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Large vertebrates affect fire regimes in several ways: by consuming plant

matter that would otherwise accumulate as fuel; by controlling and varying

the density of vegetation; and by engineering the soil and litter layer. These

processes can regulate the frequency, intensity and extent of fire. The evi-

dence for these effects is strongest in environments with intermediate

rainfall, warm temperatures and graminoid-dominated ground vegetation.

Probably, extinction of Quaternary megafauna triggered increased biomass

burning in many such environments. Recent and continuing declines of

large vertebrates are likely to be significant contributors to changes in fire

regimes and vegetation that are currently being experienced in many parts

of the world. To date, rewilding projects that aim to restore large herbivores

have paid little attention to the value of large animals in moderating fire

regimes. Rewilding potentially offers a powerful tool for managing the

risks of wildfire and its impacts on natural and human values.

This article is part of the theme issue ‘Trophic rewilding: consequences

for ecosystems under global change’.
1. Introduction
Trophic rewilding aims to use the power of consumers—typically, large-bodied

vertebrates—to sustain biodiversity and restore resilience to ecosystems

degraded by past extinctions and other forms of human disturbance [1]. Most

rewilding projects to date have used the reintroduction of large herbivores—

either wild species or livestock undergoing ‘de-domestication’—to reinstate

ecosystem functions that were lost with past extinctions and continuing popu-

lation declines of wild herbivores [1,2]. These projects have emphasized the

direct effects of herbivores on vegetation. In Europe, for example, rewilding

with large herbivores has often been motivated by the idea that in the past,

large herbivores created landscape mosaics of open and wooded habitats,

with higher diversity than the tall closed forests that developed in the absence

of control by herbivory [3–6]. These projects make little reference to the potential

that large herbivores might also control the risks and impacts of fire.

In many ecosystems fire is a natural recurrent disturbance that can promote

habitat heterogeneity and maintain biodiversity through complex interactions

with food webs [7]. However, severe fires are a growing threat to natural

environments and people globally [8] as global climate change increases the

occurrence of weather conditions that promote high fire-danger [9]. In addition,

risks to people are increasing as human settlement encroaches on fire-prone
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landscapes [8], while in some places abandonment of tra-

ditional land management due to rural depopulation has

led to more large-scale fires [10]. Management responses to

the threat of wildfire consist mainly of strongly intervention-

ist actions: fire suppression, and reduction of fuel loads by

prescribed burning and mechanical treatments such as

forest thinning. However, fire suppression often results in

accumulation of fuel loads, while prescribed burning is

risky because fires can escape, especially as fire seasons

become longer and more extreme.

Here, we ask whether rewilding can contribute to redu-

cing the risks and impacts of wildfire in fire-prone

landscapes. The core of the paper is a systematic review of

the evidence that vertebrates are able to control fire regimes

and of the mechanisms involved. Having considered this evi-

dence, we place it in a biogeographic framework to identify

the biomes and climate conditions under which effects of ver-

tebrates on fire regimes have been demonstrated. We

conclude by translating this evidence to current opportunities

for rewilding projects in parts of the world where natural

environments and human communities face increasing

threats from destructive wildfire.
2. How vertebrates control fire
Vertebrates can influence natural fire regimes in several ways.

First, herbivores limit fuel quantity by consuming and recy-

cling plant matter that would otherwise accumulate as

litter, and by reducing the density of vegetation [3]. Second,

differential consumption of plant growth forms can enforce

changes in the composition of vegetation and thereby alter

the type and arrangement of fuel. Third, herbivory can gen-

erate large-scale habitat heterogeneity, as a result of

variation in herbivore activity in response to factors such as

terrain and water availability [3,11], and this can mean that

zones of low and high flammability are interspersed in

arrangements that could impede the spread of landscape

fires. Finally, herbivores and other animals may alter the

abiotic environment in ways that affect flammability: by

forming trails, dust-baths or leks, large animals create lines

or patches of bare ground that can act as fire breaks, while

some species forage by turning over or digging through the

litter layer and surface soils, and in the process bury fine

fuels and thus reduce fuel loads. In the sections below, we

explore the evidence supporting these effects of herbivores

on fuel and fire regimes, in the past and present.
3. The evidence
(a) Palaeo-ecology: megafaunal extinction
Many of the effects of herbivores on ecosystems are likely to

increase with body size. This is because large herbivores are

typically bulk feeders on low-quality plant material and

thus consume a greater proportion of structural plant tissue

than do small herbivores [12]. Further, the relative invulner-

ability to predation of the very largest herbivores can mean

their populations escape top–down control and are instead

limited by food availability, and so have greater impacts on

plants than smaller species regulated by predation [13,14].

Because of their great physical power, megaherbivores have
especially strong impacts by trampling or battering

vegetation and disturbing the soil surface.

During the late Quaternary the largest herbivores van-

ished from most of the world’s habitable continents and

large islands in a wave of size-selective extinctions that fol-

lowed the global expansion of modern Homo sapiens [15,16].

The loss of mammoths, ground sloths, giant kangaroos and

other megafauna presents us with a grand historical lesson

on the ecological consequences of removing large herbivores

from ecosystems [17]. Several recent studies have used spores

of dung fungi such as Sporormiella, which are obligatorily

associated with vertebrate herbivores and sporulate only on

their dung [18], to test the hypothesis that one of the effects

of megafaunal extinction was to trigger increased fire [19].

Dung fungi are useful for these studies because their spores

accumulate in sediments along with charcoal particles and

pollen grains, so they allow us to match changes in herbivore

activity in past ecosystems with dynamics of fire and

vegetation.

So far, studies at 14 sites have used dung fungi to track

herbivore decline through time intervals spanning regional

extinction of megafauna (and arrival of humans), while pro-

viding matching records of charcoal and pollen (see

electronic supplementary material, table S1 for details). At

six of these sites the vegetation was forest or woodland

before megafaunal extinction, and at these sites extinction

was associated with large increases in charcoal. In several

of these cases the temporal resolution of sampling was fine

enough to show that charcoal increase followed dung-

fungus decline on time-scales of decades or centuries

[20–24]. In some places, increased fire was followed in turn

by changes in vegetation: from open mixed rainforest and

sclerophyll forest to uniform sclerophyll forest at Lynch’s

Crater in NE Australia [20]; from patchy spruce parkland to

continuous hardwood and conifer forest at Appleman Lake

in the NE USA [22]; and from mosaics of savannah, wood-

land and thicket vegetation to extensive grassland in SW

Madagascar [24,25].

In contrast, megafaunal extinction was associated with no

apparent change in fire or vegetation at sites where the orig-

inal vegetation was treeless tundra, steppe or arid grassland

[26–31]. The variation in response is illustrated in electronic

supplementary material, figure S1: synchronous herbivore

declines in the far northeast and far southwest of the Austra-

lian continent were associated with a rise in charcoal in the

forested NE, but with no change in the dry low shrubland

habitat of the SW.

These are all observational studies that are subject to sev-

eral uncertainties of interpretation. The most obvious is that

we cannot test if increases in charcoal in past ecosystems

truly signal higher flammability in response to relaxation of

herbivory, or whether they had other causes such as rapid cli-

mate change or firing of the landscape by newly-arrived

people (who may also have hunted the big animals to extinc-

tion). Also, charcoal concentrations in sediments are at best a

crude measure of fire regimes [32]. For example, it is often

difficult to distinguish frequency from intensity of fire using

charcoal records. It is possible that in cases with no apparent

change in charcoal there were still important shifts in fire

regime, especially the spatial pattern of burning.

Nonetheless, the evidence to date supports the hypothesis

that past disappearances of large herbivores triggered

increased fire severity or frequency, at least in places where
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Table 1. Studies of the effects on fire regimes of terrestrial vertebrate herbivores, including native wildlife and domestic livestock in intact (uncleared)
landscapes. Effects due to grazers (species that feed predominantly on grass, often including other graminoid or herbaceous plants) are distinguished from
effects due to browsers (species that feed predominantly on woody plants). Evidence types are manipulative experiments (E), modelling of relevant data (M),
and correlational or observational (C). ‘Strength’ of evidence is rated on a 3-point scale (3 is strongest), as judged by a combination of effect size, type of
studies, number of studies and diversity of environments in which the effect has been demonstrated, as well as existence of a plausible underlying mechanism.

effect

evidence:

refs (listed in the electronic
supplementary material)type strength

Less biomass consumed by fire in grazed areas E, M 3 [36 – 38]

Fire temperatures and flame height are lowered because of reduction of fuel

loads by grazers (and possibly browsers)

E, M 2 [36,39,40]

Fire-induced mortality of sensitive plants is reduced in grazed areas E 2 [37,41]

Fire severity is possibly increased in areas grazed by cattle, because of

increased fuel loads from unpalatable shrubs

C 2 [42]

Rate of fire spread is reduced because of reduction of fuel loads by grazers

(and possibly browsers)

E, M 2 [39,40]

Area of landscape burned is reduced because short-grass patches created by

grazers (‘grazing lawns’) impede the spread of fires

E, C, M 2 [43 – 46]

Area burned is reduced because grazing lowers fuel loads and breaks fuel

continuity

M, C 2 [38,47 – 50]

Return interval of fire is lengthened because of increased woody cover and

smaller herbaceous fuel loads due to grazing

M, C 2 [51 – 57]

Number of potential fire days is reduced because of reduced fuel loads due

to grazing

M 1 [58]

Number of potential fire days may be increased in tussock grassland because

grazers selectively remove live shoots, increasing the proportion of dry

dead fuels

M 1 [58]
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abiotic conditions allowed development of woody veg-

etation. In such environments, increases in plant biomass

due to relaxation of herbivore pressure may have been

large enough to shift landscapes to states in which fire was

more frequent or more intense, or both. In less productive

environments, either too cool or too dry for development of

woody vegetation cover—especially under the low-CO2 con-

ditions of the last glacial cycle—increases in fuel following

loss of large herbivores may have been too small to cause

observable changes in charcoal accumulation.
(b) Extant herbivores
There is overwhelming evidence that extant large herbivores

reduce herbaceous fuel loads. For example, grazer exclusion

in Hluhluwe iMfolozi Park in South Africa led to increased

grass biomass [33]; in mixed-conifer forests in the NW

USA, understorey biomass was higher inside than outside

exclosures for ruminants [34]; and a meta-analysis of 7615

records from mostly semi-arid and arid ecosystems of Austra-

lia under natural field conditions found that livestock

reduced plant biomass by an average of 40% [35]. The

direct effects of herbivory on fuel are often clearer for grazers

than browsers because grazers consume a larger proportion

of the individual plants they eat than do browsers [36].

Because the literature on herbivory and fuel loads is vast

we have not reviewed it systematically; instead we indicate
the main effects, with supporting studies, in electronic

supplementary material, table S2.

While there are many studies demonstrating that ver-

tebrate herbivores reduce fuel accumulation, there are

relatively few which demonstrate that these reductions of

fuel are sufficient to affect fire regimes. The available evi-

dence is summarized in table 1. Compelling observational

studies include the Ithala Game Reserve in South Africa,

where 64 years of aerial photography and 30 years of field

measurements showed that herbivore populations were

inversely related to accumulation of grassy biomass and

therefore the likelihood of fire [59]. Several African studies

show that concentrations of grazers produce lawns in

which fire is rare [43,45,46,60,61], and similar ‘marsupial

lawns’ occur in Tasmania [58]. At large scales, there is a nega-

tive relationship between grazer biomass and fire frequency

in African savannahs [43,51,62]. In the steppes of southern

Russia, declining livestock populations since the fall of the

Soviet Union in 1991 was followed by rapid increase in the

area burned by wildfire, evidently because of increased fuel

loads [49].

Experimental studies showing effects of vertebrate herbi-

vores on fire include Kimuyu et al. [39], who show that in a

Kenyan savannah, plots grazed by wildlife and cattle experi-

enced lower burn temperatures than ungrazed plots, due to

lower herbaceous fuel loads. Likewise, experimental manipu-

lation of grazing in tallgrass prairie in Kansas demonstrated
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that grazing reduced fire temperatures and energy release

[36]. In grasslands of Yellowstone National Park, sites occu-

pied by elk (Cervus canadensis) had a sixth of the litter and

standing dead biomass compared to unoccupied sites, and

fire on those sites consumed less of these fuels and caused

a smaller increase in bare ground [63]. A long-term exper-

iment in sagebrush (Artemisia) communities in Oregon

found that consumption of fine fuel by fire was lower with

moderate intensity pre-fire cattle grazing compared to

ungrazed exclosures, resulting in reduced mortality of large

perennial bunchgrasses [37]. A large-scale experiment in

tropical Australia found that, in the absence of non-native

swamp buffaloes (Bubalus bubalis), mortality of juvenile

trees was three times higher in burnt than unburnt plots,

but in the presence of buffaloes there was no difference in

mortality between burnt and unburnt plots [41].

Several different modelling approaches have been applied

to the relationship of vertebrate herbivores and fire regimes.

One class of studies uses modelled relationships between

fuel loads and fire behaviour to predict changes in fire result-

ing from herbivore-caused alterations of fuel. In high-altitude

Ethiopian Erica shrublands, cattle grazing resulted in slower

post-fire fuel accumulation and discontinuous litter, and

modelling suggested this would reduce fire intensity and

rate of spread [64]. In the Serengeti ecosystem, fire models

predict that at low grazing intensity, high grass biomass

leads to extensive fires [38], while a continental-scale model

of African vegetation predicted large reductions of grass bio-

mass, and therefore area burned, due to grazers [47]. The

spatial distribution of fuel, as well as its average quantity,

are important. For example, fire models suggest that herbi-

vores can alter fire spread by changing the size of fuel

patches [44]. Other approaches take models of vegetation

dynamics and extend them to include the interacting effects

of fire and herbivory on the development of vegetation struc-

ture and composition [65]. New dynamic global vegetation

models (DGVMs) are being developed that incorporate trait

values for individual plants and depict competition among

plants more realistically than earlier DGVMs that model

fixed growth forms; these models are also capable of describ-

ing complex and recursive interactions between fire and the

structure and composition of vegetation [66], and could

potentially be extended to add interactions with herbivory

as well [67].
(c) Grazers versus browsers
The strongest evidence that vertebrate herbivores affect fuel

loads and fire regimes comes from studies of large grazers,

rather than browsers (table 1; electronic supplementary

material, table S1). When grass is abundant, it provides a

dense and continuous layer of material that under dry con-

ditions turns quickly into a flammable bed of fuel. Fires

often start in the grass layer, where they gain intensity and

ultimately consume woody tissue when flame height is suffi-

cient to reach the canopies of shrubs and small trees. The

flammability of grasses can sustain grass-fire cycles [68] in

which rapid seasonal replenishment of grass fuel supports

recurrent fire with short return times that kill woody regener-

ation. However, grass biomass responds quickly to changes

in grazing, and even quite patchy grazing can decrease fuel

continuity in grassland sufficiently to reduce fire frequency,

extent and intensity [46,69]. Large grazers can also maintain
spatial variability in plant-community composition through

the process of pyric herbivory, in which grazing moderates

but does not eliminate fire when grazers concentrate on

recently burned areas, thus allowing some accumulation of

fuel elsewhere and sustaining a fire mosaic that prevents gen-

eral encroachment of woody plants [68]. The effects of

browsers on fire regimes are often more complex. In Africa,

large browsers open up closed canopies and so allow grasses

and fire to penetrate wooded landscapes, while browsers of

all sizes promote high loads of herbaceous fuel by preventing

recruitment of trees [62,70]. Large browsers can reduce veg-

etation density and create open habitats, but whether this

reduces fire frequency or impact can depend strongly on

the complementary effects of grazers—or mixed feeders—in

controlling grass fuels.

Grazing does not always lead to reduced fire. In the Aus-

tralian Alps, cattle grazing evidently increases fire severity,

possibly by changing fuel arrays in favour of flammable

woody shrubs that can encroach on grasslands [42]. In situ-

ations where woody plants dominate fuels, browsers might

control fire regimes. For example, in Mediterranean oak

woodland in Israel, browsing by cattle can reduce cover

and biomass of shrubs and trees and thereby limit accumu-

lation of flammable plant material [71]. Unfortunately, there

remains a lack of evidence on the effects of browsing on

fire regimes in wooded landscapes.
(d) Ecosystem engineers
Scattered anecdotal observations suggest that animal trails

and similar disturbances can function as firebreaks. The

physical scale of these features can be substantial. For

example, in a montane vegetation complex in Tasmania,

10% or more of the ground surface was covered by animal

paths, mostly created by medium-sized macropods and

wombats. Path surfaces were either bare ground or com-

pressed leaf litter [72]. The effects of path networks on fire

behaviour could well be significant, particularly by impeding

the spread of low-intensity fire, but this appears not to have

been systematically studied.

Vertebrates that dig for their food or otherwise disturb the

litter layer can also affect fuel by burying plant litter or

mixing it with soil. Some of these engineers have large phys-

ical effects on soil and litter. For example, in Switzerland,

grubbing by wild boar (Sus scrofa) may disturb 27–54% of

the forest floor [73]. How such activities affect fire is mostly

unknown, other than from a recent series of studies in

Australia. A study of the woylie (Bettongia penicillata), a mar-

supial that digs for truffles and invertebrates, found that its

activity reduced surface litter loads in dry woodlands by

25%; this translated to a 74% reduction in flame height and

a 33% reduction in the rate of fire spread predicted by a fire

model [74]. Southern brown bandicoots (Isoodon obesulus)

had a similar effect on fire predictions in remnant woodland

in the city of Perth [75]. Superb lyrebirds (Menura novaehollan-
diae) forage by turning over surface soil, burying leaf letter in

the process. This activity reduced litter loads by 25% over

nine months in plots where lyrebirds were free to forage,

compared with plots from which they were excluded. Fire

models predicted that this would cause up to twofold

reduction of flame height, depending on weather [76].

Mound-building by malleefowl (Leipoa ocellata) reduced fuel
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Figure 1. Locations of studies of effects of vertebrates on fire regimes. These are shown in relation to (a) global variation in mean annual temperature and mean
annual rainfall, with biomes superimposed (from [78]), and relative density of fires (hotspot density) as detected at 1 km resolution by the satellite-based Moderate
Resolution Imaging Spectroradiometer (MODIS) instrument; and (b) geography, with variation in tree cover also shown. Filled circles are studies demonstrating
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loads and model-predicted fire intensity in the vicinity of

mounds [77].
4. A biogeographic synthesis
In figure 1 we summarize the environmental distribution of

studies that have tested the effects of vertebrates on fire

regimes, against the background of Whittaker’s [78] global

ordination of the occurrence of biomes in relation to tempera-

ture and rainfall. This shows that evidence for limitation of

fire by vertebrates is concentrated in the world’s savannahs,

woodlands and grasslands, in a region of environmental

space with intermediate temperature and rainfall, where

current fire activity is also high (figure 1a).

The geographical pattern of evidence for herbivore con-

trol of fire resembles a well-established pyrogeographic

pattern of effects of fire on vegetation [79], in which such
effects are strongest at intermediate rainfall and temperature.

In arid environments, plant biomass is generally too sparse to

support frequent fire, while in wet environments flammabil-

ity is too low. At intermediate rainfall, fuel can reach levels of

both biomass and flammability that result in recurrent fire,

provided plant growth is not limited by temperature. This

relationship gives rise to a large environmental and spatial

domain within which the state of vegetation—whether grass-

land, woodland or savannah—is not fully determined by

climate but is strongly influenced by biomass removal by

fire [80–83]. Where fire is a recurrent disturbance within

this domain, trees remain sparse and flammable grasses

often dominate; reduction of fire allows development of

tree cover, which then drives reduction of grass fuel.

By removing fuel, large herbivores can to some extent

replace fire as a dominant control of vegetation structure

and density. This replacement is best understood in African

savannahs. In savannahs with mean annual rainfall between
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(a)

(c)

(b)

Figure 2. The potential, and complexity, of trophic rewilding for management of fire regimes as illustrated by three case studies detailed in the electronic sup-
plementary material: (a) white rhinos and other large herbivores control fire in conservation reserves in southern Africa (image: Sally Archibald); (b) rewilding of
communities of large herbivores may reduce the threat of wildfire in the southwestern USA (image: Louis Harveson); and (c) the introduced swamp buffalo may be
an ecological replacement for extinct Pleistocene megafauna in northern Australia with ecological benefits that must be traded off against unwanted impacts (image:
David Hancock).
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approximately 500 and 800 mm, either fire or herbivory may

be the dominant control on vegetation biomass [62]. Notably,

it is rare to find sites with intermediate consumption by both

herbivores and fire in this environmental domain, which con-

tains many of Africa’s most important conservation areas:

similar ecosystems contain either many herbivores or are

extensively burned [62]. In replacing fire, large herbivores

like white rhinoceros (Ceratotherium simum) create habitat het-

erogeneity and facilitate many other species (see Case Study 1

in the electronic supplementary material).

Geographically, studies of the effects of vertebrates on fire

are concentrated in Africa, North America and Australia

(table 1 and figure 1b). More research is needed in environ-

ments such as Mediterranean woodlands and shrublands

and temperate forests worldwide.
5. Implications for rewilding
While trophic rewilding is potentially a powerful tool in the

management of fire, its implementation will depend on

many social, historical and environmental factors specific to

particular landscapes. We illustrate some of these variations

using detailed case studies of management of changing her-

bivore populations in relation to fire dynamics (figure 2),

detailed in the electronic supplementary material. They are:

in situ recovery of native large herbivores (white rhinos and
other grazers) from low levels enforced by past removals,

and its role in management of conservation areas in southern

Africa; intentional restoration of native large-herbivore

communities in high-elevation woodlands in southwestern

North America, where vulnerability to fire has recently

increased due to increased fuel loads resulting from decline

of domestic livestock, as well as climate change; and the

effects on fire regimes of an invasive large herbivore, the

swamp buffalo (Bubalus bubalis) in northern Australia that

may be a partial ecological replacer for extinct megafauna,

but with unwanted environmental impacts as well as

beneficial effects on fire regimes.

Rewilding for management of fire could be especially

important where recent changes in land use have increased

the risk of dangerous wildfire. In much of the Mediterranean

region, for example, original populations of large herbivores

have long disappeared, but until recently fuel loads in mana-

ged savannah environments were controlled by domestic

livestock [10,71]. With recent farm abandonment, and replace-

ment of traditional management by activities such as

commercial forestry, the incidence of destructive fire has

increased [84]. Rewilding may be an option for the future

use of abandoned landscapes [85]. If this option is to be

viable it may be essential that it includes re-establishment of

large herbivores to control risks of wildfire. As noted above,

more research is needed on the effects of large herbivores at

natural densities on fire regimes in such environments.
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Large grazers may be especially important agents of fire

control, given that they evidently have strong and consistent

effects in reducing fuel loads and moderating the extent and

impacts of fire in highly fire-prone environments such as

savannahs. Grazers accomplish general reductions of fuel

loads in biomes with a significant grass component, and

they may also create and maintain open spaces with low

fuel loads—grazing lawns—that can impede fire spread.

Potentially, grazing lawns could be initiated by managers

using mechanical removal of woody cover to stimulate loca-

lized grass growth and recurrent grazing. This has been

attempted in the Kruger National Park, in response to con-

cern that frequent large fires were creating undesirable

habitat and limiting herbivore numbers [45]. Ironically, fire

was used as the tool to re-set this system. Short-grass ‘grazing

lawns’ were created in a fire-prone tall-grass system by burn-

ing small patches; these attracted and concentrated native

wildebeest and other herbivores; intense grazing produced

short-grass lawns that subsequently did not burn [45].

In other situations, designed grazing lawns could be used

to break up otherwise contiguous flammable vegetation, such

as Pinus and Eucalyptus forests, in strategic configurations

likely to be effective in containing fires and protecting sensi-

tive environments or human communities. Browsers could be

valuable in reducing woody vegetation cover and creating

habitat mosaics, but at the potential cost of increased grass

and raised fire-danger; they should be complemented by gra-

zers to prevent this. On the other hand, heavy grazing can

lead to shrub encroachment [68], and in some cases dense

shrublands can also be highly flammable [86]. Mixed assem-

blages formed by introductions of both grazers and browsers

may well be most beneficial in developing stable landscape

mosaics with low or moderate fire-danger. Large-bodied

mixed feeders capable of consuming large quantities of

grass, such as the European bison (Bison bonasus) [87,88],

could be especially valuable in controlling fire while creating

open and patchy habitats [89].

The non-consumptive effects of ecosystem engineers on

fuel loads may well be a valuable tool in rewilding for man-

agement of fire. This is especially true in Australia, because

many of the species that are most active in digging for food

and mixing litter with top soil are medium-sized marsupials

and large rodents that have recently undergone severe

declines caused by invasive predators [90]. Some of these
species persist in island refuges and there is potential for

their large-scale reintroduction to mainland ecosystems, pro-

vided that impacts of predators can be reduced sufficiently.

Restoration of digging mammals could play a role in redu-

cing fire-risk, while also renewing other ecological services

such as improving soil condition and promoting regeneration

of some plants [91].
6. Conclusion
Our review of the evidence makes it clear that vertebrates can

have strong effects on fire regimes. Increases in fire frequency,

severity and extent due to decline of large vertebrates prob-

ably began with extinction of Quaternary megafauna.

Recent and continuing declines of large herbivores could

well be contributing to increases in wildfire now being

experienced in many parts of the world [8], including

places where catastrophic fire threatens environmental

values and human communities [10]. However, our knowl-

edge of the effects of vertebrates on fire is still sparse, as

well as being unevenly distributed in geographical and

environmental space. While many studies document effects

of herbivores on fuel loads, and often infer that those changes

are likely to moderate fire regimes, surprisingly little research

has gone on to test whether those effects cause significant

changes in the frequency, extent and severity of fire, and

that research is concentrated in savannah and grassland

environments. We still know little about how the effects of

herbivores and other ecosystem engineers vary among species

and habitats, and how they are related to the density and

behaviour of animals. Further, while our conception of trophic

rewilding includes feral and domesticated animals as well

as native species, it is not clear to what extent the available

diversity of domesticated herbivores is able to emulate the

spectrum of effects on fire regimes that can be achieved by

non-domesticated species, including surviving megafauna.

Research on these questions is needed for the application of

trophic rewilding as an effective tool in controlling fire.
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