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Abstract. We consider the problem of representing the visibility graph of line 
segments as a union of cliques and bipartite cliques. Given a graph G, a family 
f# = {G1, G2 . . . . .  Gk} is called a clique cover of G if (i) each Gi is a clique or a bipartite 
clique, and (ii) the union of G i is G. The size of the clique cover fr is defined as 
~ =  1 hi, where ni is the number of vertices in Gi. Our main result is that there are 
visibility graphs of n nonintersecting line segments in the plane whose smallest clique 
cover has size f~(n2/log 2 n). An upper bound of O(n2/log n) on the clique cover follows 
from a well-known result in extremal graph theory. On the other hand, we show that 
the visibility graph of a simple polygon always admits a clique cover of size 
O(n log 3 n), and that there are simple polygons whose visibility graphs require a clique 
cover of size O,(n log n). 

I. Introduction 

Given a set S ofn nonintersecting line segments in the plane, its visibility graph G(S) 
has the endpoints of S as vertices and pairs of mutually visible endpoints as edges. 

* The work by the first author was supported by National Science Foundation Grant CCR-91- 
06514. The work by the second author was supported by a USA-Israeli BSF grant. The work by the 
third author was supported by National Science Foundation Grant CCR-92-11541. 
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Fig. 1. Two extreme visibility graphs. The example in (a) has a linear number  of edges, and the one 
in (b) has a quadratic number  of edges. 

(Two points in the plane are visible, with respect to S, if the open line segment 
joining them does not intersect any segment of S.) The number of edges of G(S) 
may range from linear to quadratic in n, as shown in Fig. 1. 

In this paper we consider the problem of representing a visibility graph 
compactly. Our motivation stems from the example in Fig. l(b), where the visibility 
graph has a quadratic number of edges, but we can represent it implicitly by 
storing only the vertices. Similarly, a complete bipartite visibility graph can also 
be represented compactly by storing its two vertex classes. The idea of representing 
a visibility graph as a union of cliques or bipartite cliques has the advantage that 
each component is particularly simple. We discuss some algorithmic implications 
of our compact representation in Section 1.3. Let us first define our model of the 
compact representation more formally. 

1.1. The Model  

Let S be a set of line segments in the plane, where no two segments intersect except 
possibly at endpoints. Let 14S) denote the set of endpoints in S. We say that two 
points are mutually visible if the open segment connecting them does not intersect 
the closure of any segments of S; however, it is convenient to assume that the 
endpoints of the same segment are visible to each other. This visibility relation 
induces a visibility graph G = G(S) with vertices I~S) and edges E(S). Let f# = 
{Gl ,  G2 . . . . .  Gk} be a family of subgraphs of G. We say that f# is a clique cover 
of G(S) if the following conditions hold: 

1. Each Gi is a clique or a bipartite clique. 
2. E(S) = E 1 w E 2 w "" w Ek, where E i denotes the set of edges in Gi. 1 

i In some applications a proper partition of the edges may be desired; however, since we are 
primarily interested in a lower bound, we work with the weaker model allowing overlap. 
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Since each Gi is a clique or  a bipartite clique, it can be represented compactly 
in O(I Vii) space, where V~ is the vertex set of Gi. Let f(S,  f#) denote the size of the 
clique cover if: 

k 

f(s, = Z iv, i, 
i = 1  

and let f(S) denote the size of a smallest clique cover of G(S); that  is f(S) = 
min.<r f#). Finally, define 

f(n) = max f(S), 
S 

where the maximum is taken over all sets S of  n nonintersecting line segments in 
the plane. In order to be able to consider graphs of varying densities, we also define 

g(n,e) = max f(S). 
Isl =n 

IE(S) I = e 

We establish nearly tight upper and lower bounds on the quantit iesf(n) and o(n, e). 

1.2. Summary of  Results 

The main result of  our paper is that the smallest clique cover of  a visibility graph 
has size fl(n2/log 2 n) in the worst case. 2 Thus, 

\ log  ~ n/  

Roughly speaking, we show that there are visibility graphs with a quadratic 
number of edges that do not contain a large bipartite clique. Thus, in the worst 
case, the best representation of  a visibility graph by cliques and bipartite cliques 
can save at most  a factor of O(log 2 n) over an explicit representation. This result 
is also close to the best poss ib le- -any graph on n vertices has a clique cover of 
size O(n2/log n) [16]. 

Our  proof  of  the lower bound in (1) uses a nonconstructive, probabilistic 
argument. By a constructive method, we can prove a slightly weaker result, namely, 
f(n) = ~'1(n3/2). Specifically, we construct a set of n disjoint line segments whose 
visibility graph G has e = O(n 3/2) edges, G has a vertex-induced subgraph G' also 
with | edges, and G' does not  contain a K2.2. This construction actually shows 
that y(n, e) = O(e) whenever e = 0(n3/2). Our probabilistic construct ion gives the 
general lower bound  g(n, e) = f~(n + e/log 2 n) for all e = O(n2). These results imply 

2 All logarithms in our paper are to the base 2. 
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that virtually no compaction is possible in the worst case, no matter how dense 
G is. 

Finally, we establish a positive result for the visibility graph of segments forming 
the boundary of a simple polygon. We show that the visibility graph of a simple 
polygon on n vertices always admits a clique cover of size O(n log 3 n). We also 
show that the clique-cover size is at least ~(n log n) for the visibility graph of 
certain simple polygons. 

1.3. The Motivation 

A compact representation of the visibility graph appears to be the key to deriving 
efficient algorithms for several visibility-related problems. We use the following 
three problems to illustrate this point. 

1. [Size of a visibility graph.] Given a set S of nonintersecting line segments in 
the plane, count the number of edges in its visibility graph G(S). 

2. [The biggest stick or diagonal.] Given a bounded polygonal region with 
holes, compute the longest segment ("stick") that can be placed inside 
the region. The longest-diagonal problem requires that both endpoints 
of the stick be vertices of the polygonal region. 

3. [Range-limited visibility graph.] Given a set S of nonintersecting line seg- 
ments in the plane, compute all edges of G(S) of length at most one. 

Problems 1-3 can be easily solved in O(n z) time by explicitly computing the 
visibility graph [12], [17]. Whether they can be solved in o(n 2) time remains an 
open problem. Interestingly enough, though, all three problems can be solved in 
substantially better time for a simple polygon. In particular, the number of edges 
in the visibility graph of a simple polygon can be computed in time O(n log z n) 
[1], the biggest stick can be computed in time O(n 8/5+~) for any ~ > 0 [1], 
the biggest diagonal can be computed in time O(n log 3 n) [2], and the range- 
limited visibility graph can be computed in time O(n 4/3+e -k- k), where k is the 
output size. 

A common element of all these algorithms is that they implicitly depend on the 
fact that the visibility graph of a simple polygon admits a small clique cover, which 
can also be computed efficiently. Moreover, these algorithms can be generalized 
to a collection of (nonintersecting) segments provided that the visibility graph of 
the segments has a small, and efficiently computable, clique cover. Our main result, 
f(n) = ~(n2/log 2 n), suggests that the existing algorithms or their variants are not 
likely to yield O(n 2-~)-time algorithms for these problems, for any 6 > 0. Although 
we are unable to prove that a lower bound on f(n) implies a similar lower bound 
for the time complexity of problems 1-3, we believe it to be the case. 

Our paper contains four sections. In Section 2 we present our main result: a 
lower bound on the clique-cover size of the visibility graph of segments in the 
plane. In Section 3 we give an algorithm for computing a small clique cover of 
the visibility graph of a polygon and a lower bound on the worst-case size of such 
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a cover. We close in Section 4 with some discussion of the possible implication 
of our  results. 

2. A Lower Bound on Compact Representation 

In this section we prove a lower bound on the functionf(n).  We give two different 
proofs; both proofs use essentially the same construction, however,  one is construc- 
tive while the other is probabilistic. 

2.1. The Construction 

Our  construct ion uses three sets A, B, C of points and segments, arranged along 
three vertical lines, as shown in Fig. 2. A and C consist of uniformly spaced points 
along the lines x = 1 and x = 3, respectively. The middle set B has point-sized 
"holes"  along the line x = 2. The holes are created by placing open line segments 
end-to-end along the line. Specifically, to create holes at points bl ,  b2 . . . . .  bin, 
where bj = (2, ij), we use open segments (b_~,  bl), (bl, b2), (b2, b3) . . . . .  (bra-l, bin), 
(b,,, b J ,  where b_ ~ = (2, - ~ )  and b~ = (2, ~ ) .  

Remark.  The  construct ion outlined above is quite degenerate: it uses point-sized 
segments and holes; all segments are contained in three parallel lines. We use this 
simpler form for our proofs since it best illustrates the main idea of the construc- 
tion. At the end of this section we discuss how to convert  our  construct ion into 
a nondegenerate  one, in which all segments have finite lengths, every pair of 
segments is separated by a finite distance, and no three endpoints  are collinear. 

A B C 

Fig. 2. Sketch of the lower-bound construction. 



352 P.K. Agarwal, N. Alon, B. Aronov, and S. Suri 

Sets A and C consist of  uniformly spaced lattice points on the lines x = 1 and 
x = 3, respectively, with y-coordinates between 1 and 3n. The middle set B consists 
of holes at some subset of  the points (2, i), where n + 1 < i < 2n. Let py be the 
y-coordinate of a point p, and define Py = {PrIPeP} for a set of points P. 
We put Ay = Cy = {1, 2 . . . . .  3n} and leave By _ {n + 1, n + 2 . . . . .  2n} unspecified. 
Define 

A = {(1, i)[ieAy}, 

B = {(2, i)]ieBy}, 

C = {(3, i)[i~ Cy}, 

S = A w B w C .  

Slightly abusing the notation, we let B denote both the set of holes as well as 
the set of segments that are used to create these holes. We argue that, for an 
appropriate  choice of  the set B r, the visibility graph of S has clique-cover size 
~(n2/log 2 n). We begin with some definitions. 

Definition. Given two sets of numbers  X, Y and a number  z, define z + X = 
{z + x l x e X } ,  2X = {2x l x~X} ,  and S + Y = {x + y l x E X  and y ~  Y}. We say 
that (X, Y) satisfies the sum condition (with respect to By) if X + Y _~ 2By. 

The following lemma is straightforward. 

Lemma 2.1. Two points a and c, where a e A and c ~ C, are mutually visible if and 
only if a r + c r ~ 2B r. Two subsets P ~_ A and Q ~_ C induce a bipartite clique in G(S) 
if and only if (P r, Qy) satisfies the sum condition with respect to B r 

Lemma 2.2. In the visibility graph of S, IE(G)I = O(n[BI). The number of visibility 
graph edges between A and C is also | 

Proof Let us first count  the number  of visible pairs (a, c), where a e A and c r C. 
A pair (a, c) is visible through the hole at b, for b e B, if and only if a r + c r = 2b r. 
Since ar, c y e { 1 , 2  . . . . .  3n} and brr  + 1 . . . . .  2n}, there are at least 2n and at 
most  3n solutions to the equations ay + c r = 2by, for a fixed by. Thus, each hole 
b ~ B creates O(n) visibility edges between A and C, and so the total number  of 
visible pairs of  the form (a, c) is | 

Next, due to collinearity of A (resp. B and C), the number  of visible pairs among  
points of A (resp. B and C) is linear. Finally, 

I((A u C) x B) r~ E(S)[ <_ IA u C]'[BI 

= O ( n l B [ ) .  

This completes the proof  of  the lemma. [ ]  
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The main idea behind our  lower-bound argument  is to show that  large sets B 
exist that  preclude all but small biparti te cliques. In particular,  we show that there 
are sets B, with [BI = | such that  there is no biparti te clique Kp.~ between A 
and C with min{p, q} > c log 2 n, where c is an absolute constant.  In the remainder  
of this section we concentrate primarily on the subgraph induced by A w C. 

Definition. We say that  a set B has the proper ty  L(m, d), where m = re(n) and 
d = d(n), if the following conditions are satisfied: 

1. IBrl = | with By _~ {n + 1, n + 2 . . . . .  2n}. 
2. For  every pair (Pr, Qr), with P ~ A and Q _  C, that  satisfies the sum 

condit ion with respect to B r, we have min {IPI, IQI} < d. 

The following theorem relates proper ty  L(m, d) to the size of a clique cover. 

Theorem 2.3. The existence of a set B with property L(m,d) implies that 
f (n) = fl(nm/d). 

Proof The collinearity of points in A and C implies that the visibility subgraph 
induced by A u C cannot  have a clique of size greater than four. Thus, it suffices 
to consider only the biparti te cliques. Let G1 . . . . .  Gk be a clique cover of G(S), 
and let E i denote the set of edges in Gi. If Gi = Kp,q, we put w(Gi) = (p + q)/pq. 
Next, for an edge eEE(S), let w(e)= ~.e~EW(Gi). Since min{p,q} < d, we have 
w(Gi) > 1/d, and therefore w(e) > 1/d, for every e ~ E(S). Finally, 

f(S) = ~ w(e) > IE/S)l_ f2(mn'~ 
eEE(S) -- d ~ d } '  

where the last inequality follows from L e m m a  2.2 and the fact that  I BI = | 
[ ]  

If a set B satisfies proper ty  L(m, d), then trivially a subset B' ~ B satisfies 
proper ty  L(m', d), where m' = I B'I, giving the following corollary of the above 
theorem. 

Corollary 2.4. The existence of a set B with property L(m, d) implies that ~/(n, e) = 
[2(n + e/d), for any n < e <_ mn. 

The key remaining step in the proof  is to show that  a set B with proper ty  
L(m, d), where m is large and d is small, exists. The next two sections address this 

problem. In Section 2.2 we give the construct ion of a set B with proper ty  L(x/~, 2), 
which implies f(n) = ~')(n3/2), and g(n, e) = O(e) whenever e = 0(n3/2). In Section 
2.3 we give a probabilist ic p roof  for the existence of a set B with proper ty  
L(| O(log 2 n)), which gives a near-quadrat ic  lower bound for f(n). 
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2.2. A Constructive Lower Bound 

We employ the following result of  Erd6s  and Turfin [10], proved independently 
by Singer [ 15]. Fo r  the sake of completeness,  we include the p roof  given in [10]. 

L e m m a  2.5 [10]. Given any integer m > 0, let 

T(m) = {a 1, a 2 . . . . .  at} - {1 . . . . .  m} 

be a largest-cardinality set such that a i + a~ v~ a i, + af whenever {i,j} ~ {i',j'}. 

Then t =  O(x//m). 

Proof It  is clear that  a larger set with this proper ty  does not exist: the numbers  
]a) - cril must  be different, for all 1 _< i _<j < t, and therefore 

We now exhibit a set of t = ~ ( x / ~ )  numbers  with the required property.  Pick a 

pr ime number  p, where 1 < p < L x / ~ J .  Given an integer i, for 1 _< i < p, define 
(i2) to be the smallest positive integer u satisfying i 2 - u (mod p), where 1 _ u < p. 
Define a sequence of numbers  

a i = 2 p i + ( i  2) for l _ < i < p .  (2) 

It  is easily checked that  a~ _< 2p 2, and ~r i < aj for i < j. We claim that  a~ + aj  r 
a k + a t whenever {i,j} # {k, l}. To  prove the claim, we observe that  if a~ + aj  = 
a k + at, then (2) implies 

i + j = k + l  and i2 + j2 _ k2 + l 2 (modp).  (3) 

Thus,  i - k =  l - ]  and i 2 - k  a -  l a _ j 2  (modp) .  Since {i,j} # {k,l},  we have 
i - k ,  l - j  # O, which implies that  i +  k - j  + l  (modp).  However ,  then (3) 
implies that  i = I a n d j  = k, which contradicts  our  assumpt ion  that  {i,]} # {k, l}. 

It is a well-known fact of  number  theory that  a prime number  between m 
and 2m, for any m > 1, exists; see, for instance, [13]. Thus, we can always find 

a prime p with Lx//~8 J < p _< Lx/~zJ. This completes the proof  that  IT(m)[ = 

The preceding p roo f  also gives an O(m)-time algor i thm for constructing a set 

T(m) with I T(m)l = O(x/~) .  In order to construct  a set B with p roper ty  L(v/n,  2), 
we pick By as the shifted set T(n): 

B, = {n + il i~ Tin)}. 
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Since the shift does not affect the sum property,  the implication of Lemma  2.5 

continues to hold. We show that  the set B so obtained has proper ty  L(v/n, 2). The 

first condition, namely, IByl = | is clearly satisfied. To  prove the second 
condition, we assume for the sake of a contradict ion that  distinct a l ,  a2 ~ Ar and 
Cl, C2 e Cy exist such that  (ai + c j)~2 ~ B~, for all i, j ~ { 1, 2}. Let blj = (al + c j)~2, 
where 1 < i,j _< 2. Then we have 

bla + b22 = b12 + b21 = 
a I q- a 2 q- c 1 + c 2 

By L e m m a  2.5, we have either bl l  = b12 and b 2 2 - - - b 2 1  , or b l l  = b21 and 
b22 = b~2. In either case we arrive at the conclusion that either a~ = a2 or cl = e2, 
which contradicts the assumpt ion  that a l ,  a2 and cl ,  c2 are distinct. We have 
established the following key lemma. 

Lemma 2.6. A set B with property L(x/n, 2) can be constructed. 

Theorem 2.7. A set S of  n disjoint segments in the plane can be constructed such 
that ]E(S)] = O(n a/z) and the minimum clique cover size of  G(S) is also O(n3/2). This 
implies that f (n)  = D(n3/2). 

Corollary 2.8. g(n, e) = |  e = 0(n3/2). 

2.3. A Probabilistic Lower Bound 

We prove the existence of a set B ___ {n + 1 . . . . .  2n} with proper ty  L(~(n), log 2 n), 
thus establishing the lower boundf (n )  = ~(n2/log 2 n). Our  proof  uses a probabilis-  
tic argument.  To  simplify the notat ion we omit  all floor and ceiling signs whenever 
they are not essential, and assume that  n is sufficiently large. 

Let N = { 1, 2 . . . . .  3n} and let p be a small absolute constant,  to be fixed later. 
Let Z be a r andom subset of N obtained by choosing each element of N randomly  
and independently with probabil i ty  p. The cardinality of the set Z c~ {n + 1, . . . ,  2n} 
is a binomial  r andom variable with parameters  n and p. By the s tandard estimates 
for binomial  distributions (see, for instance, Appendix A of [3]), IZJ >_ np/2 with 
high probabil i ty;  high probabil i ty  means "with  probabil i ty  approaching 1 as n 
goes to infinity." Our  p roof  hinges on the following crucial claim: 

I44th high probability, a set Z exists such that, for  any pair S, T ~_ N with 
S + T___ 2Z, we have min([S[, ]T[) < log 2 n. 

The claim implies that  the set B obtained from By = Z c~ {n + 1 . . . . .  2n} has 
proper ty  L(np/2, log 2 n), with high probabili ty.  We now proceed to prove this 
claim. 
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Consider  two arbi t rary  sets S, T _ N, with ISI = I TI = d. We always have the 
following bounds  for IS + T I: 

2 d -  1 < I S +  TI ~ d  2. 

Let Nm denote the number  of ordered pairs (S, T) satisfying IS + T I = m, 
where 2d - 1 < m < d 2. Let E denote the expected number  of  pairs (S, T) with 
S + T ~  2Z. Since the elements of Z are chosen independently,  we have the 
following upper  bounds  on E: 

d 2 

E < Z N,,p". (4) 
m = 2 d - 1  

O u r  goal is to show that  this expectat ion is o(1) for large n, provided p is a 
sufficiently small constant.  This is shown by proving that IS + T[ is sufficiently 
large for most  of  the pairs S, T that  satisfy the above properties. The crucial l emma 
is the following. 

L e m m a  2.9. For all m, 2d - 1 < m < d 2, 

1 - 2 . ~ / 2 d  z x/m) - 2  m . - . 
Nm < d, 2 (an) 2"/m t~=o I " /(3n)'(2m)2a-2"/m-' 

/4em"x 2a ,,./-s 
< ~ - )  (3n) "/m. 

(5) 

(6) 

Proof.. Clearly N m is the number  of ordered pairs of ordered sets S = {sl . . . . .  Sd} 
and T =  {q . . . . .  td} of distinct elements of N satisfying IS + TI = m, divided by 
(d!) 2. To  est imate this number ,  if it convenient  to choose the members  of S 
and T sequentially, al ternat ing between S and T. For  each i, 1 < i < d, define 

St = {sl . . . . .  st} and T / =  {tl . . . . .  ti}. Put  S' = S ~ -  and T '  = T~-~. For  i > x/m, 
we call st enlarging if 

I(si+ T')c~(Si_,  + T/_0[ < v  
2 

Similarly, tt is called enlarging if I(ti + S') c~ (Si + T~- 1)1 - x//m/2. Observe  that  if 
st is enlarging, then 

ISi+ T~-II - I S i - t  + Ti - l l  > "  
2 
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and an analogous statement holds for an enlarging t i. Since IS + T] = m, there 

are at most  2 x / ~  enlarging elements in S u T. The proof  depends on the 
observation that the number  of ways to choose a nonenlarging si is at most  
21S~_ 1 + T~_ 11 < 2m, for any fixed i; a similar statement holds for a nonenlarging 
h. This follows because if s~ is chosen uniformly at random among the 3n members 
of N, then the expected value of ](s i + T')c~ (Si- i  + T/-0[  is at most 

IT'I-[S, l+T~-xl ~ ' I S ,  I+T~-,I 
3n 3n 

By Markov 's  inequality, the probability that the cardinality of this intersection 

exceeds x /~ /2  is smaller than 2"]Si  1 + T i - l l / 3 n  < 2m/3n. Thus, the number  of 
ways to choose a nonenlarging sl is at most  2m. 

To establish the bound in (5), observe that there are less than (3n) 2x/~ choices 

for the (ordered) sets T' and S'. Among  the remaining 2d - 2x//m (ordered) elements 

of S u T there are i < 2x//m enlarging choices. There are ways to 

choose the i steps when an enlarging element is picked, and each enlarging element 

can be chosen in at most 3n ways (trivially). Each of the 2d - 2x/m - i nonenlar- 
ging elements can be chosen in at most  2m different ways, by the above observation. 
This completes the proof  of (5). The bound in (6) follows from the observations 
that 1~dr < (e/d) a, and that 

i= o ", (3n),(2m)2a- 2.,/~-, < 22a(3n)2~f~(2m)Za" [ ]  

Lemma 2.10. An absolute positive constant Po exists  such that, for  p < Po, the 
probabili ty that S + T ~_ 2 Z  for  some subsets S, T c N is o(1) (as n tends to infinity), 
where IS] = ITI = d = log 2 n. 

P r o o f  By Lemma 2.9, the expectation E of the number  of pairs (S, T) with 
S +  T c 2 Z i s a t m o s t  

a2 n2 [ 4em'~ 2a,. ,4 ~ ,. 

,. = 2a- 1 m = 2d- 1 / t in)  "/ p . 

Put Rm = (4em/d)2a(3n)4"f~p m. Then 

 4e~ 'o4) 
log  . .  _- log  -) + - m (7) 
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Without  a t tempt ing  to opt imize the constants,  we prove  the corollary for Po 
defined by log(1/po) = 32e. I f p  < Po, then log(l/p) > 32e. For  each m > 2d - 1 > 
d = log 2 n, we have 

4x/-m log(3n) < 8m (8) 

and, since log x < x for x > 4, 

f 4em~x 4era 8em. (9) 2d log(  ) :d d - -  

Substituting (8) and (9) in (7), we get log Rm < - 16em for each admissible m. Thus,  

d2 d2 

E < E R,, _~< E 2 -16em = o(1), 
m = 2 d -  I r a = 2 d -  1 

provided n is sufficiently large. Thus, the probabi l i ty  that  there are S and T, with 
ISI = [TI = d and S + T c 2Z, is o(1). This completes  the proof. [ ]  

L e m m a  2.10 and Theorem 2.3 together  imply the following theorem. 

Theorem 2.11. There is a set S of n disjoint line segments in the plane whose visibility 
graph has O(n 2) edges and the smallest clique cover of the visibility graph of S has 
size ~(nE/log 2 n). 7bus, f(n) = ~(nE/log 2 n). 

Remark.  The p roof  of L e m m a  2.10 can be modified to show that  sets with 
proper ty  L(fl(n 1-6), O(1/62)), for any fixed 0 < 6 < 1, also exist. The modificat ion 
sets p = 1/n ~ and d = c/62, where c is an appropr ia te  constant  independent  of  3. 
Substituting these values in (7) shows that  log R,, < - c '6  log n, for some constant  
c ' > 0 .  Thus,  the expected number  of  (S, 7) pairs with S +  T _ 2 Z  is E <  

d2 ~,.  = za- 1 2 -  c'~ log,, which is o(1 ). This gives the following corollary of Theorem 2.11. 

Corollary 2.12. g(n, e) is O(e) and ~(n + e/log 2 n), for any e > n. I r e  = O(n2-~), 
for any constant 0 < 6 < l, then g(n, e ) =  l)(e); the constant of proportionality 
depends on 3. 

In fact, we can prove  the following theorem, which is a slightly s tronger  version 
of L e m m a  2.10. 

Theorem 2.13. Let Z be a random subset of  N = {1, 2 . . . . .  3n} obtained by 
choosing each a ~ N randomly and independently with probability p (where p is any 
constant, 0 < p < 1). Then, with high probability, there are no subsets S and T of  N, 
[ S[ = [ T[ = c(p) log 2 n, with S + T c 2Z, c(p) is a constant depending only on p. 
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The proof  of Theorem 2.13 depends on the following lemma, which proved by a 
simple greedy argument.  

L e m m a  2.14. For every 0 < e < 1 and for any two subsets S, T ~ N of size d each, 
subsets S' ~ S and T' ~ T satisfying }S'I = I Z'l  = x ~  and ]S' + T'] > (1 -- e)ed 
exist. 

Proof. Let g = x / ~  and let T'  c T be an arbi t rary  subset of cardinality g. By 
induction on j, we prove that  there is an S" c S satisfying IS"I = j  and IS" + T'I > 
(1 - e)gj, for every 1 < j  < g. The base case (j = 1) is trivial: we can take any 
one-element subset of  S. Assuming that the assertion holds for j, we consider that 
case j +  1 ( <  g). By induction, there is an S" c S, I S"I = j, so that  IS" + T'I > 
(1 - e)gj. We claim that  there is an element s e S so that  I(s + T') n (S" + T')] < eg. 
This follows from the observat ion that the number  of ordered four-tuples 
(S, t l ,  s2, t2), where s E S, s2 e S", and t~, t 2 ~ T', satisfying s + t~ = s 2 + t 2 is at 
m o s t  I T']2IS"[-= g2j < g3; notice that  choosing tl ,  t2, s2 determines s. Thus,  the 
number  of elements s that  appear  in the first coordinate of more  than eg such 
four-tuples is less than ga/(eg) < d. So, there is an s E S that  does not appea r  in 
that  many  four-tuples, and this s clearly satisfies our claim. The  set S* = S" w {s} 
satisfies IS*[ = j  + 1 and [S* + T'] > (1 - e)g(j + 1) complet ing the p roof  of  the 
lemma. [ ]  

Proofof  Theorem2.13. P u t e = � 8 9  I f S  + T c_2Z, f o r s o m e l S l = l T l = c l o g 2 n ,  
then by L e m m a  2.14 S ' c  S and T ' c  T exists, with IS'I = IT'I  = g =  c ' l o g n ,  

where c ' =  x /c /2  and IS' + T ' I >  g2/2. However,  the expected number  of such 
pairs (S', T') is at most  

(3n)Zgp g~/2 = exp~2c'  / log 2 n + 2c' log 3 l o g  n-(c')21~176 \ 

( (  2c ' log  3 (c',Zl2g(1/p))) 
= e x p  log 2 n  2 c ' +  logn 

which is o(1) for any p < 1 provided that  c (and thus c' = x / ~ )  is sufficiently 
large. Thus, with high probabil i ty,  2Z contains no such S '  + T', and hence no 
such S + T, complet ing the proof. []  

Although the above proof  is shorter  and gives a slightly better  estimate, we 
believe that  the proof  in L e m m a  2.10 may  eventually lead to an asymptotical ly 
better  estimate. 

Remark.  The  pseudorandom properties of  Paley graphs  (see [3] for the defini- 
tion) suggest that  the following explicit construct ion of a subset Z c {n + 1 . . . . .  2n} 
may  satisfy proper ty  L(f~(n), log ~ n). Let q be the smallest pr ime larger than 2n, 
and let Z be the set of  all i, n + 1 < i < 2n, that are quadrat ic  residues modulo  
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q. It is easy to see that IZ[ = (1 + o(1))n/2. By applying known estimates tbr 
character sums it can be shown that, for every k < log n/4, if two subsets S, 
T ~ {i . . . . .  3n}, with ISl = k, satisfy S + T ~ 2Z, then ITI -< (1 + o(1))q/2 k = 
O(n/2k). It can also be shown that Z satisfies property L(f~(n), O(x/n)) (for 
instance, see pp. 116-119 of [3]). However, it is now known if Z satisfies property 
L(f~(n), log ~ n), although it seems plausible (but difficult, as a proof would have 
some far reaching number-theoretic consequences). 

2.4. Removing Degeneracies from the Construction 

A simple modification of our construction turns it into a nondegenerate configura- 
tion. In the modified version of our construction, the segments have finite lengths, 
they are separated by finite distances, and no three endpoints lie on a line. We 
first replace the open segments of B by a collection of slightly shorter closed 
segments separated by tiny but finite-length gaps; the segments still lie along the 
line x = 2. Clearly, this does not affect the visibility between A and C, it at most 
doubles the number of edges between B and A w C, and it introduces | 
visibility edges between endpoints of B. Next, we replace the points of A by tiny 
horizontal segments whose left endpoints lie on a concave curve of the y coordinate 
and whose right endpoints lie on a convex curve, as shown in Fig. 3. We apply a 
similar transformation to C. We then tilt each segment of A and C slightly in 
order to avoid horizontal collinearities; this is done in such a way that one 

�9 endpoint of a segment does not block the visibility of the other endpoint. A similar 
tilt is applied also to the segments of B, ensuring that the number of visibility 
edges among endpoints of B does not exceed o(Inl).  

The final construction has at most twice as many endpoints and at most four 
times as many visibility edges as the original one. It is easily checked that it does 
not contain cliques or bipartite cliques that are much larger than those contained 
in the original construction. The use of segments instead of points necessarily 
means that certain bipartite cliques inadmissible in the original construction are 

6 

Fig. 3. Removing degeneracies�9 

. ,k- 

- ,k--- 

O" 
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possible in the modified construction; however, this only affects the constants in 
our theorems, not the asymptotic form of their expressions. For instance, while 
K2.2 is not possible in the original (degenerate) construction used for the proof of 
Theorem 2.7, in the modified construction we can only exclude K4. 4. 

3. The Visibility Graph of a Simple Polygon 

Consider a simple polygon P on n vertices, and let S denote the set of segments 
forming its boundary. We show in this section that G(S) admits a compact 
representation; specifically, we produce an O(n log 3 n)-size clique cover of G(S). We 
also show that there are polygons whose visibility graph requires a clique cover 
of size f~(n log n). 

3.1. An Upper Bound 

In this section we describe an algorithm for constructing a small clique cover of 
the visibility graph G(S). Let CH(P) denote the convex hull of P. The closure of 
CH(P)\P consists of a collection of simple polygons with disjoint interiors, called 
pockets. Each edge in G(S) lies inside CH(P) and does not cross any segment of 
S. Therefore it lies either in P or in one of the pockets of P. We present an algorithm 
to compute a clique cover of the edges of G(S) that lie inside P. A clique cover of 
other edges of G(S) can be computed by repeating the same procedure for each 
pocket of P. Abusing the notation slightly, we use G(P) to denote the set of edges 
in G(S) that lie inside P. Our construction is based on a divide-and-conquer 
approach. We partition P into two subpolygons P~, P2 by a diagonal e, such that 
each of the subpolygons has at most 2n/3 vertices [4]. The edges of G(P) can be 
partitioned into three subsets: 

(i) E~I: an edge of G(P) is in E ~  if both of its endpoints lie in PI .  
(ii) E22: an edge of G(P) is in E22 if both of its endpoints lie in P2. 

(iii) E~2: an edge of G(P) is in E~2 if one of its endpoints lies in P1 and the 
other in P2. 

We recursively compute clique covers of El l and E22. In the following we 
describe a procedure for computing a clique cover for E12. 

Without loss of generality assume that e lies on the y-axis, and that the right 
(resp. left) side of e lies in P1 (resp. P2). Let p be a rightward-directed ray emanating 
from e. Using a standard duality transformation, we can map the line supporting 
p to a point p*. We refer to the point p* as the dual of p. We define a planar map 
M~ in the dual plane as follows. Each face of M~ is the set of points dual to the 
rays emanating from e and hitting first (the interior of) some fixed edge a of P~ 
(i.e., the portion of p between e and a avoids the exterior of P~). Every edge ~, of 
M~ is the locus of points dual to the rays that either hit a fixed vertex v of P1, or 
touch a vertex v of P~ before hitting an edge a of PI .  Let v(7) denote the vertex 
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of PI that the rays corresponding to points on the edge 7 intersect before crossing 
the boundary of P1. By considering leftward-directed rays, define a similar map 
M 2 for P2. By a result of Chazelle and Guibas [8], each M~ is a convex planar 
subdivision having O(n) faces, edges, and vertices. Let F1, F2 denote the set of 
edges in M1 and in M2, respectively. 

The intersection point of an edge ])a ~ F1 and an edge 72 E I"  2 is the dual of the 
line passing through v(])l) and v(])2 ). By construction, the edges 71 and ])2 intersect 
if and only if the interior of the segment v(]) l)v(]) 2) does not intersect the boundary 
of P, i.e., if and only if (v(])0, v(])2)) is a visibility edge of E12. The problem of 
finding a small clique cover of E12 thus reduces to finding a small clique cover of 
the intersection graph G* of 1"1 u F 2 (i.e., the vertices of G* are the segments of 
F 1 and 1-'2, and (Yl, ])2) is an edge in G* if ])1 and ])2 intersect). Chazelle et aL [7] 
have presented an algorithm that can compute a clique cover of G* of size 
O(n log 2 n). This immediately gives a clique cover of E12 of size O(n log 2 n). Let 
S(n) denote the minimum clique-cover size for the visibility graph of any simply 
polygon on n vertices. Then the preceding discussion has shown that 

S(n) < S(nl) + S(nz) + O(n log 2 n), 

where n 1 + n 2 = n and n 1, n 2 _< 2n/3. The solution to this recurrence is S(n) = 
O(n log 3 n). We apply the above procedure to all pockets of P, obtaining a clique 
cover of the entire visibility graph. Since the total number of vertices over all 
pockets is at most 2n, we have established the following theorem. 

Theorem 3.1. Let S be a set of line segments forming the boundary of a simple 
polygon in the plane. Then f(S) = O(n log 3 n). 

3.2. A Lower Bound 

We (constructively) prove that there are simple polygons on n vertices whose 
visibility graphs require clique covers of size f~(n log n). The combinatorial lemma 
needed here follows from a result of Katona and Szemer6di [14], and our proof 
below applies their approach. Our  lower-bound construction uses a polygon P on 
4n vertices, whose vertices are labeled a 1, ul, vl, bl,  a2, u2 . . . . .  v., b,, in a counter- 
clockwise order around the boundary. Let C1, C2, C3 be three concentric circles 
of radii 1 - e, 1, 1 + e, respectively, where e is a sufficiently small positive number. 
In the polygon the vertices ul . . . . .  u. lie on circle C1, the vertices al, bl . . . . .  a,, 
b, lie on circle C2, and the vertices vl . . . . .  v. lie on C3, as shown in Fig. 4. 

Each 4-tuple a i, ul, bl, vi forms a sufficiently small convex quadrilateral so that 
the following conditions are satisfied: 

1. b~ is not visible from a~. 
2. The line through a~ and u~ separates bl, v~ from all other vertices of P, and 

ai is visible to all b~, j # i. 
3. The line through b~ and u~ separates ai, v~ from all other vertices of P, and 

bi is visible to all a j, j # i. 
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v6 a~ 
b6. - " "- :-'.'.-.. �9 .;.'."" " : :  e L : . .  

v . : . . 5  

a2,. 
V9 . 2 ,:'" 

~3 ~3 

Fig. 4. Lower-bound construction. 

Let S denote the set of edges of the polygon P. Let H denote the bipartite 
graph with vertices {al . . . . .  a,} w {bl . . . . .  b,} and edges {(a,, bj)ll < i C j  < n}. 
Observe that H is the complete bipartite graph minus the matching 
{(ai, bi)[1 _< i < n}. 

Lemma 3.2. f (S )  = t)(n log n). 

Proof. It is easily seen that  f (S)  is at least as large as the size of a smallest 
clique cover of H. Indeed let f# be a clique cover of G(S). By deleting all u/s 
and vi's from each clique of c5, we obtain a clique cover of H. In the following 
we prove a lower bound on the size of the smallest clique cover of H. 

Consider a collection of subgraphs that covers H. Since H is bipartite, every 
induced subgraph of H is also a bipartite graph. For  each i, 1 < i < n, let Xi denote 
the collection of subgraphs in our cover that contain a~ and let Y~ be the collection 
of the subgraphs that contain b i. Observe that  the size of the cover is precisely 
Y'2= l([X~l + I Y~I). Any subgraph in the cover of H cannot  contain both al and bi, 
because (ag, bl) is not an edge in H. Consequently,  X~ and Y~ are disjoint, for every 
i. Let us choose for each subgraph in our  collection, randomly and independently, 
a color 0 or 1 with probabili ty 1/2. Let Ei be the event that all the members of 
X~ received color 0 and all those in Y~ color 1. Then the probabili ty of E~ is 
2-(IX, I+IY, I). Also, the events E~ are pairwise disjoint. Indeed, assuming otherwise 
implies that there is coloring so that all the subgraphs in Xi are colored' 0 and all 
those in Yi are colored 1 for some i r j. However,  that means that X~ and Yj are 
disjoint, which is false, as both  of them contain the subgraph containing the edge 
(a~, b j). Therefore, the sum of  the probabilities of the events E~ is at most 1, i.e., 

i=1 21x'l+lr'~ ~ 1. 
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By the arithmetic-geometric inequality, the left-hand side divided by n is at least 
the nth root of the product 

1~ 1 1 
i=1 21X'l + W'I 2s' 

where s denotes here the size of the cover. Thus 2 s > n', implying the desired 
result. [] 

4. Discussion and Open Problems 

We have considered the problem of representing the visibility graph of a set of 
nonintersecting line segments by cliques and bipartite cliques. We showed that 
there are families of n segments whose visibility graphs require clique covers of 
size fl(n2/log 2 n) (Theorem 2.11). On the other hand, the visibility graph of a simple 
polygon can always be represented by a clique cover of size O(n log 3 n). Our 
investigation is motivated by the observation that the existing efficient algorithms 
for several visibility-related problems depend on the cover size of the visibility 
graph. We conjecture that our lower bound of ~)(n2/log 2 n) on the size of clique 
cover implies a similar lower bound on the time complexity of solving problems 
1-3 mentioned in the Introduction. 

Problems 1-3 stated in the Introduction, and several other visibility-related 
problems, are instances of the following abstract problem. Let S be a set of n 
nonintersecting line segments in the plane, let V(S) denote the endpoints of the 
segments in S, and let E(S) denote the edges of the visibility graph G(S). Consider 
a commutative semigroup (C, +) and a weight function w from pairs of endpoints 
in V(S) to C; that is, w: V(S) x V(S) ~ C. Consider the problem of computing the 
total weight on the edges of E(S): 

W(S) = ~, w(p, q). (10) 
(p, q) E E(S) 

In this setting, for instance, the biggest diagonal problem can be formulated by 
taking the semigroup (9t, max) and the Euclidean weight function; that is, w(p, q) 
is the Euclidean distance between p and q. Other problems have similar formula- 
tions. 

We believe that a model for visibility-type problems can be defined along the 
lines of the semigroup model of computation used by Fredman [11] and Chazelle 
[5], [6], [9], which has been used successfully to prove lower bounds on 
range-searching problems. In particular, the cost of computing the weight W needs 
to be formalized. It seems reasonable that, in the absence of additional assump- 
tions, computing W(T) for an arbitrary subset T ~_ S would require at least 
I(F(T) x V(T)) n E(S)I operations, that is, the time proportional to the size of the 
visibility graph induced by T. On the other hand, if the visibility graph induced 
by T is a clique or a bipartite clique, then the weight W(T) can be computed with 



Can Visibility Graphs Be Represented Compactly? 365 

O(I TI) operations. We would like to argue that, in some sense, these two extremes 
are the only cases, and that the cost of computing W(T) is at least f~(I TI) even 
when the graph induced by T is a clique or a bipartite clique. In that case the 
results of this paper imply an almost quadratic lower bound for the abstract 
problem of computing W(S ). We leave it as an open problem to prove or disprove 
this claim. 
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