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Abstract

Background: The cell nucleus is highly compartmentalized with well-defined domains, it is not
well understood how this nuclear order is maintained. Many scientists are fascinated by the
different set of structures observed in the nucleus to attribute functions to them. In order to
distinguish functional compartments from non-functional aggregates, | believe is important to
investigate the biophysical nature of nuclear organisation.

Results: The various nuclear compartments can be divided broadly as chromatin or protein and/
or RNA based, and they have very different dynamic properties. The chromatin compartment
displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment
is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation.
This phase separation phenomenon leads to the formation of a long-lived interaction network of
slow components (chromatin) scattered within domains rich in fast components (protein/RNA).
Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high
concentration of macromolecules produces volume exclusion effects that enhance attractive
interactions between macromolecules, known as macromolecular crowding, which favours the
formation of compartments. In this paper | hypothesise that nuclear compartmentalization can be
explained by viscoelastic phase separation of the dynamically different nuclear components, in
combination with macromolecular crowding and the properties of colloidal particles.

Conclusion: | demonstrate that nuclear structure can satisfy the predictions of this hypothesis. |
discuss the functional implications of this phenomenon.

The cell exist a crowded environment of organelles, mac-
romolecules, chromatin, membranes, and cytoskeletal fil-
aments. The cell is not, however, simply a soup of its
constituent parts, rather there exists an ordered structure
referred to as compartmentalisation. Maintenance of
compartmentalisation within the cell has fundamental
implications for cellular function. In the cytoplasm, com-
partmentalisation is commonly achieved by confining

macromolecules in lipid membranes thereby creating
organelles such as mitochondria, lysosomes, Golgi appa-
ratus, etc. However, even the cytoplasm regions not
divided by membranes can show local differences in com-
position. Within the nucleus there also exist numerous
distinct structures such as the nucleolus, interchromatin
granule clusters (IGC), heterochromatin, and various
bodies such as: Cajal, PML, SMN. Nuclear compartmen-
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talization exists without any membranous division. Key
questions such as how nuclear compartmentalization is
achieved and why it exists, still remain unanswered. In a
seminal paper Tom Misteli proposed self-organization as
an explanation for the existence of nuclear compartmen-
talization [1] but the molecular basis for self-organization
of nuclear structures is not fully understood. Another phe-
nomenon implicated in nuclear compartment formation
is macromolecular crowding, however, this only explains
the existence of some of the nuclear structures [2], but is
not enough to explain the different structures found in the
cell nucleus. Several models have been proposed to
explain three-dimensional chromatin organization, from
modelling chromatin as balls connected by springs [3-5]
to chromatin loops as semi flexible (self-avoiding) tubes
[6]. All these models are very simplistic, tending to focus
on chromatin as an independent entity floating in an
ideal buffer. No consideration is given to the physical
properties of the nuclear components and its conse-
quences for nuclear structure. The main stumble block to
date is no one model can fully account for the diversity of
nuclear structures observed. Recent advances in biophys-
ics have provided us with invaluable information and
have allowed us to understand cell organization. In this
paper [ explore a biophysical explanation for compart-
mentalization within the cell nucleus.

Dynamic Asymmetry within the Nucleus

Nuclear DNA is associated with histones, which are then
packaged into an ordered structure called chromatin. This
chromatin is further packaged into individual chromo-
somes that occupy distinct territories in the nucleus [7].
Within the mammalian nucleus, chromosomes territories
show non-random, evolutionarily conserved radial organ-
isation on the basis of gene content. Gene-rich chromo-
somes occupy a more internal nuclear location and gene-
poor chromosomes reside at the nuclear periphery [8-10],
which may be driven by the interaction of heterochroma-
tin with the nuclear lamina [11]. While chromosome ter-
ritories are more or less fixed throughout the cell cycle
except for early in G1 [12] their constituent chromatin
does show a degree of constrained diffusional motion.
Chromatin dynamics in living cells have been studied by
several groups by exploiting the lac operator/repressor sys-
tem [13]. Integration of a lac operator array into the DNA
of cells expressing GFP-lac repressor fusion protein allows
chromatin movement to be monitored. The main findings
of these studies are that chromatin moves in a Brownian
manner with a diffusion coefficient in the range ~10-4 to
103 um?2/s [12,14]. Chromatin mobility is also affected by
condensation state; euchromatin moves faster than hete-
rochromatin [15].

Nuclear protein dynamics have also been studied exten-
sively using photobleaching experiments, namely fluores-
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cence recovery after photobleaching (FRAP), and
fluorescence loss in photobleaching (FLIP). Experimental
evidence shows that proteins are highly dynamic and
move unrestricted through the nuclear volume in an
energy-independent manner [1]. Whilst roving through
the nuclear space a protein may engage with non-specific
or high-affinity binding sites, as demonstrated by Phair et
al [16] who estimate residence times of 2-30 s for chro-
matin proteins on both euchromatin and heterochroma-
tin, and the time between binding events at around 100
ms. Some times diffusion is so rapid that FRAP or FLIP
approaches are not suitable to calculate the diffusion coef-
ficient. In these instances, diffusion measurements are
performed using fluorescence correlation spectroscopy
(FCS) [17]. This technique allows one to calculate the
average time needed for a fluorescently labeled molecule
to pass through a very small defined confocal volume.
Since the confocal volume is a known measure the diffu-
sion coefficient (D) of the molecule can be determined.
Freely diffusible proteins within the nucleus move slower
than in water but the D values are in the 0.2 to 20 um?2/s
range [1,18]. In addition to proteins exhibiting highly
dynamic diffusion, nuclear bodies also show a degree of
motion. Gorisch et al. have studied the diffusion proper-
ties of both Cajal and PML bodies as well as a biochemi-
cally inactive body composed of murine Mx1 [19]. Their
findings indicate that nuclear bodies show constrained
diffusion within a chromatin corral, which can itself trans-
locate.

The movement of RNA also can be measured by Fluores-
cent RNA Cytochemistry [20,21]. Photoactivation of
caged fluorochromes conjugated to oligonucleotides
allow of RNA molecules visualisation in living cells. In liv-
ing cells the RNA demonstrates Brownian motion, with
diffusion constants ranging from 0.1 to 10 um?/s [20,22].

These observations show a nucleus with two levels of
dynamics; a slow chromatin compartment and a fast com-
partment of proteins and RNA.

Dynamic asymmetry leads to viscoelastic phase

separation

The nucleus contains components with two very different
dynamic regimes; chromatin on one hand, which shows
constrained slow diffusion, and proteins and RNA on the
other hand, which show diffusion at least three orders of
magnitude faster. This creates a strong dynamical asym-
metry, probably partly due to the difference in size
between the two types of molecules. From the discipline
of polymer science we know that mixtures of polymers
with very different kinetic properties undergo a phenom-
enon known as viscoelastic phase separation [23]. That
leads to the formation of two phases. One phase is a long-
lived 'interaction network' (transient gel) of the slow com-
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ponent. The second phase, known as the 'inelastic phase’,
is rich in fast components and can nucleate and grow in
the transient gel. The long-lived 'interaction network' can
tolerate bulk stress against its volume because polymeric
molecules can withstand a large degree of deformation,
thus allowing individual regions in the polymer to bear
mechanical stress. In contrast, free colloidal particles (ine-
lastic phase) cannot tolerate the same stress. The phase
separation becomes more pronounced when the mole-
cules of the slow phase tend to associate [24] (Figure 1).
From our understanding of the dynamic properties of the
nucleus, the concept of viscoelastic phase separation
could partly explain behaviour of nuclear components.
The slow fluid component (DNA) cannot catch up with
the deformation rate of phase separation itself and starts
to behave like a viscoelastic body. This phase separation
process is characterized by the generation of a sponge-like
network of the slow component i.e. the chromatin, which
is the result of coexistence of 'asymmetry in mobility
between the two components of a mixture' and the net-
work-forming ability originating from attractive interac-
tions between like species [23]. In the case of chromatin
the attractive forces are mediated by histone-histone inter-
action and ancillary proteins interacting with chromatin
[25]. The theory of viscoelastic phase separation predicts
that chromatin would adopt a sponge-like structure in the
cell nucleus as shown in Figure 2, with fingers of chroma-
tin penetrating the nucleoplasm full of rapidly moving
protein and RNA molecules. Similar pictures to the one
shown in Figure 2 have been obtained using specific DNA
staining osmium-ammine B [26].

Within chromatin itself there are different dynamic
regimes that again are related to structure. Chromatin in
the cell nucleus broadly appears in two forms, heterochro-
matin and euchromatin. The difference between these two
forms resides in the transcriptional status and the mor-
phological structure adopted. Heterochromatin is con-
densed and euchromatin is decondensed and is excluded
from heterochromatin. How do these facts fit in with vis-
coelastic phase separation? Both heterochromatin and
euchromatin are characterized by their specific histone
methylation and acetylation patterns. Methylation of
H3(K9), H3(K27) and H3(K20) are associated with the
repressed chromatin state, whereas H3(K4), H3(K36) and
H3(K79) methylation and/or histone acetylation have
been correlated with active chromatin [27,28]. The hete-
rochromatin proteins HP1 interact with di and tri-methyl-
ated H3(K9) in a cooperative manner due to HP1
dimerization and additional stabilizing interactions with
other factors [29,30]. In this way HP1 polymerizes on het-
erochromatin enhancing the self-interacting properties of
inactive chromatin, creating bulky chromatin masses with
reduced mobility. On the other hand modifications that
make the chromatin active destabilize self-interacting
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properties (Figure 3), which cause different mobilities of
hetero and euchromatin [15]. This differential behavior of
chromatin is a basic feature of viscoelastic phase separa-
tion. In this simple manner, chromatin compartmentali-
zation can be achieved with heterochomatin aggregated in
domains that exclude euchromatin, separating both
phases and promoting the aggregation of active genes in
particular nuclear areas as has been demonstrated [31-
34].

Macromolecular crowding

Around 20 to 30% of the intracellular volume is occupied
by macromolecules, with concentrations reaching 200-
300 mg/ml [35]. These high concentrations lead to mac-
romolecular crowding, a process that dramatically
increases intermolecular interaction rates [36,37] and can
lead to segregation of macromolecules into discrete
phases by demixing [38]. An illustration of the phenome-
non is presented in Figure 4. Depletion interaction arises
from the presence of a smaller, non-adsorbing species in a
particle suspension, such as polymer molecules or other
small nanoparticles. The origin of the interaction was first
explained successfully by Asakura and Oosawa using the
concept that the free volume available to non-adsorbing
polymer molecules increases whenever two hard particles
approach sufficiently close [39].

Crowding effects have been demonstrated to play an
important role in formation of some protein-based
nuclear compartments. It has been shown that nucleoli
and PML bodies disassemble when nuclei are expanded to
twice their normal volume by hypotonic treatment [2].
Reassembly of these compartments can be achieved by
either returning the nuclear volume to normal in standard
buffer or, alternatively, by adding inert macromolecules
to expanded nuclei. In addition, the dynamic nature of
compartments, with a constant exchange of macromole-
cules between the compartment and the nucleoplasm, is
consistent with the properties of demixed phases pro-
duced by crowding [38]. The spherical/spheroid shape of
nuclear bodies are typical morphologies generated by
macromolecular crowding, as this globular conformation
is favoured by macromolecular crowding theory [36,37].
Nevertheless, macromolecular crowding in itself is not
enough to generate compartments. We know that the
expression of GFP alone does not generate any kind of
structure arguing for the need for some kind of self-asso-
ciating properties in the constituents of the body. This has
been shown to be the case in the well-studied Cajal body,
where the presence of self-interacting proteins is required
for the body formation and also in PML or SMN bodies
[40-43]. Recently it has been shown that SUMO modifica-
tion of PML components is essential for PML body forma-
tion. It seems that proteins containing SUMO-binding
motifs act as a scaffold for the formation of large macro-
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Figure |

Viscoelastic phase separation. Viscoelastic phase separa-
tion occurs in mixtures of components with very different
dynamic regimes. (A) The mixture just after mixing, with
large, slow polymers (blue lines) and smaller, very dynamic
molecules (red balls). Long polymers show slow movement
(single arrowhead) and tend to aggregate (wavy green line)
and small molecules are very dynamic (multiple arrowheads).
At this time point no phase separation can be observed. (B)
This shows a later snapshot of A, with more self-aggregation
in the polymer, where the polymer collapse in a separated
phase.
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Figure 2

DNA Distribution in the cell nucleus. Distribution of
DNA in Hela cells; DNA is visualised after incorporation of
10 uM BrdU for 24 h. Cells were then processed for elec-
tron microscopy and the Br-DNA visualized after denatura-
tion of DNA (I M HCI, 30 min). DNA is distributed in a
sponge-like pattern; this distribution is more obvious in panel
B. Panel B shows a threshold image of DNA distribution. This
image is very similar to the images obtained by viscoelastic
phase separation [23]. Bar 500 nm.
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Figure 3

Differences between hetero and euchromatin. Hete-
rochromatin (dark thin blue line) shows a high degree of self-
interaction (wavy green lines) and low mobility.
Decondensed euchromatin (light thick blue lines) shows a
low degree of self-interaction and higher mobility than con-
densed chromatin.

molecular complexes [44,45]. Interestingly, assigning spe-
cific functional roles to these two bodies in particular has
been elusive.

It may be that these bodies are the result of pure biophys-
ical forces and have no truly functional role as a body. In
this vein, we know that chemical reactions are a function
of interaction between molecules, which interact through
their surfaces. Reactivity can be viewed as a problem of
molecular surfaces. The surface area associated with a
given mass of material subdivided into equal-size parti-
cles increases in inverse proportion to the linear dimen-
sions of the particles. Put simply, the bigger the structure,
the lower the surface area exposed. This point can be eas-
ily illustrated by example of a small molecule of 10 nm of
diameter that can self-interact, building structures from
200 nm to 1 um. Using a 10 nm monomer, 8000 and 10°¢
molecules are respectively required to build a 200 nm or
1 um structure. The reduction in surface of these particles
in the bulk state is strikingly evident; 95 and 99% reduc-
tion, in the case of 200 nm and 1 um respectively. The
argument is obvious; when proteins accumulate in bodies
their specific activity (Units of activity per molecule)
become reduced by a factor proportional to the size of the
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Figure 4

Macromolecular crowding promotes self-associa-
tion. When molecules have the ability to self-interact, mac-
romolecular crowding enhances their aggregation. Several
situations are presented in the cartoons, two of which are
common in cells (panels A and C) i.e. large macromolecules,
some of which can self-associate, against a high background
of non-interacting molecules. Panel A: large, self-associating
macromolecules (red circles) are present alongside a high
background of non-interacting molecules (blue circles) big
enough to be excluded from the grey area around the big
molecules, e.g. proteins or other polymers. When several
red molecules self-associate the total exclusion zone
decreases (grey area), increasing the area of mobility availa-
ble to the blue molecules. Therefore by aggregating the red
macromolecules the entropy of the system increases. Panel
B: under non-crowded conditions there is no restriction on
the mobility of the blue or red molecules, aggregation of red
molecules results in only a small increase in entropy. Under
these condition, aggregation of the red molecules is not
favoured [35]. Panel C: large macromolecules present along-
side a high concentration of relatively small molecules e.g.
salt molecules. Panel D: similar situation to panel C, but with
a low concentration of small blue molecules. In both C and
D, the small molecules have free access to the entire system.
Consequently there is no thermodynamic advantage for the
large macromolecules to associate; therefore aggregation of
large macromolecules is not affected by the concentration of
the small molecules.

body. This would support the premise that nuclear bodies
are less likely to represent a functional state.
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Macromolecular crowding also plays a role in chromatin
structure. This is illustrated by the experiment shown in
Figure 5. HeLa cells were treated with 0.1 % Triton-X-100
in order to disrupt the cell membranes thereby allowing
free diffusion of molecules in and out the nucleus. Under
the experimental conditions described, cells were incu-
bated with buffers containing different concentrations of
salts and/or macromolecular crowding agents. One could
observe a clear relationship between macromolecular
crowding agent and changes in compaction of the chro-
matin; the higher the concentration of macromolecular
agent, the more condensed the chromatin. As expected,
the ionic strength of the buffer also affected the chromatin
structure, due to the strong negatively charged nature of
chromatin [26]. However, alterations in chromatin struc-
ture could be reversed by the addition of macromolecular
agents alone, suggesting that crowding is sufficient to
return chromatin to its native integrity. This experiment
illustrates the role of macromolecular crowding in main-
taining chromatin compartmentalization and the inter-
play with ionic conditions.

Colloidal properties: The speckle compartment
as an example

A distinctive compartment, which illustrates another type
of physical force operating in the nucleus, is the IGC.
Within mammalian cells, pre-messenger RNA splicing
machinery is found in a compartment referred to as the
speckles, splicing factor compartment, SC-35 domains or
IGC. By fluorescence microscopy these nuclear speckles
are seen as irregular shaped bodies located at interchro-
matin regions. When nuclear speckles are examined by
electron microscopy, they can be seen to be composed of
clusters of interchromatin granules, measuring 20-25 nm
in diameter [46]. They contain numerous factors involved
in RNA synthesis and processing and seem to be involved
in assembly or modification of these factors [46,47].
Unlike other nuclear bodies, the nuclear speckle compart-
ment is known to be positionally stable. Time-lapse
observations of nuclear speckles in living cells have shown
that their position is maintained over many hours
[48,49].

The speckle compartment could be viewed as a long-lived
interaction network like chromatin, because their
dynamic properties are different from the freely diffusible
molecules of the nucleoplasm. From a biophysical stand-
point, speckles could also be viewed as a 'colloidal sus-
pension of IGC, colloids being defined as particles in the
range of 1 nm to 1 um [50]. One of the physical properties
of colloidal suspensions is that upon addition of non-
absorbing polymers, phase separation can be induced
(Figure 6). This is due to polymer-induced volume deple-
tion, which increases attraction between colloidal parti-
cles [51]. When colloids are physically close, the region
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around the colloid from which polymers are sterically
excluded can overlap. The resulting unbalanced osmotic
force causes attractive interactions between colloidal par-
ticles [39]. This phenomenon occurs on neutrally charged
particles, as electrostatic charge can be sufficient to desta-
bilize clusters formed by polymer-induced volume deple-
tion. Consistent with these facts, we know that exchange
of granules on the IGC occurs at the periphery of the IGC
and is regulated by phosphorylation, probably by altering
the self-interacting properties of these granules [52].
Hyper-expression of the kinases that phosphorylate these
granules, hence changing their charge, destroys the IGC
[53], which fits with the colloidal model. In addition,
treatment of cells with kinase inhibitors results in bigger
IGC and in inhibition of the dynamic movements on the
periphery of IGC [48].

IGC is a reversible flocculate of colloidal particles and as
such structure is irregular and bulky, which makes it prac-
tically immobile, in perfect agreement with the docu-
mented possitional stability of IGCs [48].

The predominant force determining structure in the case
of nuclear speckles seems to be the colloidal properties of
interchromatin granules.

The nuclear matrix: another manifestation of
colloidal properties of nuclear constituents

A debatable compartment is the nuclear matrix. This com-
partment is visible after extensive extraction using deter-
gents, high salt solutions and treatment with nucleases.
The nuclear matrix is a fibro-granular network with a com-
plex protein composition [54,55]. Many scientists have
tried to visualize this structure in un-extracted cells by
light or electron microscopy, but these attempts have been
unsuccessful. They have tried to express these proteins
tagged with GFP or using specific antibodies to visualize
the nuclear matrix, but all these efforts have failed to dem-
onstrate the existence of nuclear matrix. For these reasons
many scientists believe that the nuclear matrix is no more
that an experimental artifact that has nothing to do with
the physiology of the cell. Moreover, many of the proteins
implicated in the nuclear matrix formation are known to
be highly dynamic which would appear to be in direct
opposition of the idea of a nuclear skeleton.

I believe that some important clues to the solution of this
controversy lie in the physical properties of macromole-
cules. Almost every single macromolecule found in the
cell nucleus is a colloid (colloids have sizes ranging from
1 nm to 1 pm). Colloidal particles have a very distinctive
set of properties. Their solubility properties strongly
depend on the ionic conditions of the medium; just
changing the ionic conditions means that the solubility of
colloids changes. Colloidal particles in solution carry a
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Macromolecular crowding plays a role in chromatin condensation. Hela cells were exposed to different concentra-
tions of PBS and Ficoll 400. Following 10 minutes of exposure to the experimental conditions, cells were fixed with 2% parafor-
maldehyde, stained with 20 nM Topro 3 for 5 min, and then images were collected. Panels A to N show representative images
for each condition. Autocorrelation analysis was performed as follows: intensity profiles were measured across the nucleus,
taking care to avoid nucleoli. These measurements were used to compute correlation by self-reference, for a series of lag dis-
tances (unit used was 40 nm) from each point n> 50, and the average and standard deviation were plotted. The autocorrelation
plots show the variation of correlation with the distance. Ecologists have used this type of analysis extensively, as it gives infor-
mation about spatial patterns. Panel A: chromatin distribution in a non-permeabilised cell. Panels B to J: representative images
illustrating cells permeabilised with 0.1% Triton and incubated for 10 minutes with buffers of different ionic strength and with
different concentrations of macromolecular crowding agents. Incubation with PBS alone is sufficient to decondense chromatin
(B, E), and this decondensation increases with lowering PBS concentrations (H, K and N, Q). The addition of Ficoll was able to
maintain chromatin condensation and even to hyper-condense chromatin (C, D, I, J, O, P). However, to achieve conditions
similar to unperturbed cells, a combination of both ionic strength and macromolecular crowding is required. Panels E, F, G, K,
L, M, Q, R, S show the autocorrelation analysis of images from nuclei treated with the varying conditions represented in the
picture panels. The correlogram plots show measurements from chromatin of control nuclei (grey) and nuclei exposed to the
different experimental conditions (black). Values above or below control correlogram, represents hyper-condensation or
decondensation respectively. This analysis is sensitive enough to detect small variations, and may be used as a quantitative test
for chromatin structure. The experimental conditions that best mimic the nuclear milieu are an ionic strength of 50% PBS and
5% Ficoll 400, as shown by the overlap of both correlograms (Panels | and L). Panels U and V show the chromatin distribution
in nuclei incubated with 2 M NaCl. Most of the DNA is extruded from the nuclear interior (U) but when the same experiment
was performed in presence of 10 % Ficoll (V) the chromatin integrity was maintained. Panels X and Y illustrate the chromatin
distribution in nuclei treated with SDS (1%), which completely destroys nuclear integrity and massively decondenses the chro-
matin (X). Addition of 10% Ficoll (Y) was able to preserve chromatin integrity. Bar 5 um.
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Figure 6

Colloidal particles. SC-35 speckles are formed by granules
that behave as colloidal particles. (A) When the particles are
not electrically charged (green circles with grey halo),
excluding volume effects are the dominant force determining
structure. (B) When particles become charged (phosphor-
ylated, red halo around green circles), repulsive forces are
stronger than excluding volume forces and the interchroma-
tin granule clusters become destabilized.

http://www.tbiomed.com/content/4/1/15

electric charge, which have dual origin: the pH and ionic
composition of the medium [50]. The pH will determine
the ionization of the radical groups of the amino-acid
chains (in the case of proteins) or the phosphate groups
(in the case of RNA). The ions present in the medium will
be adsorbed on to the surface of the colloidal particle and
together with the pH will determine the solubility proper-
ties of the particle under physiological conditions. We
know the range of physiological pH inside the nucleus,
but we are far from an exhaustive and detailed knowledge
of the ionic composition. The coagulation of colloidal
particles is very well known for more than a century - Far-
aday in 1856 described the coagulation of colloidal parti-
cles by addition of ions to the media- [50]. Therefore one
could imagine that nuclear matrices are in fact aggrega-
tions of colloidal particles, which precipitate giving the
beautiful structures seen in nuclear matrix preparations.
In this way when ribonucleoproteins hnRNP A2 and
hnRNP B1, at low protein concentration, are exposed to
high ionic strength buffers, they associate in regular heli-
cal filaments ranging in length from 100 nm to 10 um
with diameters from 7 to 18 nm. However, when the pro-
tein concentration was raised, the filaments rapidly aggre-
gated forming thicker filamentous networks that look like
the fibrogranular structures of nuclear matrices [56]. For
these reasons it is not surprising to find MARs (Matrix
Attachment Regions) in nuclear matrix preparations,
because these MARs are transcriptionally active, therefore
the RNA bound to RNPs emerging from them will aggre-
gate in the artefactual nuclear matrix preparation, drag-
ging the RNA pol II associated with the DNA (MARs).

Functional implications of viscoelastic phase
separation and macromolecular crowding
Understanding the mechanisms of compartmentalization
is essential to understanding nuclear processes and their
control. By separating the non-specific biophysical effects
of phase separation and macromolecular crowding from
the truly specific interactions, one can really begin to
appreciate nuclear organization and its relation to func-
tion. Spherical nuclear bodies can be explained by macro-
molecular crowding effects, but not the sponge-like
structure adopted by chromatin, which is explained by
viscoelastic phase separation. If one accepts that nuclear
components are subject to viscoelastic phase separation,
the implications of such a phenomenon can be addressed.

If phase separation does occur in the living cell then inter-
actions between the phases, namely the chromatin and
protein compartments, should be limited to the interface
between the two. This is indeed what we observe. It is well
known that colloidal particles (eg. proteins, spliceosomes,
RNPs) partition at the interface in systems where phase
separation occurs [57,58] - this will be enhanced in pro-
teins with an affinity for DNA. Proteins adsorbed at the
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Figure 7

Chromatin interphase. Transcription occurs at the inter-
face of chromatin. (A) Electron micrograph showing tran-
scription by RNA pol Il (gold particles) at the border of
condensed chromatin masses. Figure reproduced from refer-
ence 52, with permission from Springer. Activation of tran-
scription proceeds with nuclear volume change. The amount
of chromatin (blue) is stable and only the dynamic phase
(red) can be changed. As a result by increasing the amount of
proteins/RNA, the nuclear volume changes and also the
interface between DNA and proteins/RNA, where transcrip-
tion occurs. (B) Cell with low level of activity (small inter-
face). (C) Very active cell (Large interface).
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interface would exhibit reduced Brownian movement.
This could be an alternative interpretation to models that
propose chromatin associated proteins first associate with
nonspecific sequences of DNA at low affinity and then dif-
fuse along the DNA in one dimension searching for a
"bona fide" binding site [59]. Nonspecific binding of
these proteins to the DNA could account for the popula-
tion demonstrating intermediate dynamics between freely
diffusible and fully bound [60].

Another example of this phenomenon is transcription,
where in order to transcribe the information encoded on
DNA, RNA polymerases need to interact with the DNA.
Transcription in the cell nucleus occurs at the interface
between condensed masses of chromatin and the inter-
chromatin space [61,62], (Figure 7). Viscoelastic phase
separation also predicts that the interface between the fast
and slow component, must change in a manner propor-
tional to the alteration in either fraction. For example, if
the fast phase increases, the slow phase (DNA) will
become more extended, increasing the interface surface.
Likewise, a decrease of fast phase will be associated with a
compaction of the slow moving phase and a reduction in
the interface surface [23]. Again this is precisely what hap-
pens in the nucleus. Activation and repression of tran-
scriptional activity are associated with changes in the
kinetically fast phase, i.e interchromatin space (ICS).
Transcription activation has always been linked with an
increase in the ICS. Indeed, the first manifestation of reac-
tivation was a volume enlargement of the erythrocyte
nucleus followed by an increase in transcription [63].
When Hela cells were fused with quiescent chicken eryth-
rocytes, the result was reactivation of the chicken nuclei
within minutes after the increase of the nuclear volume
[63]. Lymphocyte activation with Concavalin A proceeds
with up to six fold increase in nuclear volume, due to a
near 10-fold increase in the ICS region. This increase in
ICS is paralleled with transcriptional activation [64]. On
the other hand, transcriptional shut down is accompanied
by extrusion to the cytoplasm of ribonucleoproteins,
splicing factors, and other nuclear proteins into structures
called HERDS that eventually become degraded, with
nuclei shrinking dramatically during the process [65].
Therefore, activation of transcription involves an increase
in the interface where transcription is occurring [61]; and
transcription repression a decrease of the interface.

In conclusion, I propose the hypothesis that nuclear com-
partmentalization is the result of the physical forces oper-
ating in the cell nucleus. In this way the different
structures observed will depend on the characteristics of
the compartment components. When viscoelastic phase
separation is the prominent force, the compartment gen-
erated will have sponge like structure. When no strong
dynamic asymmetry applies to the components of the
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compartment and self-association occurs, then macromo-
lecular crowding is the driving force generating spherical
structures. If no dynamic asymmetry applies to the com-
ponents of the compartment and they do not self-associ-
ate, then no phase separation will operate and the
compartment will look unstructured. If colloidal proper-
ties are predominant, the structure will behave like a col-
loidal gel.

The concepts of viscoelastic separation and macromolecu-
lar crowding appear to be consistent with the literature in
the field of nuclear structure and function. Appreciation
that biophysics has an important role to play in nuclear
organisation will doubtless lead to a better understanding
of the functions of the nucleus and more importantly give
insight what may be happening when these processes go

awry.
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