes a-tDSC, when strength training practitioners can no

longer support high-volume training and have increased re-

sponses in the perceived exertion.

KEY WORD total repetition, tDCS, strength, prefrontal

dorsolateral cortex

INTRODUCTION

T
ranscranial direct current stimulation (tDCS) is
a noninvasive neuromodulatory brain stimulation
technique that emits a low electric current directly
and continuously over the target brain area through

electrodes positioned at predetermined locations of the scalp
(26). Transcranial direct current stimulation is able to suffi-
ciently modify the neuronal transmembrane potential influ-
encing the excitatory levels and modulating the firing rate
of isolated neuronal cells (2,20,21). A continuous electrical
current ranging from 0.4 to 2 mA is imposed on the cortical
region for a period of 3–20 minutes, where by means of this
procedure, changes in cortical excitability have been achieved
(25). Depending on the polarity of selected electrical current,
different effects are triggered, the anode (a-tDCS) (i.e.,
increased cortical excitability of the target regions) and
the cathode (c-tDCS) (decreases cortical excitability target
regions) (25).

This stimulation technique has been placed into the
context of exercise, which results showed that a-tDCS
applied to the motor cortex (MC) promoted acute (13)
and chronic (14) increases in muscle strength of the contra-
lateral limb. One benefit found using a-tDSC applied to the
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MC was the ability to sustain a submaximal voluntary con-
traction (20% of maximum voluntary contraction—MVC—
elbow flexors) for longer periods of time (31%), allowing
a greater volume muscle contractions (31). Another impor-
tant aspect of this type of noninvasive brain stimulation is
that it can help on the decrease of perceived exertion at
submaximal exercise, and may be capable of modulating
the sensory perception of effort (27). Physical fatigue is
a complex phenomenon and factors such as perception of
effort and central inhibition may be involved (8). When the
brain is faced with fatigue situations, there is an increase in
beta power (i.e., increased frequency band) and greater
coherence between the electrodes of the dorsolateral pre-
frontal cortex (DLPFC) (F3-F4). These findings suggest
the existence of a compensatory mechanism underlying
physical performance, managed by the DLPFC, when there
is reduced MC activation by the presence of central fatigue
induced by effort (24). Among the mechanisms suggested to
date, the a-tDSC can seem to show improvements in the
relationship between the electric discharge rate of cortical
neurons and the strength production (30), reduction of per-
ceived exertion a same submaximal load of work (27), rela-
tive inhibition of the alpha motor neurons and modulating
central fatigue or muscle pain during exertion (6), and
increased cortical excitability induced by a-tDCS (31).

Despite the supposed benefit of a-tDSC on different
manifestations of muscle strength and perceived exertion,
a study conducted by Kan et al. (16) demonstrated that with
this noninvasive stimulation technique, there were no in-
creases in MVC and the ability to sustain longer submaximal
voluntary contraction (30% of MVC) by the elbow flexors. In
another study, a sustained task of elbow flexion with 20% of
MVC, the a-tDSC generated greater fatigue and increased
perception of effort compared with a placebo condition
(sham-tDSC) (31). Because the effects of tDCS on the resis-
tance strength and perception of effort seem to be dependent
on the site of electrode placement, MC and Prefrontal cortex
(PFC), further studies are needed for further clarification on
the matter. Furthermore, it should be noted that most of the
effects of tDSC studies reporting on the performance of
strength, used isometric submaximal exercise tests
(6,16,19). It was possible to locate only 1 study on the effects
of tDCS on the maximum strength performance in dynamic
exercise (12), however, for their study, they have used a small
muscle group (wrist extensors), which is not very commonly
used in strength training. However, comparisons between
the effects of neuromodulation in the MC by anode, cath-
ode, and sham-tDSC on the submaximal strength perfor-
mance during dynamic submaximal exercise remain scarce.
There are, therefore, important knowledge gaps to be filled,
especially with regard to the elucidation of the real effects of
induction possibilities facilitatory by tDCS technique on the
ability to sustain submaximal dynamic muscle contractions
and lower perceived exertion. In this context, it is under-
stood that the a-tDSC can be an effective and new tool to

allow a greater volume of submaximal muscle contractions
and reduction of perceived exertion in recreational practi-
tioners of strength training.

The goal of this study was to evaluate the acute efficacy of
a-tDCS on the total volume of repetitions and perceived
exertion in intermediate training experience lifters in
strength. Because of the t-DSC anode induces increased
cortical excitability and reduction of perceived exertion
a same submaximal load of work, our hypothesis is that
the a-tDCS will cause greater total volume of repetitions and
decreases the perceived exertion when comparing with the
conditions c-tDCS and sham-tDSC.

METHODS

Experimental Approach to the Problem

The participants were all university students who volunteered
to the study. Each participant visited the laboratory 6 times.
On the first visit, a medical history, a questionnaire to verify
the physical activity level of each subject, and a familiarization
to test 10 repetition maximum (10RM), and the scale of
perceived exertion were conducted. A week after the
familiarization process, the subjects performed a 10RM test
and 48 hours after this, a retest 10RM. In the 3 subsequent
visits, participants were initially placed in a quiet room for
10 minutes and then the 10RM test was applied, followed
immediately by the application of tDCS anode, cathode, or
sham (2 mA for 20 minutes). Immediately after applying the
tDCS, the subjects performed a total volume of repetitions
with the load used in the 10RM test. The same procedures
were performed in 3 visits and were separated by 48–72 hours
in a randomized design. The total volume of repetitions and
rating perceived exertion (OMNI-RES) were examined before
and after each experimental condition: anodal-tDCS (a-tDCS),
cathodal-tDCS (c-tDCS), and sham-tDCS (sham-tDSC). The
evaluators did not know whether the data corresponded to the
a-tDCS anode, c-tDSC, or sham-tDSC. All measures in each
visit were performed in the morning (i.e., 8:00–10:00 hour AM)
to avoid circadian effects on strength. The ambient
temperature ranged from 218 C to 238 C and relative humidity
ranged from 55 to 70%. The subjects received the information
to keep their food diet routine normally before performing the
visits but were discouraged to consume ergogenic beverages
like coffee.

Subjects

The sample consisted of 10 undergraduate students from the
Salgado de Oliveira University, male, aged 26.5 6 5 years,
height of 181.2 6 2 cm, and 88.2 6 4 kg body weight.

All were right-handed, physically active according to
the classification by the International Physical Activity
Questionnaire (IPAQ) (22), and trained in exercise against
resistance. Only participants classified as intermediate (indi-
viduals with approximately 6 months of consistent resistance
training experience) to advanced (individuals with years of
resistance training experience) were recruited (1).
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Participants were excluded if they had any neuropsychi-
atric, cardiovascular, or osteoarticular disorders, neuropsy-
chiatric use of drugs such as citalopram, amphetamine,
L-Dopa, sulpiride and pergolide, lorazepam, rivastigmine,
and D-dextromerthorpan cucloserine, carbamazepine and
flunarizine and, if they drank any alcohol the day before or
any beverage that contains caffeine on the day of the
experiment.

All participants were initially informed about the
procedures and signed an informed consent according
to the Norms for Research with Human Beings (Resolu-
tion No. 466/2012 CNS) was given. This project was
approved by the Ethics Committee of the Salgado de
Oliveira University under the 730.098/2014 protocol
number.

Determination of 10 Maximum Repetition Loads

All subjects were familiarized with the 10RM test at least
a week before testing. Before the determination of the 10
RM load, a warm-up was performed using 50% of the
expected load. To determine the load on the 10RM test, we
used the elbow flexion exercise in the free barbell with
maximum load, which considering the trial and error system,
it offers greater accuracy and precision as the test. There
were no more than 3 attempts, with a 5-minute break
between them, given that the results could be adversely
affected because of the excessive fatigue induced by the high
number of repetitions per muscle group (7).

Verbal encouragement was made during strength testing,
to improve performance (23). The execution of the move-
ment was cadenced by a metronome (Seiko/DM-50) con-
sisting of the period of 2 seconds per phase of the movement
(concentric/eccentric). Finally, subjects were instructed to
expire in the concentric phase and to inspire in the eccentric
phase. The following strategies have been adopted during
the test 10RM, to reduce errors of execution:

(1) All participants were properly instructed about the test
procedures and performance technique in elbow flex-
ion exercise with free weight;

(2) In the case of execution error, repetition was not valid;
(3) All tests were performed at the same time for the same

individual;
(4) The equipment used for testing and training was prop-

erly checked.
The reproducibility of the 10RM test was performed 48

hours after the first test and was analyzed by intraclass
correlation coefficient (ICC = 0.97) and typical error of mea-
surement (TEM = 2.37 kg; 13%). The load obtained in
elbow flexion exercise was 17.5 6 3.4 kg. The load 10RM
test was used in all conditions, enabling to check the total
amount of repetitions that the subjects performed after

experimental conditions.

OMNI Perceived Exertion

Scale for Resistance Exercise

The OMNI-RES was used to
assess the rating of perceived
exertion on the elbow flexor
exercise (28). The scale has
both verbal and mode-specific
pictorial descriptors across
a numerical response and nar-
row range from 0 to 10. All
subjects were made familiar
with the scale 1 week before
the experimental conditions.

Application of Transcranial

Direct Current Stimulation

The subjects remained seated
comfortably in a chair located
within the laboratory. The

Figure 1. Positioning of the electrodes and assembly of transcranial

direct current stimulation.

Figure 2. *Significant interactions between condition and moment. tDCS = transcranial direct current stimulation;

a-tDCS = anode-tDCS; c-tDCS = cathode-tDCS.
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electric current of 2 mA was applied using a pair of pads
soaked in saline (NaCl 140 mmol dissolved in Milli-Q water)
comprising the 2 electrodes (35 cm2) (26). The electrodes
(anode and cathode) were connected to a continuous cur-
rent stimulation device with 3 batteries (9 V) with a maxi-
mum output of 10 mA. The batteries were regulated by
a digital multimeter (EZA EZ 984, Hong Kong, China) with
a standard error 61.5. For anodal stimulation (a-tDSC), the
anodic electrode was placed in the left DLPFC located in the
electrode area F3 in accordance with the international 10–20
system electroencephalogram (EEG) (15). The cathode
electrode was placed on the right orbitofrontal cortex,
located on the area of the electrode Fp2, both fixed by elastic
bands. For cathodal stimulation (c-tDSC), the cathode elec-
trode is placed on the left DLPFC located on electrode area
F3 in accordance with the international 10–20 system EEG

(15), whereas the anodic elec-
trode will be placed on the
right Orbitofrontal cortex
(OBF) (Figure 1).

For placebo condition
(sham-tDSC), the electrodes
were placed in the same posi-
tion of the anode stimulation.
However, the stimulator was
turned off after 30 seconds,
which has been reported as
ineffective stimulation (11). Ac-
cording to previous studies,
with this form of stimulation
placebo, patients usually report
tingling sensations or itching
from the initial electrical stim-
ulation, but do not receive any

other chain. This procedure allows the subjects to become
blinded to the type of stimulus that will receive during test-
ing and ensure a control effect (3).

Experimental Procedures

Data were collected in 6 visits. On the first visit, the
participants responded to an interview and to the IPAQ to
verify the physical activity level of each participant. After the
selection of participants, the consent form was signed by
each participant and, soon after, the subjects went through
a familiarization to 10RM test and the scale of perceived
exertion (OMNI-RES). On the second visit, a week after the
process of familiarization, subjects performed a 10RM test to
determine the workload. On the third visit, 48–72 hours after
the second one, a new test of 10RM was performed to verify
the reproducibility of the 10RM load. The fourth to sixth
visits, participants underwent elbow flexion exercise at the
barbell with a specific load of 10RM, immediately after they
answered the OMNI-RES scale and were stimulated for
20 minutes with a tDSC protocols, depending on randomi-
zation. After applying the tDSC, subjects were again sub-
jected to perform elbow flexion with 10RM load and, soon
after, again replied to the OMNI-RES scale. All subjects
underwent the 3 experimental conditions of the study, and
c-tDSC-tDSC 2 mA and sham, which were randomized.

Statistical Analyses

The normality of the data was performed using the Shapiro-
Wilk test. A 2-way analysis of variance (ANOVA) with
repeated measures with 2 entrances, condition (2 mA anode
vs. 2 mA cathodic vs. sham) and moment (presession 3

postsession) were performed for the total number of repeti-
tions and perceived exertion. When obtaining no effect or
interaction, a test post hoc Bonferroni test was used to deter-
mine specific differences.

Responders vs. Nonresponders. For interindividual variability,
a descriptive analysis was performed using percentage values

Figure 3. Interindividual variability of responders vs. nonresponders for total repetitions. tDCS = transcranial

direct current stimulation; a-tDCS = anode-tDCS; c-tDCS = cathode-tDCS.

Figure 4. *Significant interactions between condition and moment

(p , 0.001), OMNI-RES Post , OMNI-RES (a-tDSC) and OMNI-RES

Pos . OMNI-RES (c-tDSC); #main effect for condition, a-tDCS ,

c-tDCS (p = 0.01) and sham-tDCS (p = 0.001). tDCS = transcranial direct

current stimulation; a-tDCS = anode-tDCS; c-tDCS = cathode-tDCS.
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for changes in total repetitions and perceived of exertion
from precondition to postcondition.

The magnitude of differences to each condition for total
number of repetitions and perceived exertion was estab-
lished by effect size (ES) analyzes (“d” index), and it calcu-
lated by mean differences of moments (pre—post) divided by
root square of the sum of standards deviation, and inter-
preted as suggested by Cohen.

The level of significance was set at p # 0.05. Data were
analyzed using the SPSS software (20.0).

RESULTS

The 2-way ANOVA for repeated measures showed an interac-
tion between condition and moment (F = 52.395; p # 0.001),
the main effect of condition (F = 52.395; p # 0.001), and
moment (F = 18.447, p = 0.002) in the total volume of repeti-
tions completed. An interaction to condition and moment has
shown that repetitions completed after anodic condition were
higher compared with the other conditions in the postsession
(Figure 2). Bonferroni post hoc test showed that the a-tDSC
condition (mean = 11.1, minimum = 10.8, and maximum =
11.4) was higher than the other 2 conditions in relation to the

total volume of repetitions, the c-
tDSC condition (mean = 9.6,
minimum = 9.3, and maximum
= 9.8; p # 0.001) and the
sham-tDSC condition (mean =
10.1, minimum = 9.9, and
maximum = 10, 2; p # 0.001).
The main effect of moment
showed that the total volume of
repetitions performed after the
conditions were higher com-
pared with precondition (p =
0.002).

The interindividual variabil-
ity of responders vs. nonres-
ponders is shown in Figure 3,
where a descriptive analysis
was performed using the per-
centage values for individuals

who have increased, decreased, and unaltered the total vol-
ume of repetitions.

In relation to perceived exertion, verified by OMNI-RES
scale, 2-way ANOVA for repeated measures showed an
interaction between condition and moment (F = 28.445; p #
0.001) and main effect of condition (F = 18.736; p # 0.001).
The post hoc Bonferroni demonstrated an interaction to con-
dition and moment, where the perceived exertion was
decreased after the a-tDSC condition and increased after the
c-tDSC condition. There was a main effect for condition, where
the a-tDSC condition had lower perceived exertion values
(Mean = 8.7, Minimum = 8.3 and Maximum = 9.1) than the
sham-tDSC (Mean = 9.8 Minimum = 9.5 and Maximum = 10;
p = 0.001) and c-tDSC conditions (Mean = 9.2, Minimum = 8.8
and Maximum = 9.6; p = 0.01), respectively (Figure 4).

The inter-individual variability of responders vs. non-
responders is shown in Figure 5, where a descriptive analysis
was performed using the percentage values for individuals
who have increased, decreased, and unaltered to the ratings
perceived exertion.

The magnitude of differences represented by ES from
preintervention condition was presented in Table 1.

DISCUSSION

The goal of this study was to
evaluate the total volume of
repetitions and perceived exer-
tion after acute exposure of
a-tDCS. It was shown that the
a-tDSC condition subjects had
a higher volume of elbow flexion
contractions when compared
with other conditions, c-tDSC
and sham-tDSC. Moreover,
even with a larger volume of
training for the same absolute

Figure 5. Interindividual variability of responders vs. nonresponders for OMNI-RES. tDCS = transcranial direct

current stimulation; a-tDCS = anode-tDCS; c-tDCS = cathode-tDCS.

TABLE 1. Magnitude of differences to each condition for total number of
repetitions and perceived exertion.

Condition

Effect size (d) Classification

Total repetitions OMNI-RES Total repetitions OMNI-RES

a-tDSC 2.56 1.49 Very large Large
c-tDSC 1.26 1.23 Large Large
Sham-tDSC 0.47 0.47 Small Small

Journal of Strength and Conditioning Research
the TM

| www.nsca.com

VOLUME 30 | NUMBER 12 | DECEMBER 2016 | 3385

Copyright © National Strength and Conditioning Association Unauthorized reproduction of this article is prohibited.

A
U
T
H
O

R
 C

O
P
Y



load, the a-tDSC condition, subjects had a lower perception of
effort. In c-tDSC condition, there was an increase in the OMNI-
RES and decrease in the volume of repetitions completed,
indicating a reduced resistance strength and increased perceived
exertion.

Cogiamanian et al. (6) showed that the endurance time
decreased significantly less after anodal (221%) than after
cathodal tDCS (235%) or no stimulation (239%), showing
that anodal tDCS (tDCS: 1.5 mA for 10 minutes) over the
motor areas of the cerebral cortex improves muscle endur-
ance of the left elbow flexors (35% of MVC). However, in
a muscle endurance test with isometric contraction (30% of
MVC) of the elbow flexor, no significant difference in the
changes observed between a-tDSC (tDCS: 2 mA for 10 mi-
nutes) and sham sessions (16). In a study by Williams et al.
(31), there was no systematic effect of the anodal tDCS
stimulation (tDCS: 2 mA for 20 minutes) on time to task
failure of the elbow flexor (20% of MVC) for the entire sub-
jects in set. The subjects were divided into 2 groups related
to time to task failure of elbow flexor: full-time, where task
failure of elbow flexor occurred before the withdrawal of the
tDSC and part-time, where task failure of elbow flexor was
extended after withdrawal of the tDSC. Task failure of elbow
flexor for the group was full-time 31% longer with anodal
tDSC compared with sham, whereas task failure of elbow
flexor for the part-time group did not differ. Moreover, a sus-
tained task of elbow flexion with 20% of MVC, the a-tDSC
generated greater fatigue and increased perception of effort
compared with sham condition. For Kan et al. (16), the tDSC
does not affect muscle function, perhaps because of the ceil-
ing effect, in which the intervention does not enhance mus-
cle function further when muscle function is already
maximal.

Among the several studies that found an increase in
strength endurance when using tDSC, only published by
Cogiamanian et al. (6) demonstrated favorable results to
tDSC anodal. Failure to find any change in the electromyo-
graphic variables after tDCS has been suggested by the
authors that the tDCS anodal could improve the strength
endurance, directly modulating the motor cortical excit-
ability, modulating premotor areas, reducing muscle pain
related to fatigue, increase motivation, and improve
engagement synergistic muscle (6). However, the use of
extremely low loads may have contributed to not signifi-
cantly altering the electromyographic responses. In the
study by Krishnan et al. (17), tDCS anode increased acti-
vation in the biceps brachii muscle with 37.5% and 50% of
MVC, which did not occur at lower power intensities (12.5
and 25% of MVC). There is the possibility of a greater
recruitment and increased rate of fire of the motor units
be due to the greater number of sensory inputs sent to the
sensorimotor cortex and consequently the MC (4). A fur-
ther possibility is modulation of the feedback inhibitory
systems limiting motor cortical output to “protect” the
motor system from overload (6). The pain afferent input

from muscle tissue is probably involved in muscle fatigue
(10) and tDCS of the MC has been reported to decrease
pain (9). The increased cortical excitability after anodal
tDCS could therefore depend on a reduced pain sensation
arising from muscle tissue during sustained and prolonged
voluntary contraction. A study conducted by Tanaka et al.
(29) corroborates the results we found. They demonstrated
that a-tDSC on the MC enhances the physical perfor-
mance. Morevover, because of the close connection
between the MC and the areas responsible for the per-
ceived exertion, such as the cingulate cortex and insular
cortex, it leads to the fatigue delay observed. The success
of the delay in the perception of effort probably lies in the
fact that a-tDSC achieves through existing neural connec-
tions, areas that plays a crucial role in central fatigue.
These areas are the right DLPFC (Brodmann area 46),
the posterior cingulate cortex, and the insular cortex.
The right DLPFC is responsible for the activation of sen-
sory motor function areas, to offset the central fatigue (29).
For Cogiamanian et al. (6), the a-tDSC slows the sensation
of effort because of potentiation of excitement in the pre-
motor areas, and contribute to relationship agonists and
antagonists, encourage motivation, and minimize muscle
pain. Despite the supposed benefit of a-tDSC on the
decrease in perceived of effort, no significant difference
was found between the sham-tDSC and in a MVC for
the elbow flexion exercise, which is consistent with re-
ports that the effects of tDCS are decreasing excitability
during cognitive and motor activities in progress.

These findings require caution because participants of
different sexes were used (i.e., men and woman), and specific
sex effects have been reported in tDSC (18), as well as on
changes in cortical excitability after tDSC (5) and a large
variability in muscle function between them. In our findings,
the application of a-tDSC increased the total volume of rep-
etitions for all subjects (100%) and decreased of perceived
exertion for 90% of subjects. This study demonstrated that
noninvasive stimulation technique can be effective in
strength of resistance and decreased perceived exertion,
although that in the placebo condition (sham), no effect
was observed for perceived exertion. Nevertheless, the influ-
ence of this technique on different types of strength and
muscle groups is still unknown, which requires further
investigation.

PRACTICAL APPLICATIONS

This study suggests that the use of a-tDSC has a positive
effect on the total volume of repetitions and decrease in
perceived exertion. In strict terms of performance, appears
to be beneficial to attend a session of 20 minutes a-tDSC
when strength training practitioners can no longer support
high-volume training and have increased responses in the
perceived exertion. Most literature in this area normally
uses small muscle groups and isometric contractions, the
fact that our study used an elbow flexor exercise, very
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commonly performed in gyms environments and with
dynamic contractions, represents a breakthrough in this
area. It becomes difficult a correct representation of the
cortical area of large muscle groups so that research can
move forward in this direction; it requires larger additional
information for the correct application of the procedures
before strength training.
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